
FastSLAM with Look-ahead RBPF

Steven Gao
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
sxgao@cs.ubc.ca

Reza Lotun
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
rlotun@cs.ubc.ca

Abstract

In this paper we present an implementation of the Rao-Blackwellised par-
ticle filtering (RBPF) with one step look-ahead and apply thealgorithm
within the domain of agent navigation. Specifically we tackle the si-
multaneous localization and mapping problem (SLAM), whichdescribes
how a agent must concurrently attempt to determine its location and gen-
erate a map of the surrounding landmarks. Our implementation is built
on top of previous implementation of normal RBPF using a technique
called fastSLAM. We compare the performance of normal RBPF and
look-ahead RBPF in terms of computational time and accuracyof state
estimation.

1 Introduction

We apply a variant of a Rao-Blackwellised particle filteringto the FastSLAM algorithm [1].
In this section we introduce various concepts used in our work, namely particle filtering,
Rao-Blackwellisation, the FastSLAM algorithm, and look-ahead RBPF.

1.1 Simultaneous Localization and Mapping (SLAM)

The problem of simultaneously determining of map of the environment and one’s location
within it is widely regarded [2] as being one of the fundamental problems in robotics.
At an abstract level the problem seems to mirror the classic ‘chicken-and-egg’ problem
- “location” makes sense only with respect to a map or model ofthe environment, and
determining such a map of course depends where one is within the environment.

In SLAM, an agent or robot’s state within an environment is given by(x, y, φ) wherex
andy are its Cartesian (surface) coordinates within the environment andφ is its orientation
angle. The moving robot makes noisy measurements of the environment usually with laser
range finders, which give the range and bearing to various features or landmarks.

Formally, we can model the environment to beF uniquely distinguishable landmarks. A
mapof the environmentΘ consists of the relative distance (component-wise) to eachof the
F landmarks, if they are visible. The robot’s current statezt = (x, y, φ) is where inΘ it
currently is at timet. Its control signalut is a displacement which directs it where in the
environment it should move to next. We denote byyt its measurements at timet, given by
a list of landmarks it sees and relative distances to them. The problem of SLAM then is to

determine

p(zt, Θ|yt, ut) (1)

known as the SLAM posterior.

1.2 Monte Carlo Methods

Given some target probability density functionp(x) defined on a high-dimensional space,
we seek to draw an i.i.d set of samples{x(i)}N

i=1. The simplest Monte Carlo simulation of
such a distributionp(x) would be

pN (dx) = 1
N

N
∑

i=1

δx(i)(dx)

whereδx(i) denotes the Dirac-delta function atx(i). Such an approach would allow the
approximation of intractable integrals (as the integral over the Dirac-delta function would
“pick out” the function in the integral evaluated at the samples).

If the target distributionp(x) is difficult to sample from, then another Monte Carlo variant
called importance samplingcan be used instead. The idea is to use a simpler to evaluate
proposal distributionq(x) to sample from instead. A weight is then calculated

w(x) = p(x)
q(x)

and thus approximated integrals involvingp(x) become

∫

p(x)dx =
N
∑

i=1

p(x(i))w(i)

For dynamic models,particle filtering is the generalization of Monte Carlo sampling. Dy-
namic models consist of three equations: the initial probability p(x0), the transition prob-
ability p(xt|xt−1), t ≤ 1 and the observation modelp(yt|xt), t ≤ 1. The observations
yt are assumed to be conditionally independent given the processxt and of the marginal
distributionp(yt|xt).

In dynamic settings, inference falls into three categories:

1. Filtering:p(xt|y1:t)

2. Prediction:p(xt+τ |y1:t)

3. Smoothing:p(xt−τ |y1:t)

In the filtering problem we have apredictionandfiltering step:

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2)

p(xt|y1:t) =
p(yt|xt)p(xt−1|y1:t−1)

∫

p(yt|xt)p(xt|y1:t−1)dxt

(3)

For high dimensional state spaces, estimates typically exhibit high variance. The idea of
Rao-Blackwellised samplingis to sample on some subspace of the large state space, and
compute the expect value of the rest of the space analytically, all of which result in reduced
variance in the estimate.

1.3 Approaches to SLAM

Approaches to SLAM include using an Extended Kalman Filter (EKF) [3] to represent the
robot’s internal map and pose estimate by a high-dimensional Gaussian over all features
in the map and robot states. The limitations of this approachare computational in nature
[4], as maintaining such a multivariate Gaussian requires time quadratic in the number
of features in the map. Another approach using a Thin Junction Tree Filter (TJTF) [5]
represents approximation of the belief state as a junction tree. For each filter update the
junction trees is periodically thinned by efficient maximumlikelihood projections. Such
a representation has a linear-space belief state and linear-time filtering operation. Another
approach using Rao-Blackwellised particle filtering in an algorithm called FastSLAM [1,
6, 4] is presented in the next section.

1.4 FastSLAM

As pointed out in [7], the SLAM posterior 1 can be factored as

p(zt, Θ|yt, ut) = p(zt|yt, ut)

F
∏

n=1

p(Θn|z
t, yt) (4)

This says that calculation of the posterior over robot pathsand internal maps can be decom-
posed intoF + 1 recursive estimators, one over the robot statep(zt|yt, ut) andF separate
estimators over feature locationsp(Θn|z

t, yt).

In FastSLAM, the posterior over robot paths is estimated using a particle filter, or more
specifically a Rao-Blackwellised particle filter since it only considers a subspace of the
possible space. The remainingF posterior of feature locations (which are conditional on
the sampled robot posezt) are calculated by using extended Kalman filters (EKF). Since
each EKF estimates a single landmark position(Θi

x, Θi
y), it is low-dimensional.

Each particle is of the form [4]

S
[n]
t = 〈zt,[n], µ

[n]
1,t, Σ

[n]
1,t, . . . , µ

[n]
F,t, Σ

[n]
F,t〉 (5)

that is, at thetth step in the robot’s path,S[n]
t denotes thenth particle out of allN particles,

wherezt,[n] is a position sample,µ[n]
i,t is the mean of a landmark, andΣ[n]

i,t is its covariance
matrix.

The filtering step− generating aSt from St−1 − involves using the control signalut and
observationyt in the following steps:

1. Sampling a new pose

z
[n]
t ∼ p(zt|z

[n]
t−1, ut) (6)

wherep(zt|z
[n]
t , ut) is our “motion model”.

2. Updating the observed landmark estimates. If a landmark is observed, which can
be determined byyt,

µ
(i)
t|t−1 = A(z

(i)
t)µ

(i)
t−1 + F (z(i))ut (7)

Σ
(i)
t|t−1 = A(z

(i)
t)Σ

(i)
t−1A(z

(i)
t)T + B(z

(i)
t)B(z

(i)
t)T (8)

y
(i)
t|t−1 = C(z

(i)
t)µ

(i)
t|t−1 + G(z

(i)
t)ut (9)

ST (i) = C(z
(i)
t)Σ

(i)
t|t−1C(z

(i)
t)T + D(z

(i)
t)D(z

(i)
t)T (10)

for givenA, B, C, D, F , and the Kalman update is then given by

µ
(i)
t = µ

(i)
t|t−1 + Σ

(i)
t|t−1C(z

(i)
t)T ST−1(i)(yt − y

(i)
t|t−1) (11)

Σ
(i)
t = Σ

(i)
t|t−1 − Σ

(i)
t|t−1C(z

(i)
t)T ST−1(i)C(z

(i)
t)Σ

(i)
t|t−1 (12)

3. Resampling is carried out according to the following weights

w
[n]
t =

p(zt,[n]|yt, ut)

p(zt,[n]|zt−1, ut)
(13)

∝ p(yt|y1:t−1, z[n],1:t) (14)

which we take to be a Gaussian with meany
(i)
t|t−1 and covarianceST . The deriva-

tion of this can be found in [4, 8].

1.5 Lookahead Rao Blackwellised Particle Filtering

In [8] a variant of Rao-Blackwellised particle filtering is presented with these differences:

1.

w
[n]
t ∝ p(yt|y1:t−1, z[n],1:t)

∝

nz
∑

zt=1

p(yt|y1:t−1, z1:t−1, zt)p(zt|z1:t−1, y1:t−1) (15)

wherenz are all the possible states the robot could be in. Since this is a marginal-
ization, it is an exact analytical solution.

2. Since the importance weights do not depend onzt (because we are marginalizing
over them), we can select particles before the sampling step, allowing the choice
of the fittest particles at timet − 1 using the information at timet.

2 Our Contribution

This section describes our contribution to the SLAM problemand discusses our implemen-
tation of look-ahead RBPF to this particular application domain.

2.1 Implementation Issues

Our code is built on top of a Matlab implementation of RBPF by van Loh Wenzel [9]. As
a result we attempted to improve upon his code in terms of modularity, functionality and
efficiency. We were able to in several ways. Firstly, we were able to vectorize many of the
functions used heavily by the RBPF code. This reduced the running time of RBPF even for
a large number of particles (N = 200).

Secondly, we altered the vision model to include a parameter(φ) for the robot’s angle of
vision. This implies that the robot can only detect featureswithin its angle of vision. For
example, if the robot is facing 45 degrees North of East (NE) and its vision angle is 90
degrees, then it can see any obstacles bound by North and Eastaxis. The implementation
in [9] uses a simpler vision model, which employs eight identical laser rays that leave
the robot at fixed angles. So the robot would be able to detect features surrounding it at
the specified fixed angles regardless of what angle it was facing. We feel that our model
provides a more realistic model of how a robot (or human) would detect features in an
environment. We discuss our vision model further in the nextsubsection.

Since RBPF requires a prior distribution to update the pose of the robot, the algorithm
requires an initial set of particles that must be sampled without any ”help”. Depending on
how one decides to sample the initial particles the robot’s perform may vary considerably. If
the initial set of particles are set close to the real pose of the robot, then the initial sampling
will obviously represent the target distribution more accurately and our task is simplified.
However, if the initial set of samples are selected uniformly at random, then SLAM will
be much harder to perform. This is because the random samplescould potentially be very
far away from target distribution and so it will take more time steps for the particles to
converge.

2.2 Robot Orientation

Previously, the discrete stateszt were modeled as coordinate positions(x, y), 1 ≤ x ≤
Wx, 1 ≤ y ≤ Wy. To make the state space more realistic, we added an orientation angleφ
to each state(x, y, φ). Given statezt - representing the position the robots believes itself to
be in at stept - and a control signalut, z′t = (x′, y′, φ′) is calculated to be:

r =
√

u2
tx

+ u2
ty

φ′ = arctan(
uty

utx

) − φ

x′ = r sin(φ + φ′)

y′ = r cos(φ + φ′)

3 Testing and Results

To compare our look-ahead RBPF algorithm against normal RBPF we used a 10 x 10 grid
world (small.data). The world contains a perimeter wall surrounding the outside edges. The
world has exact 42 uniquely numbered features. The map is symmetric about the diagonal
(from bottom left corner to top-right corner), which increases the difficulty of accurately
mapping the features since the robot could see the same sequence of obstacles but actually
be at one of two possible locations in the map. To compare the two algorithms we decided
to calculate the average Euclidean distance between a givenparticle and the true position of
the robot - we only considered the x and y coordinates. Thus, greater the distance between
the proposed position of the particle the true position the greater the amount of error. Given
that there wereN particles we weighted each Euclidean distance value for onetimestep and
calculated the average over these weighted error measures.We also did the same thing for
the mapped feature positions (i.e. calculate the Euclideandistance between the estimated
position of a feature and that features true position). We averaged the values for both the
localization error and map error over all timesteps to arrive at a single for each for a single
run of the algorithm. We then plotted these two error measures versus the computational
time required per timestep and also versus the number of particles used. We ran each
configuration exactly three times and then averaged the results over those runs.

We also ran tests first using no noise in the scanned observations (i.e. simulating the fact
that the robot’s detection system is completely accurate) and then using a moderate amount
of noise (i.e. weighting the covariance matrix high). We present the results of both no
noise and moderate noise in the following subsections. Also, as noted above in our contri-
butions section, our results reflect the fact that we do not use seeds for the random number
generators (i.e. the Matlab functions rand and randn) and thus there is quite a bit variation
between runs using the same number of particles and map.

Originally we had planned to run tests using larger sized maps (e.g. a 20 x 20 grid world),

containing more difficult configurations of features. However, we found that our look-
ahead RBPF algorithm did not sale well to larger maps; although the increase in computa-
tional time per timestep was linear in the increase in size ofthe map it was still too slow to
perform adequate trial runs.

3.1 Results using Zero Noise

In Figure 1 we see that using the same number of particles bothRBPF and look-ahead
RBPF perform roughly the same, although RBPF appears to do localization better. This is
very discouraging considering that look-ahead RBPF is theoretically supposed to perform
better than RBPF because it is using the optimal proposal distribution. It is most likely that
our technique of marginalization over all discrete states in the map contains a logical bug.
Note, that in our code we only marginalize over discrete states that are not features (i.e.
open spaces). We assumed that the robot could be in four possible orientations (i.e. the
angle it is facing). So for our given map we marginalize over(100 − 42)x4 = 216 states.

In Figure 2 we see a more discouraging result. For computation times per timestep RBPF
flat out beats look-ahead RBPF in terms of accuracy. Our first thought was that perhaps
because we were using zero noise in the scan readings that look-ahead, its advantage being
that it can calculate weightings over all possible states before resampling, provided no
advantage because the robot’s observations at each timestep were completely accurate.
However, we will see in the next subsection, when we used a moderate level of noise
in the scan readings, RBPF still outperformed look-ahead RBPF.

Figure 1:Small Map Localization Error in Low Noise

Figure 2:Small Map Localization Error vs. Time in Low Noise

3.2 Results using Moderate Noise

In Figures 3 and 4 we see again that RBPF performs better than look-ahead RBPF in almost
every situation. The only exception is when both algorithmsuse only a single particle. In
this particular case, look-ahead produces slightly more accurate estimation of the robot’s
position and much better map estimation of feature locations (i.e. look-ahead RBPF pro-
duces roughly half the amount of error as RBPF in this case). However, in terms of com-
putational time per timestep, which is the key to an algorithm’s success, it appears that
even when there is noise in the scan readings RBPF is more reliable. This result appears
questionable because in principle look-ahead RBPF is designed to outperform RBPF in this
situation. Given that our observations maybe unreliable itis far better to be able to estimate
using all possible discrete states.

At this point in our analysis we are quite sure that there is anerror in our implementation
and not simply because we are applying look-ahead to a new application domain. As was
discussed in [8] when the number of discrete states is small (i.e. roughly speaking less
than 1000 states) the weighting calculations can be computed exactly. Given that the total
number of states is 216,the look-ahead RBPF algorithm should be tractable and produce
very accurate results.

4 Conclusion

Based on our comparison of RBPF and look-ahead RBPF we can only conclude that there is
an error in our implementation of look-ahead RBPF. Althoughanalysis from [8] shows that

Figure 3:Small Map Localization Error in High Noise

the accuracy of RBPF and look-ahead RBPF eventually converge, given that the number of
particles is increased high enough, look-ahead should outperform RBPF for few number of
particles. Granted there will be differences in the performance results of both algorithms
when they are applied to another application domain, namelySLAM, the dramatic evidence
that RBPF outperforms look-ahead in every situation exceptwhen only a single particle is
used should be a warning flag that indicates our implementation may contain a bug.

Aside from this, our results suggest that in the SLAM domain,for the experiments we per-
formed, using more particles is better. Although our RBPF implementation used a simple
proposal distribution, using a large number of particles made it fairly accurate. Although
the computational burden of each particle in lookahead is large (for it grows with the map),
the benefits gained should have been more substantial. More extensive tests are needed to
determine the relationship between the two approaches.

5 Future Work

The immediate extensions to this algorithm involve dealingwith some basic assumptions
made, code optimizations and comparison with other methods:

• The body of work mentioned above assumes known map correspondences. This is
an obvious simplification not applicable in reality. The application of the codebase
to unknown data correspondence could be made using the method of maximum-
likelihood discussed in [4].

• Currently, many parts of the FastSLAM algorithm are implemented naively. The

Figure 4:Small Map Localization Error vs. Time in High Noise

use of advanced datastructures [10] to update the map mean and covariances for all
the particles, such as a binary tree [1], can offer some badlyneeded optimizations.

• An improved version of FastSLAM dubbed FastSLAM 2.0 [4, 6] takes into ac-
count the measurementsyt. An implementation of these ideas and how lookahead
applies to them could be made. A more thorough comparison between FastSLAM
1.0, FastSLAM 2.0, with and without lookahead can be made against the Thin
Junction Tree Filter method [5] to see in what regime each excels at.

A few more interesting extensions involve reducing the computational complexity of the
lookahead method and applying it to a non-trivial problem:

• “Fast-methods” - those family of methods related to fast multi-pole methods, the
fast Gauss transform, distance transforms, kd-trees, balltrees, dual trees, etc. -
can be used to try to reduce the complexity of the marginalization at each step.

• The FastSLAM+Lookahead variant can be applied to the simpleWumpus World
problem, which would require the use of some form of decisionprocesses.

Acknowledgements

We wish to thank Kevin Murphy for fruitful discussions as well as James Cook, Iryna
Shypnyk and Roland von loh Wenzel for their Matlab code whichwe based our work on.

References

[1] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored solution
to the simultaneous localization and mapping problem. InProceedings of the National
Conference on Artificial Intelligence, 2002.

[2] S. Thrun. Probabilistic algorithms in robotics.AI Magazine, 21(4):93–109, 2000.

[3] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba. A solution
to the simultaneous localization and map building (slam) problem.IEEE Transactions
on Robotics and Automation, 17(3):229–241, 2001.

[4] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot. Fastslam:
An efficient solution to the simultaneous localization and mapping problem with un-
known data association.Journal of Machine Learning Research, 2004. To appear.

[5] Mark A. Paskin. Thin junction tree filters for simultaneous localization and mapping.
In Georg Gottlob and Toby Walsh, editors,Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03), pages 1157–1164, San
Francisco, CA, 2003. Morgan Kaufmann Publishers.

[6] M. Montemerlo and S. Thrun. Fastslam 2.0: An improved particle filtering algorithm
for simultaneous localization and mapping that provably converges. InSODA ’01:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 735–744, 2001.

[7] K. Murphy. Bayesian map learning in dynamic environments. InAdvances in Neural
Information and Processing Systems (NIPS). MIT Press, 1999.

[8] N. de Freitas, R. Dearden, F. Hutter, R. MoralesMenendez, J. Mutch, and D. Poole.
Diagnosis by a waiter and a mars explorer. InInvited paper for Proceedings of the
IEEE, special issue on sequential state estimation, 2003.

[9] R. W. van Loh Wenzel. Giving a compass to a robot probabilistic techniques for
simultaneous localization and map building (slam) in mobile robotics. 2004.

[10] U. Frese. Treemap: Ano(logn) algorithm for simultaneous localization and mapping.
In C. Freksa, editor,Spatial Cognition IV. Springer Verlag, 2004.

