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At the intersection of statistical physics and probability theory, Markov random

�elds and Gibbs distributions have emerged in the early eighties as powerful tools

for modeling images and coping with high-dimensional inverse problems from low-

level vision. Since then, they have been used in many studies from the image

processing and computer vision community. A brief and simple introduction to

the basics of the domain is proposed.

1. Introduction and general framework

With a seminal paper by Geman and Geman in 1984 [18], powerful tools
known for long by physicists [2] and statisticians [3] were brought in a com-
prehensive and stimulating way to the knowledge of the image processing and
computer vision community. Since then, their theoretical richness, their prac-
tical versatility, and a number of fruitful connections with other domains, have
resulted in a profusion of studies. These studies deal either with the mod-
eling of images (for synthesis, recognition or compression purposes) or with
the resolution of various high-dimensional inverse problems from early vision
(e.g., restoration, deblurring, classi�cation, segmentation, data fusion, surface
reconstruction, optical ow estimation, stereo matching, etc. See collections of
examples in [11, 30, 40]).

The implicit assumption behind probabilistic approaches to image analysis
is that, for a given problem, there exists a probability distribution that can
capture to some extent the variability and the interactions of the di�erent sets
of relevant image attributes. Consequently, one considers the variables of the
problem as random variables forming a set (or random vector) X = (Xi)

n
i=1

with joint probability distribution PX
1.

1
PX is actually a probability mass in the case of discrete variables, and a probability density

function when the Xi's are continuously valued. In the latter case, all summations over

states or con�gurations should be replaced by integrals.
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The �rst critical step toward probabilistic modeling thus obviously relies on
the choice of the multivariate distribution PX . Since there is so far no really
generic theory for selecting a model, a tailor-made parameterized function P�X
is generally chosen among standard ones, based on intuition of the desirable
properties 2.

The basic characteristic of chosen distributions is their decomposition as a
product of factors depending on just a few variables (one or two in most cases).
Also, a given distribution involves only a few types of factors.

One has simply to specify these local \interaction" factors (which might
be complex, and might involve variables of di�erent nature) to de�ne, up to
some multiplicative constant, the joint distribution PX(x1; : : : ; xn): one ends
up with a global model.

With such a setup, each variable only directly depends on a few other \neigh-
boring" variables. From a more global point of view, all variables are mutually
dependent, but only through the combination of successive local interactions.
This key notion can be formalized considering the graph for which i and j are
neighbors if xi and xj appear within a same local component of the chosen
factorization. This graph turns out to be a powerful tool to account for local
and global structural properties of the model, and to predict changes in these
properties through various manipulations. From a probabilistic point of view,
this graph neatly captures Markov-type conditional independencies among the
random variables attached to its vertices.

After the speci�cation of the model, one deals with its actual use for mod-
eling a class of problems and for solving them. At that point, as we shall see,
one of the two following things will have to be done: (1) drawing samples from
the joint distribution, or from some conditional distribution deduced from the
joint law when part of the variables are observed and thus �xed; (2) maximiz-
ing some distribution (PX itself, or some conditional or marginal distribution
deduced from it).

The very high dimensionality of image problems under concern usually ex-
cludes any direct method for performing both tasks. However the local decom-
position of PX fortunately allows to devise suitable deterministic or stochastic
iterative algorithms, based on a common principle: at each step, just a few
variables (often a single one) are considered, all the others being \frozen".
Markovian properties then imply that the computations to be done remain
local, that is, they only involve neighboring variables.

This paper is intended to give a brief (and de�nitely incomplete) overview
of how Markovian models can be de�ned and manipulated in the prospect of
modeling and analyzing images. Starting from the formalization of Markov ran-
dom �elds (mrfs) on graphs through the speci�cation of a Gibbs distribution
(x2), the standard issues of interest are then grossly reviewed: sampling from
a high-dimensional Gibbs distribution (x3); learning models (at least param-
eters) from observed images (x4); using the Bayesian machinery to cope with

2 Superscript � denotes a parameter vector. Unless necessary, it will be dropped for nota-

tional convenience.
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inverse problems, based on learned models (x5); estimating parameters with
partial observations, especially in the case of inverse problems (x6). Finally
two modeling issues (namely the introduction of so-called auxiliary variables,
and the de�nition of hierarchical models), which are receiving a great deal of
attention from the community at the moment, are evoked (x7).

2. Gibbs distribution and graphical Markov properties

Let us now make more formal acquaintance with Gibbs distributions and their
Markov properties. Let Xi; i = 1; : : : ; n, be random variables taking values
in some discrete or continuous state space �, and form the random vector
X = (X1; : : : ; Xn)

T with con�guration set 
 = �n. All sorts of state spaces
are used in practice. More common examples are: � = f0; : : : ; 255g for 8-bit
quantized luminances; � = f1; : : : ;Mg for semantic \labelings" involving M
classes; � = R for continuously-valued variables like luminance, depth, etc.;
� = f�umax; : : : ; umaxg � f�vmax; : : : ; vmaxg in matching problems involving
displacement vectors or stereo disparities for instance; � = R2 in vector �eld-
based problems like optical ow estimation or shape-from-shading.

As said in the introduction, PX exhibits a factorized form:

PX (x) /
Y
c2C

fc(xc); (1)

where C consists of small index subsets c, the factor fc depends only on the
variable subset xc = fxi; i 2 cg, and

Q
c fc is summable over 
. If, in addi-

tion, the product is positive (8x 2 
;PX(x) > 0), then it can be written in
exponential form (letting Vc = � ln fc):

PX(x) =
1

Z
expf�

X
c

Vc(xc)g: (2)

Well known from physicists, this is the Gibbs (or Boltzman) distribution with
interaction potential fVc; c 2 Cg, energy U =

P
c Vc, and partition function (of

parameters) Z =
P

x2
 expf�U(x)g 3. Con�gurations of lower energies are
the more likely, whereas high energies correspond to low probabilities.

The interaction structure induced by the factorized form is conveniently
captured by a graph that statisticians refer to as the independence graph: the
independence graph associated with the factorization

Q
c2C fc is the simple

undirected graph G = [S;E] with vertex set S = f1; : : : ; ng, and edge set E
de�ned as: fi; jg 2 E () 9c 2 C : fi; jg � c, i.e., i and j are neighbors if xi
and xj appear simultaneously within a same factor fc. The neighborhood n(i)
of site i is then de�ned as n(i) = fj 2 S : fi; jg 2 Eg 4. As a consequence

3 Formal expression of the normalizing constant Z must not veil the fact that it is unknown

and beyond reach in general, due to the intractable summation over 
.
4 n = fn(i); i 2 Sg is called a neighborhood system, and the neighborhood of some subset

a � S is de�ned as n(a) = fj 2 S � a : n(j) \ a 6= �g.
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of the de�nition, any subset c is either a singleton or composed of mutually
neighboring sites: C is a set of cliques for G .

When variables are attached to the pixels of an image, the most common
neighborhood systems are the regular ones where a site away from the border
of the lattice has four or eight neighbors. In the �rst case (�rst-order neighbor-
hood system, like in Figure 1.a) subsets c have at most two elements, whereas,
in the second-order neighborhood system cliques can exhibit up to 4 sites. How-
ever, other graph structures are also used: in segmentation applications where
the image plane is partitioned, G might be the planar graph associated to the
partition (Figure 1.b); and hierarchical image models often live on (quad)-trees
(Figure 1.c).

(a) (b) (c)

Figure 1. Three typical graphs supporting mrf-based models for image
analysis: (a) rectangular lattice with �rst-order neighborhood system; (b)
non-regular planar graph associated to an image partition; (c) quad-tree. For
each graph, the grey nodes are the neighbors of the white one.

The independence graph conveys the key probabilistic information by absent
edges: if i and j are not neighbors, PX(x) can obviously be split into two parts
respectively independent from xi and from xj . This su�ces to conclude that
the random variables Xi and Xj are independent given the others. It is the
pair-wise Markov property [29, 39].

In the same fashion, given a set a � S of vertices, PX splits intoQ
c:c\a6=� fc�

Q
c:c\a=� fc where the second factor does not depend on xa. As

a consequence PXajXS�a
reduces to PXajXn(a)

, with:

PXajXn(a)
(xajxn(a)) /

Y
c:c\a6=�

fc(xc) = expf�
X

c:c\a6=�

Vc(xc)g; (3)

with some normalizing constant Za(xn(a)), whose computation by summing
over all possible xa is usually tractable. This is the local Markov property.
The conditional distributions (3) constitute the key ingredients of iterative
procedures to be presented, where a small site set a (often a singleton) is
considered at a time.

It is possible (but more involved) to prove the global Markov property ac-
cording to which, if a vertex subset A separates two other disjoint subsets B
and C in G (i.e., all chains from i 2 B to j 2 C intersect A) then the random
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vectors XB and XC are independent given XA [29, 39]. It can also be shown
that the three Markov properties are equivalent for strictly positive distribu-
tions. Conversely, if a positive distribution PX ful�lls one of these Markov
properties w.r.t. graph G (X is then said to be a mrf on G ), then PX is a
Gibbs distribution of the form (2) relative to the same graph. This equivalence
constitutes the Hammersley-Cli�ord theorem [3].

To conclude this section, we introduce two very standard Markov random
�elds which have been extensively used for image analysis purposes.

Example 1: Ising mrf. Introduced in the twenties in statistical physics of
condensed matter, and studied since then with great attention, this model
deals with binary variables (� = f�1; 1g) that interact locally. Its simpler
formulation is given by energy

U(x) = ��
X
hi;ji

xixj ;

where summation is taken over all edges hi; ji 2 E of the chosen graph. The
\attractive" version (� > 0) statistically favors identity of neighbors. The
conditional distribution at site i is readily deduced:

PXijXn(i)
(xijxn(i)) =

expf�xi
P

j2n(i) xjg
2 cosh(�

P
j2n(i) xj)

:

The Ising model is useful in detection-type problems where binary variables
are to be recovered. Some other problems (essentially segmentation and clas-
si�cation) require the use of symbolic (discrete) variables with more than two
possible states. For these cases, the Potts model also stemming from statistical
physics [2], provides an immediate extension of the Ising model, with energy
U(x) = ��

P
hi;ji[2�(xi; xj)� 1], where � is the Kronecker delta. �

Example 2: Gauss-Markov �eld. It is a continuously-valued random vector
(� = R) ruled by a multivariate Gaussian distribution

PX(x) =
1p

det(2��)
expf�1

2
(x � �)T��1(x� �)g;

with expectation vector E(X) = � and covariance matrix �. The \Markovian-
ity" shows up when each variable only interacts with a few others through the
quadratic energy, that is, when the matrix A = ��1 is sparse. Sites i and
j are then neighbors in G i� the corresponding entry aij = aji is non-null.
Graph G is exactly the so-called structure of sparse matrix A [24]. In practice
a Gauss-Markov �eld is often de�ned simply by its quadratic energy function
U(x) = 1

2
xTAx � xT b =

P
hi;ji aijxixj +

P
i(
aii
2
xi � bi)xi, with b 2 Rn and

A a sparse symmetric de�nite positive matrix. In that case, the expectation
which corresponds to the most probable con�guration, is the solution of the
large sparse linear system A� = b.
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Note that in the Gaussian case, any conditional or marginal distribution
taken from PX is Gaussian and can be explicitly written down by using ad-
equate block partitioning of A and b [29, 37, 39]. All Markovian properties
can then be directly deduced from this. Site-wise conditional distributions in
particular turn out to be Gaussian laws

(XijXn(i) = x
n(i)) � N (

1

aii
(bi �

X
j2n(i)

aijxj); a
�1
ii ) :

At this point, it is worth emphasizing the di�erence with so-called simultaneous

autoregressive models [3] de�ned by:

8i aiiXi = bi �
X
j2n(i)

aijXj +Wi ;

with Wi's being i.i.d. reduced zero-mean Gaussian variables. As a fact, the
resulting inverse covariance matrix of X in this case is ATA, whose �lling
structure is larger than the one of A.

The nice properties of Gaussian mrfs, inherited from the quadratic form
of their energy, make them the more popular models in case of continuous or
\almost continuous" (i.e., j�j very large) variables. �

3. Sampling from Gibbs distributions

In order to visually evaluate the statistical properties of the speci�ed model,
or simply to get synthetic images, one might want to draw the samples from
the distribution PX . A more important and technical reason for which this
sampling can be of much help is that for all issues requiring an exhaustive
visit of con�guration set 
 (intractable in practice), e.g., summation or maxi-
mization over all possible occurrences, an approximate way to proceed consists
in randomly visiting 
 for long enough according to distribution PX . These
approximation methods belong to the class of Monte Carlo methods [25, 35].

The dimensionality of the model makes sampling delicate (starting with
the fact that normalizing constant Z is beyond reach). One has to resort to a
Markov chain procedure on 
 which allows to sample successively from random
�elds whose distributions get closer and closer to the target distribution PX .
The locality of the model indeed permits to design a chain of random vectors
X1; : : : ; Xm; : : : , without knowing Z, and such that PXm tends to PX (for
some distance) as m goes to in�nity, whatever initial distribution PX0 is. The
crux of the method lies in the design of transition probabilities PXm+1jXm based
only on local conditional distributions stemming from PX , and such that the
resulting Markov chain is irreducible 5, aperiodic 6, and preserves the target

5 There is a non-null probability to get from any x to any x0 within a �nite number of

transitions: 9m : PXmjX0 (x0jx) > 0.
6 Con�guration set cannot be split in subsets that would be visited in a periodic way:

@ d > 1 : 
 = [d�1k=0

k with X0 2 
0 ) Xm 2 
m�dbm=dc;8m
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distribution, i.e.,
P

x02
 PXm+1jXm(xjx0)PX(x0) = PX(x) for any con�guration
x 2 
. The latter condition is especially met when the so-called \detailed
balance" holds: PXm+1jXm(xjx0)PX (x0) = PXm+1jXm(x0jx)PX (x).

Various suitable dynamics can be designed [35]. A quite popular one for
image models is the Gibbs sampler [18] which directly uses conditional distribu-
tions from PX to generate the transitions. More precisely S is split into small
pieces (often singletons), which are \visited" either at random, or according
to some pre-de�ned schedule. If a is the concerned set of sites at step m, and
x the realization of Xm, a realization of Xm+1 is obtained by replacing xa in
x = (xa; xS�a) by x

0
a, according to the conditional law

PXajXS�a
(:jxS�a) = PXajXn(a)

(:jx
n(a))

(this law of a few variables can be exactly derived, unlike PX). The chain thus
sampled is clearly irreducible and aperiodic (the null transition x! x is always
possible), and detailed balance is veri�ed since

PXm+1jXm(x0a; xS�ajxa; xS�a)PX (xa; xS�a) =

= PXajXS�a
(x0ajxS�a)PX (xa; xS�a)

=
PX(x

0
a; xS�a)PX (xa; xS�a)
PXS�a

(xS�a)

is symmetric in xa and x0a.
From a practical point of view the chain thus designed is started from any

con�guration x0, and run for a large number of steps. For m large enough, it
has almost reached an equilibrium around PX , and following con�gurations can
be considered as (non-independent) samples from PX . The decision whether
equilibrium is reached is intricate, though. The design of criteria and indicators
to answer this question is an active area of research in mcmc studies.

If the expectation of some function f of X has to be evaluated, ergodicity

properties yield E [f(X)] = limm!+1
f(x0)+:::+f(xm�1)

m
. Practically, given a

large but �nite realization of the chain, one gets rid of the �rst m0 out-of-
equilibrium samples, and computes an average over the remainder:

E [f(X)] � 1

m1 �m0

m1X
m=m0+1

f(xm) :

Example 3: sampling Ising model. Consider the Ising model from example
1 on a rectangular lattice with �rst-order neighborhood system. S is visited
site-wise (sets a are singletons). If i is the current site and x the current con�g-
uration, xi is updated according to the sampling of associated local conditional
distribution: it is set to �1 with probability / expf��

P
j2n(i) xjg, and to 1

with probability / expf�
P

j2n(i) xjg. Small size samples are shown in Figure
2, illustrating typical behavior of the model for increasing interaction parameter
�.
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This basic model can be re�ned. It can, for instance, be made anisotropic
by weighting in a di�erent way \horizontal" and \vertical" pairs of neighbors:

U(x) = ��1
X
i j

xixj � �2
X
i

j

xixj :

Some typical patterns drawn from this version are shown in Figure 3 for di�er-
ent combinations of �1 and �2. �

Figure 2. Samples from an Ising model on a lattice with �rst-order neighbor-
hood system and increasing � = 0 (in that case Xis are i.i.d., and sampling is
direct), 0.7, 0.9, 1.1, 1.5, and 2.

Figure 3. Samples from an anisotropic Ising model on a lattice with �rst-order
neighborhood system and (�1; �2) = (5; 0:5); (5; 0:1); (1;�1); (�1;�1), respec-
tively.

Example 4: sampling from Gauss-Markov random �elds. S being a rectangu-
lar lattice equipped with the second-order neighborhood system, consider the
quadratic energy

U(x) = �1
P

i j
(xi � xj)

2+�2
P

i

j

(xi � xj)
2+

+�3
P

i

j

(xi � xj)
2+�4

P
i

j

(xi � xj)
2+"

P
i x

2
i ;

with �1; �2; �3; �4; " some positive parameters. The quadratic form is obviously
positive de�nite (since the minimum is reached for the unique con�guration x �
0) and thus de�nes a Gauss-Markov random �eld whose Amatrix can be readily

assembled using aij =
@2U

@xi@xj
. For current site i (away from the border) and

con�guration x, the Gibbs sampler resorts to sampling from the Gaussian law
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(XijXn(i) = x
n(i)) � N (

P
j2n(i)

�ijxj

"+8��
; (2"+16��)�1), where �� = �1+�2+�3+�4

4 and

�ij = �1; �2; �3, or �4, depending on hi; ji orientation. Some typical \textures"
can be obtained this way for di�erent parameter values (Figure 4). �

Figure 4. Samples from an anisotropic Gaussian model on a lattice with
second-order neighborhood system and various values of (�1; �2; �3; �4; ").

4. Estimating parameters

When it is possible to make available various occurrences of X , like images
in Figure 2, 3 or 4, one can try to learn parameters of the assumed under-
lying Gibbs distribution P�X = Z(�)�1 expf�

P
c V

�
c g. The distribution thus

adjusted might then be used either to generate \similar" realizations through
sampling or simply as a compact information characterizing a class of patterns.
Also, if di�erent models are learned, they then might be used in competition
to analyze and identify the content of an image, in the context of statistical
pattern recognition.

Learning distribution parameters based on observed samples is a standard
issue from statistics. This estimation is often conducted based on the likelihood
of observed data. However, in the case of the Gibbs distributions under concern
in image problems, the high dimensionality rises once again technical di�culties
which have to be speci�cally addressed or circumvented.

Given a realization xo (it could also be a set of realizations) supposed to
arise from one Gibbs distribution among the family fP�X ; � 2 �g, the question
is to estimate at best the \real" �. Maximum likelihood estimation (mle) seeks

parameters that maximize the occurrence probability of x0: �̂ = argmax� L(�)
with (log-)likelihood function L(�) = lnP�X(x

o). Unfortunately, the partition
function Z(�) which is here required, cannot be derived in general (apart from
causal cases where it factorizes as a product of local partition functions).

A simple and popular way to tackle this problem, is to look instead at site-
wise conditional distributions associated with data xo: the global likelihood
as a goodness-of-�t indicator is replaced by a sum of local indicators through
the so-called pseudo-likelihood function [3], L(�) =

P
i lnP�

XijXn(i)
(xoi jxon(i)).

Maximum pseudo-likelihood estimate (mple) is then:

�̂ = argmin
�2�

X
i2S

[lnZi(x
o
n(i); �) +

X
c3i

V �
c (x

o
c)];

where local partition functions Zi(x
o
n(i); �) are usually accessible.
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Example 5: mple of Ising model. Consider the Ising model from example 1.
Denoting n(xa) =

P
i2a xi, the mple is obtained by maximizing

L(�) =
X
i

[� ln cosh(�n(xo
n(i))) + �xoi n(x

o
n(i))]:

Gradient ascent can be conducted using dL(�)
d�

=
P

i n(x
o
n(i))[x

o
i�tanh(�n(xon(i)))] :

�

Example 6: mple of Gaussian model. Consider the Gauss-Markov model
from example 4, with all �k's equal to �. Denoting �

2 = (2"+16�)�1 and  =
2��2, the site-wise conditional laws are N (n(x

n(i)); �
2). Setting the pseudo-

likelihood gradient to zero yields mple ̂ =
P

i
xoi n(x

o
n(i))P

i n(x
o
n(i)

)2
, �̂2 =

P
i
(xoi�̂n(x

o
n(i)))

2

n
.

�

In widely encountered cases where the energy U� depends linearly on the
parameters (family fP�X ; � 2 �g is then said to be exponential), i.e., U� =P

k �k
P

c2Ck
Vk(xc), for some partition of C = [kCk, the gradients of the like-

lihood and pseudo-likelihood take special forms:

@L(�)
@�k

= [Uk(xo)� E� (U
k(X))];

@L(�)

@�k
=
X
i

[Uk
i (x

o
i ; x

o
n(i))� E� (U

k
i (Xi; x

o
n(i))jx0n(i))];

with Uk(x) =
P

c2Ck
Vk(xc) and U

k
i (xi; xn(i)) =

P
c2Ck:i2c

Vk(xc). In that con-
text, the mle can be directly sought by (stochastic) gradient ascent techniques
where the expectation E� (U

k(X)) is approximated by sampling. Resulting
mcmc mle methods [16, 19, 41] that recent progress in mcmc techniques (like
the use of importance sampling) makes more and more tractable, thus o�er an
alternative to mple .

Also, (good) theoretical properties of mle and mple can be thoroughly
investigated in the exponential case. In particular, the asymptotic consistency,
that is the desirable property that �̂ tends to the real parameter �� when data
are actually drawn from some stationary 7 distribution P�

�

X , and the \size" of
data increases to in�nity, has been established under rather general conditions
(see [12] for instance).

In the case of stationary Gibbs distributions on regular lattices, with small
�nite state space �, another useful approach to parameter estimation has been
developed in a slightly di�erent perspective. The idea of this alternative tech-
nique is to tune parameters such that site-wise conditional distributions arising
from P�X �t at best those empirically estimated [15]. One has �rst to determine
on which information of neighborhood con�guration x

n(i), the local distribution

7 i.e., graph structure is regular, and o�-border variables have the same conditional distri-

butions.
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P�
XijXn(i)

(:jx
n(i)) really depends. For instance, in an anisotropic Ising model,

only n(x
n(i)) is relevant. The neighborhood con�guration set � = �jn(i)j is

partitioned accordingly:

� =
[
�

��; with P�XijXn(i)
(:jx

n(i)) = p��(:) if xn(i) 2 ��:

For each type � of neighborhood con�guration, the conditional distribution is

empirically estimated based on xo 8 as p̂�(�) =
#fi2S: xoi=� and xo

n(i)2�
�
g

#fi2S: xo
n(i)

2��g
: Then

one tries to make p�� and p̂� as close as possible, for all �. One way to proceed
consists in solving the simultaneous equations

ln
p��(�)

p��(�)
= ln

p̂�(�)

p̂�(�)
; 8f�; �g � �; 8�:

Where energy is linear w.r.t. parameters, one ends up with an over-determined
linear system of equations which is solved in the least-square sense. The asymp-
totic consistency of the resulting estimator has been established under certain
conditions [22].

Example 7: empirical parameter estimation of Ising model. For each possible

value n� of n(x
n(i)), the local conditional distribution is p��(�) =

expf��n�g
2 cosh�n�

.
The system to be solved is then:

ln
p��(+1)

p
�
�(�1)

= 2�n� = ln
#fi 2 S : xoi = +1 and n(xo

n(i)) = n�g
#fi 2 S : xoi = �1 and n(xo

n(i)) = n�g
; 8�;

yielding least-square solution �̂ =
P

�
n�g�

2
P

�
n2�

, where g� denotes the left hand side

of the linear equation above. �

5. Inverse problems and Bayesian estimation

A learned Gibbs distribution might be used to identify pieces of texture present
in an image, provided they are pointed out in some way. However, if one wants
to address the joint issue of separating and recognizing these di�erent pieces of
texture, another question has to be dealt with at the same time as recognition,
namely \where are the pieces of texture to be recognized?". This classi�cation
problem is typical of so-called inverse problems: based on a luminance image,
an hidden underlying partition is searched.

In inverse problems from early vision, one tries to recover a large number
of unknown or hidden variables based on the knowledge of another bunch of
variables: given a set of data y = (yj)

q
j=1, which are either plain luminance

image(s) or quantities extracted beforehand from images(s) such as discontinu-
ities, hidden variables of interest x = (x)ni=1 are sought (Figure 5).

8 The model being stationary over the lattice, empirical estimation makes sense for large

enough con�guration xo.
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hidden variables xdata y

?

Figure 5. Typical inverse problem: data might be a degraded image and/or
discontinuities of this image; variables to be estimated might constitute a re-
stored version of the original image, or a partition of the image into meaningful
regions.

Vectors x and y can be of the same nature (two images in restoration prob-
lems) or of completely di�erent nature (a labeling in terms of region numbers
and an image in segmentation and classi�cation problems; a vector �eld and a
couple of images in disparity or displacement estimation). Also, components of
one of the vectors can be of various natures, like restored luminance and binary
indicators of discontinuities on the edge lattice in case of image restoration with
preservation of abrupt changes. For sake of concision, this latter possibility is
not integrated in the following notations: � (resp. �o) will indistinctly denote
state spaces of all xi's (resp. yj 's).

Stated in probabilistic terms, the problem consists in inferring the \best"
occurrence of the random vector X in 
 = �n given a realization y 2 (�o)q

of the random vector Y . The key ingredient will be the conditional distri-
bution PXjY (:jy), referred to as the posterior distribution. This distribution
can be speci�ed at once, or according to a two-step Bayesian modeling com-
bining knowledge about how data could be explained from hidden variables,
and expected (or at least desirable) statistical characteristics of the variables
of interest [37].

Let us make more precise this standard Bayesian construction process. The
�rst step amounts to modeling Y as a random function of X , Y = F (X;W )
where W is a non-observed random vector. F captures the process yielding
observed data from underlying attributes. The simplest case is met in the
restoration of an image corrupted with additive noise: Y = X +W .

Equivalently, one speci�es in some way, the conditional distribution of data
given X . This is the conditional data likelihood, P�`

Y jX
, which depends on some

parameter vector �`. With the goal of getting back to x from given y, one may
simply try to invert this modeling as X = f(Y;W ). The maximum likelihood
estimate, which corresponds to the con�guration equipping observed data with
highest probability, is then obtained by setting W to its most probable oc-
currence (null in general). Unfortunately such a method is, in general, either
intractable (F (x;w) is a many-to-one mapping for given w) or simply not sensi-

424



ble (e.g., for additive white noise, maximum likelihood restoration provides the
observed image itself, as a result!). The inverted model might also happen to
be far too sensitive (non-di�erentiable), yielding completely di�erent estimates
for slightly di�erent input data.

A Bayesian approach allows to �x these problems through the speci�cation

of a prior distribution P
�p
X (x) for X . Often, prior knowledge captured by this

distribution is loose and generic, merely dealing with the regularity of desired
estimates (it is then related to Tikhonov regularization [38]). The prior might
however be far more speci�c about the class of acceptable con�gurations (in
that case 
 might even be restricted to some parametric subspace) and their
respective probabilities of occurrence. Except in extreme cases where all prior
has been put into the de�nition of a reduced con�guration set equipped with
uniform prior, the prior distribution is chosen as an interacting Gibbs distri-
bution over 
.

Modeling is then completed by forming the joint and posterior distributions
from previous ingredients. Bayes' rule provides:

P�XjY =
P
�`
Y jX

P
�p
X

PY
/ P

�`
Y jX

P
�p
X = P�XY ;

with � = (�p; �`). The estimation problem can now be de�ned in terms of the
posterior distribution.

A natural way to proceed is to look for the most probable con�guration x
given the data:

x̂ = argmax
x2


PXjY (xjy):

This constitutes the maximum a posteriori (map) estimator. Although it is
often considered as a \brutal" estimator [32], it remains the most popular for
it is simply connected to the posterior distribution and the associated energy
function. One has simply to devise the energy function (as a sum of local func-
tions) of x and y, and the estimation goal is �xed at once, as a global minimizer
in x of this energy. This means in particular that here, no probabilistic point
of view is �nally required. Numerous energy-based approaches to inverse prob-
lems have thus been proposed as an alternative to the statistical framework.
A very active class of such deterministic approaches is based on continuous

functionals, variational methods, and pdes 9.

9 As a consequence, one might legitimately wonder why one should bother with a proba-

bilistic formulation. Elements in favor of probabilistic point of view rely upon the variety

of tools it o�ers. As partly explained in this paper, statistical tools allow to learn parame-

ters, to generate \typical" instances, to infer unknown variables in di�erent ways (not only

the one using energy minimization), to assess estimation uncertainty, or to capture and

combine all sorts of priors within the Bayesian machinery. On the other hand, continuous

(deterministic) approaches allow to derive theoretical properties of models under concern,

in a fashion that is beyond reach of most discrete approaches, whether they are stochastic

or not. Both points of view are therefore complementary. Besides, it is common that they

eventually yield similar discrete implementations.
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To circumvent the crude globality of the map estimator, a more local esti-
mator is also widely employed. It associates to each site the value of Xi that
is the most probable given all the data:

x̂i = argmax
�2�

PXijY (�jy):

It is referred to as the \marginal posterior mode" (mpm) estimator [32]. It relies
on site-wise posterior marginals PXijY which have to be derived, or approxi-
mated, from the global posterior distribution PXjY . Note that for Gaussian
posterior distribution, the map and mpm estimators coincide with the poste-
rior expectation whose determination amounts to solving a linear system of
equations.

Both Bayesian estimators have now to be examined in the special case of
factorized distributions under concern. The prior model is captured by a Gibbs

distribution P
�p
X (x) / expf�

P
c2Cp V

�p
c (xc)g speci�ed on some prior graph

[S;Ep] through potential fV �p
c ; c 2 Cpg, and a data model is often chosen of

the following form:

P�`
Y jX

(yjx) / expf�
X
j2R

V �`
j (xdj ; yj)g;

where R = f1; : : : ; qg is the data site set and fdj ; j 2 Rg is a set of small site
subsets of S (Figure 6.a). Note that this data model speci�cation should be such
that the normalizing constant, if unknown, is independent from x (otherwise
the posterior distribution of x will be incompletely de�ned; see footnote 10).
The resulting posterior distribution is a Gibbs distribution parameterized by �
and y: 10

P�XjY (xjy) =
1

Z(�; y)
expf�

X
c2Cp

V �p
c (xc)�

X
j2R

V �`
j (xdj ; yj)

| {z }
�U�(x;y)

g:

In the associated posterior independence graph [S;E], any two sites fi; kg can
be neighbors either through a Vc function (i.e., fi; kg 2 Ep), or through a
function Vj (i.e., 9j 2 R : fi; kg � dj). This second type of neighborhood
relationship thus occurs between components of X that both participate to the
\formation" of a same component of Y (Figure 6.a). The neighborhood system
of the posterior model is then at least as big as the one of the prior model (see
example in Figure 6.b). In site-wise measurement cases (i.e., R � S, and, 8i,
di = fig), the two graphs are identical.
Example 8: luminance-based classi�cation. The luminance of the observed
image being seen as continuous (�o = R), one tries to partition the pixel set S

10 Many studies actually start by the speci�cation of some energy function U(x; y) =P
c Vc(xc) +

P
j Vj(xdj ; yj). Then, unless

P
y expf�

P
j Vjg is independent from x, the

prior deduced from PXY / expf�Ug is not PX / expf�
P

c Vcg.

426



j
dj

n
p(i)

R

S

dj
n(i)

S

Figure 6. (a) Ingredients of data model and neighboring relationship they
induce on x components; (b) posterior neighborhood on lattice induced by
�rst-order prior neighborhood system and symmetric �ve-site subsets dj cen-
tered at j.

into M classes (� = f1; : : : ;Mg and S � R) associated to previously learned
means and variances �` = (��; �

2
�)
M
�=1. Simple point-wise measurment model

assuming (YijXi = �) � N (��; �
2
�) results in

PY jX(yjx) = expf�
X
i

[
(yi � �xi)

2

2�2xi
+
1

2
ln(2��2xi)]| {z }

Vi(xi;yi)

g:

A standard prior is furnished by the Potts model

P
�p
X (x) / expf

X
hi;ji

�[2�(xi; xj)� 1]g

with respect to some prior graph structure (�p = �). �

Example 9: Gaussian deblurring. The aim is to recover an image from a
�ltered and noisy observed version, within a continuous setting (R � S, � =
�o = R). The data model is Y = BX +W with B a sparse matrix associated
with a known convolution kernel, and W a Gaussian white noise with known
variance �2W . Using the stationary isotropic Gaussian smoothing prior from
example 6, one gets the posterior model:

PXjY (xjy) / expf�
X
hi;ji

�(xi � xj)
2 �

X
i

"x2i �
X
j

(yj �
P

i2dj
bjixi)

2

2�2W| {z }
Vj(xdj ;yj)

g;

where dj = fi 2 S : bji 6= 0g corresponds to the �lter support window
centered at j. The graph structure of the posterior model is then usually larger
than the prior structure (Figure 6.b). The posterior energy in matrix form
is U(x; y) = �kDxk2 + "kxk2 + 1

2�2
W

ky � Bxk2 where Dx = (xi � xj)hi;ji2Ep

de�nes a many-to-one operator. The map estimate is then the solution of the
linear system

(�DTD + "Id +
1

2�2W
BTB)x =

1

2�2W
BT y �:
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The dimensionality of models under concern makes in general intractable
the direct and exact derivation of both Bayesian estimators: indeed, map re-
quires a global minimization over 
, while mpm is based on marginal computa-
tions (i.e., summing out xS�i in PXjY , for each i). Again, iterative procedures
based on local moves have to be devised.

The marginal computation required by mpm is precisely the kind of task
that can be approximately performed using sampling. As described in x3, a
long sequence of con�gurations x0; : : : ; xm1 can be iteratively generated such
that beyond some rank m0 they can be considered as sampled from the Gibbs
distribution PXjY (:jy). Ergodicity relation applied to the function f(X) =
�(Xi; �) for some i 2 S and � 2 � yields

PXijY (�jy) = E [�(Xi ; �)jY = y] � #fm 2 [m0 + 1;m1] : x
m
i = �g

m1 �m0
;

that is the posterior marginal is approximated by the empirical frequency of
appearance. The mpm estimator is then replaced by x̂i = argmax�#fm 2
[m0 + 1;m1] : x

m
i = �g:

Iterative research of map estimate can be either stochastic or deterministic.
In the �rst case, one makes use of so-called simulated annealing which relies on
a clever use of mcmc sampling techniques [18]. The idea consists in sampling

from Gibbs distribution with energy U(x;y)
T

, where T is a \temperature" pa-
rameter which slowly decreases to 0. The cooling schedules insuring theoretical
convergence to a global minimizer 11 unfortunately result in impractically long
procedures. Deterministic counterparts are therefore often preferred, although
they usually require a sensible initialization not to get stuck in too poor local
minima. With a continuous state space, all gradient descent techniques or iter-
ative system solving methods can be used. With both discrete and continuous
state spaces, the simple \iterated conditional modes" (icm) method [4] can be
used: the component at current site i is updated so as to minimize the energy.
In the point-wise measurement case, this yields:

xm+1
i = argmin

�

X
c2Cp:i2c

Vc[(�; x
m
c�i)] + Vi(�; yi);

where xm is the current con�guration.

Example 10: using model from example 8. The posterior distribution at site
i is

PXijXn(i);Yi(�jxn(i); yi) / expf�
X
j2n(i)

[2�(�; xj)� 1]� (yi � ��)
2

2�2�
� ln��g:

The mpm estimate is approximated using a Gibbs sampler based on these distri-
butions, simulated annealing also iteratively samples from these distributions

11 If Tm � C
lnm

for large enough constant C then limm!+1 PrfXm 2 argmaxUg = 1 [18].
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but with energy scaled by temperature Tm, and the icm updates the current x

by setting xi to argmin�[ln�� +
(yi���)

2

2�2
�

� 2�
P

j2n(i) �(�; xj)]. �

Example 11: using Gaussian model from example 9. Letting " = 0, icm
update at current site i picks the mean of the site-wise posterior conditional
distribution:

xm+1
i = (16�2W� +

X
j

b2ji)
�1[2�2W�n(x

m
n(i)) +

X
j

bji(yj �
X
k 6=i

bjkx
m
k )]:

This exactly corresponds to the Gauss-Seidel iteration applied to the linear
system of which the map estimate is the solution. �

6. Parameter estimation with incomplete data

At last, we deal with the estimation of parameters within inverse problem
modeling. Compared with the setting from x4, the issue is dramatically more
complex since only part of the variables (namely y) of the distribution P�XY

to be tuned are available. One talks about an incomplete data case, or par-
tially observed model. This complicated issue arises when it comes to designing
systems able to automatically adapt their underlying posterior distribution to
various input data. It is for instance at the heart of unsupervised classi�cation
problems.

A pragmatic technique is to cope simultaneously with estimation of x and
estimation of � within an alternate procedure: for a given �, infer x according
to the chosen Bayesian estimator; given current estimate of x, learn parameters
from the pair (x; y), as in the complete data case.

A more satisfactory and sounder idea consists in extending likelihood ideas
from the complete data case 12. The aim is then to maximize the data likelihood
L(�) = lnP�Y (y) = ln

P
x P

�
XY (x; y), whose derivation is intractable. However,

its gradient rL(�)= �E� [r� lnP�XY (X; y)jY = y] suggests an iterative process
where expectation is taken with respect to the current �t �(k) and the resulting
expression is set to zero. This amounts to maximizing the conditional expecta-
tion E�(k)

�
lnP�XY (X; y)jY = y

�
, with respect to �. The maximizer is the new

parameter �t �(k+1). The resulting procedure is the Expectation-Maximization

algorithm (em), which has been introduced in the di�erent context of mix-
tures of laws [14]. It can be shown that the associated sequence of likelihoods
fL(�(k))g is well increasing. However, the application of the plain em algo-
rithm involves twofold di�culties with high-dimensional Gibbs distributions:
(1) the joint distribution P�XY is usually known up to its partition function
Z(�) (the indetermination usually comes from the one of prior partition func-
tion); (2) computation of the conditional expectation is usually intractable.
As in the complete data case, the �rst problem can be circumvented either by

12 For exponential families, gradient ascent techniques have in particular been extended to

partially observed case [1, 42].
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mcmc techniques [42] or by considering pseudo-likelihood, i.e., replacing PXY

by PY jX �
Q

i PXijXn(i)
. Concerning the second point, mcmc averaging allows

to approximate expectations based on samples xm0 ; : : : ; xm1 drawn from the

conditional distribution P�
(k)

XjY
[10]. Note that in the incomplete data case, both

mle and mple remain asymptotically consistent in general [13].
Distinguishing prior parameters from data model parameters, mple with em

procedure and mcmc expectation approximations yields the following update:8<
:

�
(k+1)
p = argmin�p

1
m1�m0

P
i

P
m[lnZi(�p; x

m
n(i)) +

P
c3i V

�p
c (xmc )]

�
(k+1)
` = argmin�`

1
m1�m0

P
j

P
m V

�`
j (xmdj ; yj)

when Vj = � lnPYj jXdj
. It has also been suggested to compute �rst maximum

(pseudo-)likelihood estimators on each sample, and then to average the results.
The resulting update scheme is similar to the previous one, with maximization
and summation w.r.t. samples being switched. With this method of averaging

complete data-based estimators computed on samples drawn from P�
(k)

XjY
, any

other estimator might be used as well. In particular, in case of reduced �nite
state space �, the empirical estimator presented in x4 can replace the mple
estimator on the prior parameters. It is the iterative conditional estimation

(ice) method [34].
It must be said that parameter estimation of partially observed models re-

mains in a Markovian context a very tricky issue due to the huge computational
load of the techniques sketched here, and to convergence problems toward lo-
cal minima of low quality. Besides, some theoretical aspects (e.g., asymptotic
normality) still constitute open questions.

Example 12: ice for classi�cation model from example 8. For a given param-
eter �t �(k), Gibbs sampling using conditional distributions

P�
(k)

XijXn(i);Yi
(�jx

n(i); yi) / expf
X
j2n(i)

�(k)[2�(�; xj)� 1]� 1

2�
(k)
�

2
(yi � �

(k)
� )2g

provides samples x0; : : : ; xm. mles of data model parameters are computed
from (xm; y)'s and averaged:

�
(k+1)
� =

1

m1�m0

m1X
m=m0+1

P
i:xm

i
=� yi

#fi : xmi = �g ;

�
(k+1)2

� =
1

m1�m0

m1X
m=m0+1

P
i:xm

i
=�(yi � �

(k+1)
� )2

#fi : xmi = �g :

As for the prior parameter �, empiric estimators can be used for small M . It
will exploit the fact that the prior local conditional distribution PXijXn(i)

(:jx
n(i))

depends only on composition (n�1 : : : n
�
M ) of neighborhood:

8x
n(i) 2 ��; #fj 2 n(i) : xj = �g = n��
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and

PXijXn(i)
(�jx

n(i)) / expf�(2n�� � jn(i)j)g : �

7. Some research directions

Within the domain of mrfs applied to image analysis, two particular areas
have been exhibiting a remarkable vitality for the past few years. Both tend
to expand the modeling capabilities and the inference facilities of standard
mrf-based models. The �rst one concerns the adding of a new set of so-called
auxiliary variables to a given model PX , whereas the second one deals with the
de�nition of hierarchical models.

7.1. Auxiliary variables and augmented models

Auxiliary variable-based methods �rst appeared in statistical physics as a way
to accelerate mcmc sampling. To this end, an augmented model PXD is con-
sidered, where D is the set of auxiliary variables, such that (i) the marginal of
X arising from PXD coincides with the pre-de�ned PX :

P
d PXD(:; d) = PX(:);

(ii) sampling from PXD can be done in a more e�cient way than the one from
PX , by alternatively sampling from PDjX and PXjD. The augmented model
is usually speci�ed through PDjX . The resulting joint model PXD = PDjXPX
then obviously veri�es (i). Alternate sampling then �rst requires to derive PDjX
from the joint distribution.

For Ising and Potts models, the introduction of binary bond variables
D = fDij ; hi; ji 2 Cg within the Swendsen-Wang algorithm [36] has been
extremely fruitful. The original prior model is augmented through speci�ca-
tion

PDjX =
Y
hi;ji

PDij jXi;Xj
; and PDij jXi;Xj

(0jxi; xj) =
(

1 if xi 6= xj ;

exp�� otherwise:

PDjX is trivial to sample from. The nice fact is that the resulting distribution
PXjD speci�es that sites of connected components de�ned on S by 1-valued
bonds must have the same label, and that each of these clusters can get one of
the possible states from � with equal probability. As a consequence sampling
from PXjD is very simple and introduces long range interactions by simultane-
ously updating all xi's of a possibly large cluster.

In a di�erent prospect, auxiliary variables have been used in order to intro-
duce meaningful non-linearities within quadratic models. Despite their practi-
cal convenience, quadratic potentials like in Gaussian mrfs, are often far too
\rigid": they discourage too drastically the deviations from mean con�gura-
tions. Geman and Geman thus introduced a binary line-process to allow an
adaptive detection and preservation of discontinuities within their Markovian
restoration model [18]. In the simplest version, the augmented smoothing prior
is PXD(x; d) / expf��

P
hi;ji dij [(xi�xj)2�� ]g which favors discontinuity ap-

pearing dij = 0 (and thus a suspension of smoothing between xi and xj) as
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soon as the di�erence (xi � xj)
2 exceeds some threshold � . More precisely,

in case of map estimation (with data model such that PY jXD = PY jX), it is
readily established that

minx;df�
P

hi;ji dij [(xi � xj)
2 � � ] � lnPY jX(yjx)g

= minxf�
P

hi;jimin[(xi � xj)
2 � �; 0]� lnPY jX(yjx)g;

where the truncated quadratic potentials appear after optimal elimination of
the binary dij 's [7]. In the view of that, the model associated with the energy
in the right hand side could as well be used, without talking about auxiliary
variables. However, the binary variables capture in that case the notion of
discontinuity, and the Bayesian machinery allows to add a prior layer on them
about likely and unlikely spatial contour con�gurations [18].

Starting from the idea of a bounded smoothing potential that appeared in
the minimization rewriting above, a di�erentiable potentials of the same type,
but with improved exibility and numerical properties, have been introduced.
Stemming from statistics where they allow robust �tting of parametric models
[27], such cost functions penalize less drastically residuals than quadratics do:
they are even functions �(u), increasing on R+ and with derivative negligible

at in�nity compared with the one of u2 (limu!+1
�0(u)
2u

= 0). It turns out that
if �(u) = �(

p
u) de�ned on R+ is concave, �(u) is the inferior envelope of a

family of parabolas fzu2+ (z); z 2 [0; �]g continuously indexed by variable z,
where � = limu!0+ �

0(u) [5, 17]:

�(u) = min
z2[0;�]

zu2 +  (z); with arg min
z2[0;�]

zu2 +  (z) =
�0(u)

2u
:

Function �(u) = 1� exp(�u2) is a common example of such a function. Note
that the optimal auxiliary variable �0(u)=2u = �0(u2) decreases to zero as the
residual u2 goes to in�nity. De�ning a smoothing potential with such a function
yields, from a map point of view, and only concentrating on the prior part:

min
x

X
hi;ji

�(xi � xj) = min
x;d

X
hi;ji

dij(xi � xj)
2 +  (dij):

A continuous line process D is thus introduced. map estimation can be per-
formed on the augmented model according to an alternate procedure: given d,
the model is quadratic with respect to x; given x, the optimal d is obtained
in closed form as d̂ij = �0[(xi � xj)

2]. Where the model is Gaussian for �xed
d, this minimization procedure amounts to iteratively reweighted least squares.
Note that such non-quadratic cost function can as well be used within the data
model [5], to permit larger departures from this (usually crude) model.

It is only recently that a global picture of the link between robust esti-
mators from statistics, line processes for discontinuity preservation, mean �eld
approximation from statistical physics, \graduate non-convexity" continuation
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method, and adaptative �ltering stemming from anisotropic di�usion, has been
clearly established [5, 6]. This new domain of research is now actively investi-
gated by people with various backgrounds.

7.2. Hierarchical model

While permitting tractable single-step computations, the locality which is at
the heart of Markovian modeling, results in a very slow propagation of informa-
tion. As a consequence, iterative sampling and inference procedures reviewed
in previous sections may converge very slowly. This motivates the search ei-
ther for improved algorithms, or for new models allowing non-iterative or more
e�cient manipulation.

So far, the more fruitful approaches in both cases have relied on some notion
of hierarchy (see [21] for a recent review). Hierarchical models or algorithms
allow to integrate in a progressive and e�cient way the information (especially
in the case of multiresolution data, when images come into a hierarchy of
scales). They thus provide gains both in terms of computational e�ciency and
of result quality, along with new modeling capabilities.

Algorithm-based hierarchical approaches are usually related to well-known
multigrid resolution techniques from numerical analysis [23] and statistical
physics [20], where an increasing sequence of nested spaces 
L � 
L�1 : : : �

0 = 
 is explored in a number of possible ways. Con�gurations in subset

l are described by a reduced number of variables (the coordinates in a basis
of subspace 
l in the linear case) according to some proper mapping �l, i.e.,

l = Im�l. Let �l be the corresponding reduced con�guration set which �l

is de�ned from. If, for instance, 
l is the set of con�gurations that are piece-
wise constant with respect to some partition of S, x 2 
l is associated to the
reduced vector xl made up of the values attached by x to each subset of the
partition. As for map estimation, inference conducted in 
l yields:

argmax
x2
l

PXjY (xjy) = �l[arg min
xl2�l

U(�l(xl); y)]:

The exploration of the di�erent subsets is usually done in a coarse-to-�ne fash-
ion, especially in the case of discrete models [8, 26]: approximate map esti-
mate x̂l+1 reached in �l+1 provides initialization of iterations in �l, through
(�l)�1 � �l+1 (which exists due to inclusion Im(�l+1) �Im(�l)). This hier-
archical technique has proven useful to accelerate deterministic minimization
while improving the quality of results [26].

Model-based hierarchical approaches, instead, aim at de�ning a new global
hierarchical model X = (X0; X1; : : : ; XK) on S = S0 [ S1 [ : : : [ SK , which
has nothing to do with any original (spatial) model. This is usually done
in a Markov chain-type causal way, specifying the \coarsest" prior PX0 and
coarse-to-�ne transition probabilities PXk+1jXk:::X0 = PXk+1jXk as local factor

products: PXk+1jXk =
Q

i2Sk+1 PXijXp(i)
, where each node i 2 Sk+1 is bound to

a parent node p(i) 2 Sk. When S0 reduces to a single site r, the independence
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graph corresponding to the Gibbs distribution PX = PXr

Q
i6=r PXijXp(i)

is a
tree rooted at r. When Xi's at level K are related to pixels, this hierarchical
model usually lies on the nodes of a quad-tree whose leaves �t the pixel lattice
[9, 28, 31].

Even if one is only interested in last level variables XK , the whole struc-
ture has to be manipulated. But, its peculiar tree nature allows, like in case
of Markov chains, to design non-iterative map and mpm inference procedures
made of two sweeps: a bottom-up pass propagating all information to the root,
and a top-down one which, in turn, allows to get optimal estimate at each node
given all the data. In case of Gaussian modeling, these procedures are identical
to techniques from linear algebra for direct factorization and solving of large
sparse linear systems with tree structure [24].

As for the sampling issue, drawing from a hierarchical prior is immedi-
ate, provided that one can sample P0X . Drawing from the posterior model
PXjY / PY jXPX requires �rst to recover its causal factorization, i.e., to de-
rive PXijXp(i);Y . This can be done in one single pass resorting to bottom-up
marginalizations. Also note that the prior partition function is exactly known
as a product of normalizations of the local transition probabilities. This makes
em-type procedures much lighter [9, 28].

The computational and modeling appeal of these tree-based hierarchical
approaches is, so far, moderated by the fact that their structure might appear
quite arti�cial for certain types of problems or data: it is not shift-invariant
with respect to the pixel lattice for instance, often resulting in visible non-
stationarity in estimates; also the relevance of the inferred variables at coarsest
levels is not obvious (especially at the root). Much work remains ahead for
extending the versatility of models based on this philosophy.

8. Last words

Within the limited space of this presentation, technical details and most recent
developments of evoked issues were hardly touched, whereas some other is-
sues were completely left out (e.g., approximation of multivariate distributions
with causal models, advanced mcmc sampling techniques, learning of indepen-
dence structure and potential form, etc.). A couple of recent books referenced
hereafter propose more complete expositions with various emphasis and gather
collections of state-of-the-art applications of Gibbsian modeling, along with
complete reference lists.

As a �nal word, it might be worth noting that mrfs do not constitute any
longer an isolated class of approaches to image problems. Instead they now
exhibit a growing number of stimulating connections with other active areas
of computer vision research (pdes for image analysis, Bayesian network from
ai, neural networks, parallel computations, stochastic geometry, mathematical
morphology, etc.), as highlighted by a number of recent \transversal" publica-
tions (e.g., [6, 33]).

434



References

1. P.M. Almeida, B. Gidas (1993). A variational method for estimating
the parameters of mrf from complete and noncomplete data. Ann. Applied
Prob. 3(1), 103{136.

2. R.J. Baxter (1992). Exactly solved models in statistical mechanics. Aca-
demic Press, London.

3. J. Besag (1974). Spatial interaction and the statistical analysis of lattice
systems. J. Royal Statist. Soc. B 36, 192{236.

4. J. Besag (1986). On the statistical analysis of dirty pictures. J. Royal

Statist. Soc. B 48 (3), 259{302.
5. M. Black, A. Rangarajan (1996). On the uni�cation of line processes,

outlier rejection, and robust statistics with applications in early vision. Int.
J. Computer Vision 19 (1), 75{104.

6. M. Black, G. Sapiro, D. Marimont, D. Heeger. Robust anisotropic
di�usion. IEEE Trans. Image Processing. To appear.

7. A. Blake, A. Zisserman (1987). Visual reconstruction. The MIT Press,
Cambridge.

8. C. Bouman, B. Liu (1991). Multiple resolution segmentation of textured
images. IEEE Trans. Pattern Anal. Machine Intell. 13 (2), 99{113.

9. C. Bouman, M. Shapiro (1994). A multiscale image model for Bayesian
image segmentation. IEEE Trans. Image Processing 3 (2), 162{177.

10. B. Chalmond (1989). An iterative Gibbsian technique for reconstruction
of M -ary images. Pattern Recognition 22 (6), 747{761.

11. R. Chellappa, A.K. Jain, editors (1993). Markov random �elds, theory

and applications. Academic Press, Boston.
12. F. Comets (1992). On consistency of a class of estimators for exponential

families of Markov random �elds on the lattice. Ann. Statist. 20, 455{486.
13. F. Comets, B. Gidas (1992). Parameter estimation for Gibbs distribution

from partially observed data. Ann. Appl. Probab. 2, 142{170.
14. A. Dempster, N. Laird, D. Rubin (1977) . Maximum likelihood from

incomplete data via the EM algorithm. J. Royal Statist. Soc. Series B 39,
1{38. with discussion.

15. H. Derin, H. Elliot (1987). Modeling and segmentation of noisy and
textured images using Gibbs random �elds. IEEE Trans. Pattern Anal.

Machine Intell. 9 (1), 39{55.
16. X. Descombes, R. Morris, J. Zerubia, M. Berthod (1996). Estima-

tion of Markov random �eld prior parameter using Markov chain Monte
Carlo maximum likelihood. Technical Report 3015, Inria.

17. D. Geman, G. Reynolds (1992). Constrained restoration and the recov-
ery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 14 (3),
367{383.

18. S. Geman, D. Geman (1984). Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Ma-

435



chine Intell. 6 (6), 721{741.
19. C. Geyer, E. Thompson (1992). Constrained Monte Carlo maximum

likelihood for dependent data. J. Royal Statist. Soc. B 54 (3), 657{699.
20. J. Goodman, A.D. Sokal (1989). Multigrid Monte Carlo method. Con-

ceptual foundations. Phys. Rev. D. 40 (6), 2035{2071.
21. C. Graffigne, F. Heitz, P. P�erez, F. Prêteux, M. Sigelle,

J. Z�erubia. Hierarchical and statistical models applied to image anal-
ysis, a review. submitted to IEEE Trans. Inf. Theory available at
ftp://gdr-isis.enst.fr/pub/publications/Rapports/GDR/it96.ps.

22. X. Guyon (1993). Champs al�eatoires sur un r�eseau. Masson, Paris.
23. W. Hackbusch (1985). Multi-grid methods and applications. Springer-

Verlag, Berlin.
24. W. Hackbusch (1994). Iterative solution of large sparse systems of equa-

tions. Springer-Verlag, New-York.
25. J. M. Hammersley andD. C. Handscomb (1965).Monte Carlo methods.

Methuen, London.
26. F. Heitz, P. P�erez, P. Bouthemy (1994). Multiscale minimization of

global energy functions in some visual recovery problems. CVGIP : Image

Understanding 59 (1), 125{134.
27. P. Huber (1981). Robust Statistics. John Wiley & Sons, New York.
28. J.-M. Lafert�e, F. Heitz, P. P�erez, E. Fabre (1995). Hierarchical

statistical models for the fusion of multiresolution image data. In Proc. Int.

Conf. Computer Vision Cambridge, June.
29. S. Lauritzen (1996). Graphical models. Oxford Science Publications.
30. S.Z. Li (1995). Markov random �eld modeling in computer vision. Springer-

Verlag, Tokyo.
31. M. Luettgen, W. Karl, A. Willsky (1994). E�cient multiscale regu-

larization with applications to the computation of optical ow. IEEE Trans.

Image Processing 3 (1), 41{64.
32. J.L. Marroquin, S. Mitter, T. Poggio (1987). Probabilistic solution

of ill-posed problems in computational vision. J. American Statis. Assoc.

82, 76{89.
33. D. Mumford (1995). Bayesian rationale for the variational formulation.

B. ter Haar Romeny, editor, Geometry-driven di�usion in computer

vision. Kluwer Academic Publishers, Dordrecht, 135{146.
34. W. Pieczynski (1992). Statistical image segmentation. Mach. Graphics

Vision 1 (1/2), 261{268.
35. A.D. Sokal (1989). Monte Carlo methods in statistical mechanics : foun-

dations and new algorithms. Cours de troisi�eme cycle de la physique en
Suisse Romande.

36. R.H. Swendsen, J.-S. Wang (1987). Non-universal critical dynamics in
Monte Carlo simulations. Phys. Rev. Lett. 58, 86{88.

37. R. Szeliski (1989). Bayesian modeling of uncertainty in low-level vision.
Kluwer, Boston.

38. A.N. Tikhonov, V.Y. Arsenin (1977). Solution of ill-posed problems.

436



Winston, New York.
39. J. Whittaker (1990). Graphical models in applied multivariate statistics.

Wiley, Chichester.
40. G. Winkler (1995). Image analysis, random �elds and dynamic Monte

Carlo methods. Springer, Berlin.
41. L. Younes (1988). Estimation and annealing for Gibbsian �elds. Ann.

Inst. Henri Poincar�e - Probabilit�es et Statistiques 24 (2), 269{294.
42. L. Younes (1989). Parametric inference for imperfectly observed Gibbsian

�elds. Prob. Th. Rel. Fields 82, 625{645.

437


