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Abstract

Research into methods for reasoning under uncertainty is currently one of the most excit-

ing areas of artificial intelligence, largely because it has recently become possible to record,

store and process large amounts of data. While impressive achievements have been made

in pattern classification problems such as handwritten character recognition, face detection,

speaker identification and prediction of gene function, it is even more exciting that researchers

are on the verge of introducing systems that can perform large-scale combinatorial analyzes

of data, decomposing the data into interacting components. For example, computational

methods for automatic scene analysis are now emerging in the computer vision community.

These methods decompose an input image into its constituent objects, lighting conditions,

motion patterns, and so on. Two of the main challenges are finding effective representations

and models in specific applications, and finding efficient algorithms for inference and learning

in these models. In this paper, we advocate the use of graph-based probability models and

their associated inference and learning algorithms. We review exact techniques and various

approximate, computationally efficient techniques, including iterative conditional modes, the

expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational

techniques, structured variational techniques and the sum-product algorithm and “loopy” be-

lief propagation. We describe how each technique can be applied in a vision model of multi-

ple, occluding objects, and contrast the behaviors and performances of the techniques using

a unifying cost function, free energy.

Keywords: Graphical models, Bayesian networks, probability models, probabilistic inference,

reasoning, learning, Bayesian methods, variational techniques, sum-product algorithm, loopy

belief propagation, EM algorithm, mean field, Gibbs sampling, free energy, Gibbs free energy,

Bethe free energy.



1 Introduction
Using the eyeball of an ox, René Descartes demonstrated in the 17th century that the backside of the

eyeball contains a 2-dimensional projection of the 3-dimensional scene. Isolated during the plague, Isaac

Newton slipped a bodkin between his eyeball and socket, poked the backside of his eyeball at different

locations, and saw small white and colored rings of varying intensity. These discoveries helped to for-

malize the problem of vision: What computational mechanismcan interpret a 3-dimensional scene using

2-dimensional light intensity images as input? Historically, vision has played a key role in the development

of models and computational mechanisms for sensory processing and artificial intelligence.

By the mid-19th century, there were two main theories of natural vision: the “nativist theory”, where

vision is a consequence of the lower nervous system and the optics of the eye, and the “empiricist theory”,

where vision is a consequence of learned models created fromphysical and visual experiences. Hermann

von Helmholtz advocated the empiricist theory, and in particular that vision involves psychological in-

ferences in the higher nervous system, based on learned models gained from experience. He conjectured

that the brain learns a generative model of how scene components are put together to explain the visual

input and that vision is inference in these models [7]. A computational approach to probabilistic inference

was pioneered by Thomas Bayes and Pierre-Simon Laplace in the 18th century, but it was not until the

20th century that these approaches could be used to process large amounts of data using computers. The

availability of computer power motivated researchers to tackle larger problems and develop more efficient

algorithms. In the past 15 years, we have seen a flurry of intense, exciting, and productive research in

complex, large-scale probability models and algorithms for probabilistic inference and learning.

This paper has two purposes: First, to advocate the use of graph-based probability models for ana-

lyzing sensory input; and second, to describe and compare the latest inference and learning algorithms.

Throughout the review paper, we use an illustrative exampleof a model that learns to describe pictures of

scenes as a composition of images of foreground and background objects, selected from a learned library.

We describe the latest advances in inference and learning algorithms, using the above model as a case

study, and compare the behaviors and performances of the various methods. This material is based on

tutorials we have run at several conferences, includingCVPR00, ICASSP01, CVPR03andISIT04.

2 Graphical Probability Models and Reasoning Under Uncertainty
In practice, our inference algorithms must cope with uncertainties in the data, uncertainties about which

features are most useful for processing the data, uncertainties in the relationships between variables, and

uncertainties in the value of the action that is taken as a consequence of inference. Probability theory offers
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a mathematically consistent way to formulate inference algorithms when reasoning under uncertainty.

There are two types of probability model. Adiscriminative modelpredicts the distribution of the out-

put given the input:P (outputjinput). Examples include linear regression, where the output is a linear

function of the input, plus Gaussian noise; and SVMs where the binary class variable is Bernoulli dis-

tributed with a probability given by the distance from the input to the support vectors. Agenerative model

accounts for all of the data:P (data), orP (input; output). An example is the factor analyzer, where the

combined input/output vector is a linear function of a short, Gaussian hidden vector, plus independent

Gaussian noise. Generative models can be used for discrimination by computingP (outputjinput) using

marginalization and Bayes rule. In the case of factor analysis, it turns out that the output is a linear function

of a low-dimensional representationof the input, plus Gaussian noise.

Ng and Jordan [34] show that within the context of logistic regression, for a given problem complexity

,generative approaches work better than discriminative approaches when the training data is limited. Dis-

criminative approaches work best when the data is extensively preprocessed, so that the amount of data

relative to the complexity of the task is increased. Such preprocessing involves analyzing the unprocessed

inputs that will be encounteredin situ. This task is performed by a user who may or may not use automatic

data analysis tools, and involves building a model of the input,P (input), that is either conceptual or oper-

ational. An operational model can be used to perform preprocessing automatically. For example, PCA can

be used to reduce the dimensionality of the input data, in thehope that the low-dimensional representation

will work better for discrimination. Once an operational model of the input is available, the combination

of the preprocessing modelP (input) and the discriminative modelP (outputjinput) corresponds to a

particular decomposition of a generative model:P (output; input) = P (outputjinput)P (input).
Generative models provide a more general way to combine the preprocessing task and the discrimi-

native task. By jointly modeling the input and output, a generative model can discover useful, compact

representations and use these to better model the data. For example, factor analysis jointly finds a low-

dimensional representation that models the inputand is good at predicting the output. In contrast, prepro-

cessing the input using PCA, ignores the output. Also, by accounting for all of the data, a generative model

can help solve one problem (e.g., face detection) by solving another, related problem (e.g., identifying a

foreground obstruction that can explain why only part of a face is visible).

Formally, a generative model is a probability model for which the observed data is an event in the

sample space. So, sampling from the model generates a sampleof possible observed data. If the training

data has high probability, the model is “a good fit”. However,the goal is not to find the model that is

the best fit, but to find a model that fits the data welland is consistent with prior knowledge. Graphical
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Figure 1: Some of the 300 images used to train the model in Sec. 2.1. Each image was created by randomly
selecting 1 of 7 backgrounds and 1 of 5 foreground objects from the Yale face database, combining them into a
2-layer image, and adding normal noise with std. dev. of 2% of the dynamic range. Each foreground object always
appears in the same location in the image, but different foreground objects appear in different places so that each
pixel in the background is seen in several training images.

models provide a way to specify prior knowledge, and in particular structural prior knowledge,e.g., in a

video sequence, the future is independent of the past, giventhe current state.

2.1 Example: A Model of Foregrounds, Backgrounds and Transparency

The use of probability models in vision applications is, of course, extensive. Here, we introduce a model

that is simple enough to study in detail here, but also correctly accounts for an important effect in vision:

occlusion. Fig. 1 illustrates the training data. The goal ofthe model is to separate the 5 foreground objects

and the 7 background scenes in these images. This is an important problem in vision that has broad

applicability. For example, by identifying which pixels belong to the background, it is possible to improve

the performance of a foreground object classifier, since errors made by noise in the background will be

avoided.

The occlusion model explains an input image, with pixel intensitiesz1; : : : ; zK , as a composition of a

foreground image and a background image (c.f. [1]), and eachof these images is selected from a library
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of J possible images (a mixture model). Although separate libraries can be used for the foreground and

background, for notational simplicity, we assume they share a common image library. The generative

process is illustrated in Fig. 2a. To begin with, a foreground image is randomly selected from the library

by choosing the class indexf from the distribution,P (f). Then, depending on the class of the foreground,

a binary maskm = (m1; : : : ; mK), mi 2 f0; 1g is randomly chosen.mi = 1 indicates that pixelzi is a

foreground pixel, whereasmi = 0 indicates that pixelzi is a background pixel. The distribution over mask

RVs depends on the foreground class, since the mask must “cutout” the foreground object. However,

given the foreground class, the mask RVs are chosen independently:P (mjf) =QKi=1 P (mijf). Next, the

class of the background,b 2 f1; : : : ; Jg, is randomly chosen fromP (b). Finally, the intensity of the pixels

in the image are selected independently, given the mask, theclass of the foreground, and the class of the

background:P (zjm; f; b) = QKi=1 P (zijmi; f; b). The joint distribution is given by the following product

of distributions: P (z;m; f; b) = P (b)P (f)� KYi=1 P (mijf)�� KYi=1 P (zijmi; f; b)�: (1)

In this equationP (zijmi; f; b) can be further factorized by noticing that ifmi = 0 the class is given by the

RV b, and ifmi = 1 the class is given by the RVf . So, we can writeP (zijmi; f; b) = P (zijf)miP (zijb)1�mi ,
whereP (zijf) andP (zijb) are the distributions over theith pixel intensity given by the foreground and

background respectively. These distributions account forthe dependence of the pixel intensity on the

mixture index, as well as independent observation noise. The joint distribution can thus be written:P (z;m; f; b) = P (b)P (f)� KYi=1 P (mijf)�� KYi=1 P (zijf)mi�� KYi=1 P (zijb)1�mi�: (2)

In comparison with (1), this factorization reduces the number of arguments in some of the factors.

For representational and computational efficiency, it is often useful to specify a model using parametric

distributions. Given a foreground or background class index k, we assumezi is equal to�ki plus zero-

mean Gaussian noise with variance ki. This noise accounts for distortions that are not explicitly modeled,

such as sensor noise and fluctuations in illumination. If a Gaussian model of these noise sources is too

inaccurate, extra hidden RVs can be added to better model thenoise, as described in Sec. 3. Note that in

the above parameterization, the foreground and backgroundimages are selected from the same library1.

Denote the probability of classk by �k, and let the probability thatmi = 1 given that the foreground class

1If it is desirable that the foreground and background imagescome from separate libraries, the class RVsf andb can be
constrained,e.g., so thatf 2 f1; : : : ; ng, b 2 fn+ 1; : : : ; n+ lg, in which case the firstn images in the library are foreground
images and the nextl images are background images.
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is f , be�fi. Since the probability thatmi = 0 is 1� �fi, we haveP (mijf) = �mifi (1 � �fi)1�mi . Using

these parametric forms, the joint distribution isP (z;m; f; b) = �b�f� KYi=1 �mifi (1� �fi)1�miN (zi;�fi;  fi)miN (zi;�bi;  bi)1�mi�: (3)

whereN (z;�;  ) is the normal density function onz with mean� and variance . An equivalent form isP (z;m; f; b) = �b�f (QKi=1 �mifi (1� �fi)1�miN (zi;mi�fi + (1 �mi)�bi; mi fi + (1�mi) bi)), where

here the mask RVs “screen” the mean and variance of the Gaussians.

In the remainder of this review paper, the above occlusion model is used as an example. One of the

appeals of generative models is in their modularity and the ease with which they can be extended to cope

with more complex data. In Sec. 3, we describe extensions of the occlusion model that enable it to account

for motion, object deformations and object-specific changes in illumination.

2.2 Graphical Models
Graphical models describe the topology (in the sense of dependencies) of the components of a complex

probability model, clarify assumptions about the representation, and lead to algorithms that make use

of the topology to achieve exponential speed-ups. When constructing a complex probability model, we

are faced with the following challenges: Ensuring that the model reflects our prior knowledge; Deriving

efficient algorithms for inference and learning; Translating the model to a different form; Communicating

the model to other researchers and users. Graphical models overcome these challenges in a wide variety

of situations. After commenting on each of these issues, we briefly review 3 kinds of graphical model:

Bayesian networks (BNs), Markov random fields (MRFs), and factor graphs (FGs). For a more extensive

treatment, see [4,9,25,26,35].

Prior knowledge usually includes strong beliefs about the existence of hidden random variables (RVs)

and the relationships between RVs in the system. This notionof “modularity” is a central aspect of graph-

ical models. In a graphical model, the existence of a relationship is depicted by a path that connects the

two RVs. Probabilistic inference in a probability model can, in principle, be carried out using Bayes rule.

However, for the complex probability models that accurately describe a visual scene, direct application

of Bayes rule leads to an intractable number of computations. A graphical models identifies the modules

in the system and can be used to derive algorithms that make use of this modular structure to achieve

exponential speedups, compared to direct application of Bayes rule. In a complex probability model,

computational inference and interpretation usually benefit from judiciously groupings of RVs and these
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clusters should take into account dependencies between RVs. Other types of useful transformation include

splitting RVs, eliminating (integrating over) RVs, and conditioning on RVs. By examining the graph, we

can often easily identify transformations steps that will lead to simpler models or models that are better

suited to our goals and in particular our choice of inferencealgorithm. For example, we may be able to

transform a graphical model that contains cycles to a tree, and thus use an exact, but efficient, inference

algorithm. By examining a picture of the graph, a researcheror user can quickly identify the dependency

relationships between RVs in the system and understand how the influence of an RV flows through the

system to change the distributions over other RVs. Whereas block diagrams enable us to efficiently com-

municate how computations and signals flow through a system,graphical models enable us to efficiently

communicate the dependencies between components in a modular system.

2.3 Bayesian Network (BN) for the Occlusion Model

A Bayesian network(BN) [4,26,35] for RVsx1; : : : ; xN is a directed acyclic graph (no directed cycles) on

the set of RVs, along with one conditional probability function for each RV given its parents,P (xijxAi),
whereAi is the set of indices ofxi’s parents. The joint distribution is given by the product ofall the

conditional probability functions:P (x) =QNi=1 P (xijxAi).
Fig. 2b shows the BN for the occlusion model in (1), withK = 3 pixels. By grouping the mask RVs

together and the pixels together, we obtain the BN shown in Fig. 2c. Here,z is a real vector,z = (z1; z2; z3)
andm is a binary vector,m = (m1; m2; m3). Although this graph is simpler than the graph in Fig. 2b, it

is also less explicit about conditional independencies among pixels and mask RVs.

The graph indicates conditional independencies, as described in [35]. In a BN, observing a child

induces a dependence between its parents. Here, the BN indicates thatf andb are dependent givenz andm, even though they are not (observingm decouplesf andb). This demonstrates that BNs are not good at

indicating conditional independence. However, the BN indicates thatf andb are marginally independent,

demonstrating that BNs are good at indicating marginal independence.

2.4 Markov Random Field (MRF) for the Occlusion Model

A Markov Random Field(MRF) [4, 26, 35] for RVsx1; : : : ; xN is an undirected graph on the set of RVs,

along with one potential function for each maximal clique,gk(xCk), whereCk is the set of indices of the

RVs in thekth maximal clique. The joint distribution is given by the product of all the potential functions,

divided by a normalizing constant,Z, called thepartition function: P (x) = 1Z QKk=1 gk(xCk), whereZ = Px1;:::;xN (QKk=1 gk(xCk)). A clique is a fully connected subgraph, and a maximal cliqueis a clique
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Figure 2: (a) A generative process that explains an image as a composition of the image of a foreground object
with the image of the background, using a transparency map, or mask. The foreground and background are each
selected stochastically from a library, and the generation of the mask depends on the foreground that was selected.
We refer to this model as the occlusion model. (b) A BN for an occlusion model with 3 pixels, where f is the index of
the foreground image, b is the index of the background image, mi is a binary mask RV that specifies whether pixelzi is from the foreground image (mi = 1) or the background image (mi = 0). (c) A simpler, but less explicit, BN is
obtained by grouping the mask RVs together and the pixels together. (d) An MRF for the occlusion model. (e) An
MRF corresponding to the BN in (c). (f) An FG for the occlusion model. (g) A directed FG expressing all properties
of the BN in (c) and the MRF in (e).

that cannot be made larger while still being a clique. For brevity, we use the term “clique” to refer to a

maximal clique,e.g., the potentials on maximal cliques are usually calledclique potentials.

The above factorization of the joint distribution is similar to the factorization for the BN, where each

conditional probability function can be viewed as a clique potential. However, there is an important

difference: In a BN, the conditional probability functionsare individually normalized w.r.t. the child, so

the product of conditional probabilities is automaticallynormalized, andZ = 1.

An MRF for the occlusion model is shown in Fig. 2d and the version where the mask RVs are grouped

and the pixels are grouped is shown in Fig. 2e. Note that the MRF includes an edge fromm to b, in-

dicating they are dependent, even though they are not. This demonstrates that MRFs are not good at

indicating marginal independence. However, the MRF indicatesf andb are independent givenz andm,

demonstrating that MRFs are good at indicating conditionalindependence.
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2.5 Factor Graph (FG) for the Occlusion Model

Factor graphs (FGs) [9, 25] subsume BNs and MRFs. Any BN or MRFcan be easily converted to an

FG, without loss of information. Further, there exists models that have independence relationships that

cannot be expressed in a BN or an MRF, but that can be expressedin an FG. Also, belief propagation takes

on a simple form in FGs, so that inference in both BNs and MRFs can be simplified to a single, unified

inference algorithm.

A factor graph(FG) for RVsx1; : : : ; xN andlocal functionsg1(xC1); : : : ; gK(xCK ), is a bipartite graph

on the set of RVs and a set of nodes corresponding to the functions, where each function nodegk is

connected to the RVs in its argumentxCk . The joint distribution is given by the product of all the functions:P (x) = 1Z QKk=1 gk(xCk). In fact,Z = 1 if the FG is a directed graph, as described below. OtherwiseZ ensures the distribution is normalized. Note that the localfunctions may be positive potentials, as in

MRFs, or conditional probability functions, as in BNs.

Fig. 2f shows an FG for the occlusion model. It is more explicit about the factorization of the distribu-

tion, than BNs and MRFs. As with BNs and MRFs, we can group variables to obtain a simpler FG. Also,

we can indicate conditional distributions in an FG using directed edges, in which caseZ = 1. Fig. 2g

shows such adirectedFG for the model with variables grouped together. This FG expressesall properties

of the BN and MRF. As described in [9], all independencies that can be expressed in BNs and MRFs can

be expressed in FGs. Here, the directed FG indicates thatf andb are independent (expressed by the BN

but not the MRF),and it indicates thatf andb are independent givenz andm (expressed by the MRF but

not the BN). Another advantage of FGs is that because they explicitly identify functions, they provide a

useful graph for message-passing algorithms, such as belief propagation.

2.6 Converting Between FGs, BNs and MRFs

BNs and MRFs represent different independence properties,but FGs can represent all the properties that

BNs and MRFs can represent.

A BN can be converted to an FG by “pinning” the edges arriving at each variable together and creating

a function node associated with the conditional distribution. Directed edges are used to indicate the parent-

child relationship, as shown in Fig. 2h. A directed FG can be converted to to a BN by “unpinning” each

function node. An MRF can be converted to an FG by creating onefunction node for each maximal clique,

connecting the function node to the variables in the maximalclique, and setting the function to the clique

potential. An FG can be converted to an MRF by creating a maximal clique for each function node, and

setting the clique potential to the function.
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In fact, if a BN is converted to a directed FG and back again, the sameBN is obtained. Similarly, if

an MRF is converted to an FG and back again, thesameMRF is obtained. Consequently, the rules for

determining conditional independence in BNs and MRFs map losslessly to FGs,i.e., FGs can express all

conditional independencies that BNs and MRFs can express. The converse is not true: There are FGs that

express independencies that cannot be expressed in a BN or anMRF, e.g., the FG in Fig. 2g. It is also the

case that multiple FGs may be converted to the same BN or MRF – aconsequence of the fact that FGs are

more explicit about factorization.

Another way to interconvert between representations is to expand the graph to include extra edges and

extra variables (c.f. [38]).

3 Building Complex Models Using Modularity
Graphical models provide a way to link simpler models together in a principled fashion that respects

the rules of probability theory. Fig. 3 shows how the occlusion model can be used as a module in a

larger model that accounts for changing object positions, deformations, object occlusion, and changes in

illumination. The figure shows a BN, where the appearance andmask vector RVs are shown as images,

and the brightness, deformation and position RVs are shown pictorially. After inference and learning, the

video frame is automatically decomposed into the parts shown in the BN. In previous papers, we describe

efficient techniques for inference and learning in models that account for changes in object locations [11];

changes in appearances of moving objects using a subspace model [10]; common motion patterns [22];

spatial deformations in object appearance [23]; layered models of occluding objects [20]; subspace models

of occluding objects [12]; and the “epitome” of components in object appearance and shape [21]. An

inference and learning algorithm in a combined model, like the one shown above, can be obtained by

linking together the modules and associated algorithms.

4 Parameterized Models and the Exponential Family
So far, we have studied graphical models as representationsof structured probability models for computer

vision. We now turn to the general problem of how to learn these models from training data. For the pur-

pose of learning, it is often convenient to express the conditional distributions or potentials in a graphical

model as parameterized functions. Choosing the forms of theparameterized functions usually restricts the

model class, but can make computations easier. For example,Sec. 2.1 shows how we can parameterize the

conditional probability functions in the occlusion model.
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Position Position Position Position

Learned means of appearance and mask images

Deform

Bright Bright Bright Bright

Deform Deform Deform

Hidden appearances, masks,
brightness variables, deformation
variables, and position variables
combine to explain the input

Front layer Background layer

Figure 3:Simple probability models can be combined in a principled way to build a more complex model that can
be learned from training data. Here, after the model parameters (some shown in the top row of pictures) are learned
from the input video, the model explains a particular video frame as a composition of 4 “card-board cutouts”, each of
which is decomposed into appearance, transparency (mask), position, brightness and deformation (which accounts
for the gait of the walking person).

4.1 Parameters as RVs

Usually, the model parameters are not known exactly, but we have prior knowledge and experimental

results that provide evidence for plausible values of the model parameters. Interpreting the parameters as

RVs, we can include them in the conditional distributions orpotentials that specify the graphical model,

and encode our prior knowledge in the form of a distribution over the parameters.

Including the parameters as RVs in the occlusion model, we obtain the following conditional distribu-

tions:P (bj�) = �b,P (f j�) = �f ,P (mijf; �1i; : : : ; �Ji) = �mifi (1��fi)1�mi ,P f(zijf; �1i; : : : ; �Ji;  1i; : : : ;  Ji)= N (zi;�fi;  fi), P b(zijb; �1i; : : : ; �Ji;  1i; : : : ;  Ji) = N (zi;�bi;  bi). We obtain a simpler model (but

one that is less specific about independencies) by clustering the mask RVs, the pixels, the mask pa-

rameters, and the pixel means and variances. The resulting conditional distributions areP (bj�) = �b,P (f j�) = �f , P (mjf; �) = QKi=1 �mifi (1 � �fi)1�mi , P (zjm; f; b; �;  ; �;  ) = QKi=1N (zi;�fi;  fi)mi
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Figure 4:(a) The parameter sets �, �, � and  can be included in the BN as RVs. (b) For a training set with T i.i.d.
cases, these parameters are shared across all training cases. (c) If the training cases are time-series data (e.g. a
video sequence), we may create one parameter set for each time instance, but require the parameters to change
slowly over time. (d) Generally, undirected graphical models must include a normalization function 1=Z(�), which
makes inference of the parameters more difficult. Viewing the occlusion model as a member of the exponential
family, we can draw an undirected FG, which includes the function, 1=Z(�). (e) When the parameters specify
conditional distributions, Z(�) factorizes into local terms, leading to a representation that is equivalent to the one in
(a).N (zi;�bi;  bi)1�mi .

Since we are interpreting the parameters as RVs, we must specify a distribution for them. Generally, the

distribution over parameters can be quite complex, but simplifying assumptions can be made for the sake

of computational expediency, as describe in later sections. For now, we assume thatP (�; �; �;  ; �) =P (�)P (�)P (�)P ( ). The BN for this parameterized model is shown in Fig. 4a, and the joint distribution

over RVs and parameters isP (z;m; f; b; �; �; �;  ) = P (bj�)P (f j�)P (mjf; �)P (zjm; f; b; �;  )P (�)P (�)P (�)P ( ).
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4.2 Introducing Training Data

Training data can be used to infer plausible configurations of the model parameters. We imagine that there

is a setting of the parameters that produced the training data. However, since we only see the training data,

there will be many settings of the parameters that are good matches to the training data, so the best we can

do is compute a distribution over the parameters.

Denote the hidden RVs byh and the visible RVs byv. The hidden RVs can be divided into the param-

eters, denoted by�, and one set of hidden RVsh(t), for each of the training cases,t = 1; : : : ; T . So,h =(�; h(1); : : : ; h(T )). Similarly, there is one set of visible RVs for each trainingcase:v = (v(1); : : : ; v(T )).
Assuming the training cases are independent and identically drawn (i.i.d.), the distribution over all visible

RVs and hidden RVs (including parameters) isP (h; v) = P (�) TYt=1 P (h(t); v(t)j�):P (�) is the parameter prior and
QTt=1 P (h(t); v(t)j�) is the likelihood. In the occlusion model described

above, we have� = (�;  ; �; �), h(t) = (f (t); b(t); m(t)), andv(t) = z(t). The BN forT i.i.d. training cases

is shown in Fig. 4b.

When the training cases consist of time-series data (such asa video sequence), the parameters often

can be thought of as RVs that change slowly over time. Fig. 4c shows the above model, where there

is a different set of parameters for each training case, but where we assume the parameters are coupled

across time. Using(t) to denote the training case at timet = 1; : : : ; T , the following distributions couple

the parameters across time:P (�(t)j�(t�1)), P (�(t)j�(t�1)), P (�(t)j�(t�1)), P ( (t)j (t�1)). The uncertainty

in these distributions specifies how quickly the parameterscan change over time. Such a model can be

viewed as the basis for on-line learning algorithms. For simplicity, in this paper, we assume the model

parameters are fixed for the entire training set.

4.3 The Exponential Family

Members of theexponential family[2] have the following parameterization:P (xj�) = (1=Z(�)) exp�Pi �i
i(x)�,
where � = (�1; �2; : : :) is a parameter vector and
i(x) is the ith sufficient statistic. The sufficient

statistics ofx contain all information that is needed to determine the density of x. Z(�) is the parti-

tion function, which normalizesP (xj�): Z(�) = Px exp(Pi �i
i(x)). For members of the exponen-

tial family, there is a simple relationship between the distribution for one training case and the distri-

bution for an entire training set. Letx(t) be the hiddenand visible variables for thetth training case.
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ThenP (x(t)j�) = exp(Pi �i
i(x(t)))=Z(�) and the likelihood for the entire training set isP (xj�) =Qt P (x(t)j�) = exp(Pi �i(PTt=1 
i(x(t))))=Z(�)T . The sufficient statistics for the entire training set are

given by summing the sufficient statistics over training cases.

To put the occlusion model in exponential family form, note that the sufficient statistics for a normal

density onzi arezi andz2i . The reader can confirm that the joint distribution can be written P (z;m; f; b) =(1=Z(�)) exp�PJj=1(ln�j)f[b = j℄g + PJj=1(ln�j)f[f = j℄g + PKi=1PJj=1(ln�ji)f[mi = 1℄[f =j℄g + PKi=1PJj=1(ln(1 � �ji))f[mi = 0℄[f = j℄g � PKi=1PJj=1(1=2 ji)fz2i [mi = 1℄[f = j℄g +PKi=1PJj=1(�ji= ji)fzi[mi = 1℄[f = j℄g�PKi=1PJj=1(1=2 ji)fz2i [mi = 0℄[b = j℄g+PKi=1PJj=1(�ji= ji)fzi[mi = 0℄[b = j℄g�, where curly braces identify the sufficient statistics, andsquare braces indicate Iver-

son’s notation:[expr℄ = 1 if expr is true, and[expr℄ = 0 if expr is false.

Modular structure in members of the exponential family arises when each sufficient statistic
i(x)
depends on a subset of RVsxCi with indicesCi. Then,P (x) = (1=Z(�))Qi exp��i
i(xCi)�, so we can

expressP (x) using a graphical model,e.g. a FG. In the FG, there can be one function node for each

sufficient statistic
i and one variable node for each parameter�i, but a more succinct FG is obtained

by grouping related sufficient statistics together and grouping their corresponding parameters together.

Fig. 4d shows a FG for the exponential family representationof the occlusion model, where we have made

groups of�’s, �’s, �’s and ’s. Note that the FG must include the normalizing function1=Z(�).
Generally, computingZ(�) is intractable since we must sum or integrate overx. However, if the

exponential family parameterization corresponds to a BN, the sufficient statistics can be grouped so that

each group defines a conditional distribution in the BN. In this case,Z(�) simplifies to a product of

local partition functions, where each local partition function ensures that the corresponding conditional

distribution is normalized. In the above model, the normalization constants associated with the conditional

distributions forf ,m, b andz are uncoupled, so we can writeZ(�) = Z(�)Z(�)Z(�)Z( ), where,e.g.,Z( ) = Qjkp2� jk. Fig. 4e shows the FG in this case, which has the same structure as the BN in

Fig. 4a.

4.4 Uniform and Conjugate Parameter Priors

Parameter priors encode the cost of specific configurations of the parameters. For simplicity, theuniform

prior is often used, whereP (�) = onst. Then,P (h; v) /QTt=1 P (h(t); v(t)j�), and the dependence of the

parameters on the data is determined solely by the likelihood. In fact, a uniform prior is not uniform under

a different parameterization. Also, the uniform density for the real numbers does not exist, so the uniform

prior is improper. However, these facts are often ignored for computational expediency. Importantly,
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the use of a uniform prior is justified when the amount of training data is large relative to the maximum

model complexity, since then the prior will have little effect on the model. One exception is zeros in the

prior, which can never be overcome by the likelihood, but such hard constraints can be incorporated in the

learning algorithm,e.g., using Lagrange multipliers.

Assuming a uniform prior for all parameters in the occlusionmodel, the joint distribution over RVs

and parameters isP (�;  ; �; �; f (1); b(1); m(1); : : : ; f (T ); b(T ); m(T ); z(1); : : : ; z(T ))/ TYt=1��f(t)�b(t)� KYi=1 �m(t)if(t)i(1� �f(t)i)1�m(t)i N (z(t)i ;�f(t)i;  f(t)i)m(t)i N (z(t)i ;�b(t)i;  b(t)i)1�m(t)i ��: (4)

Note that when using uniform priors, parameter constraints, such as
PJi=1 �i = 1, must be taken into

account during inference and learning.

Theconjugate prioroffers the same computational advantage as the uniform prior, but allows speci-

fication of stronger prior knowledge and is also a proper prior. The idea is to choose a prior that has the

same form as the likelihood, so the prior can be thought of as the likelihood of fake, user-specified data.

The joint distribution over parameters and RVs is given by the likelihood of both the real dataand the fake

data. For members of the exponential family, the fake training data takes the form of extra, user-specified

terms added to each sufficient statistic,e.g., extra counts added for Bernoulli RVs.

In the occlusion model, imagine that before seeing the training data, we observe�j fake examples

from image classj. The likelihood of the fake data for parameter�j is �j�j , so the conjugate prior for�1; : : : ; �J isP (�1; : : : ; �J) / QJj=1 �j�j if
PJj=1 �j = 1 and0 otherwise. This is the Dirichlet distribution

andP (�1; : : : ; �J) is the Dirichlet prior. The conjugate prior for the mean of a Gaussian distribution is

a Gaussian distribution, because the RV and its mean appear symmetrically in the Gaussian pdf. The

conjugate prior for theinverse variance� of a Gaussian distribution is a Gamma distribution. Imagine

fake data consisting of� examples where the squared difference between the RV and itsmean isÆ2.
The likelihood for this fake data is proportional to(�1=2e�Æ2�=2)� = ��=2e�(�Æ2=2)�. This is a Gamma

distribution in� with mean1=Æ2 + 2=�Æ2 and variance2(1=Æ2 + 2=�Æ2)=�Æ2. Setting the prior for� to

be proportional to this likelihood, we see that the conjugate prior for the inverse variance is the Gamma

distribution.
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5 Algorithms for Inference and Learning
Once a generative model describing the image rendering process has been specified, vision consists of

probabilistic inference. In Fig. 4b, for training imagesz(1); : : : ; z(T ), vision consists of inferring the set of

mean images and variance maps,�,  , the mixing proportions�, the set of binary mask probabilities,�,

and, for every training case, the class of the foreground image,f , the class of the background image,b,
and the binary mask used to combine these images,m.

Exact inference is often intractable, so we turn to approximate algorithms that search for distributions

that are close to the correct posterior distribution. This is accomplished by minimizing pseudo-distances on

distributions, called “free energies”. (For an alternative view, see [36].) It is interesting that in the 1800’s,

Helmholtz was one of the first researchers to propose that vision is inference in a generative model,and

that nature seeks correct probability distributions in physical systems by minimizing free energy. Although

there is no record that Helmholtz saw that the brain might perform vision by minimizing a free energy, we

can’t help but wonder if he pondered this.

Viewing parameters as RVs, inference algorithms for RVs andparameters alike make use of the condi-

tional independencies in the graphical model. It is possible to describe graph-based propagation algorithms

for updating distributions over parameters [16]. It is often important to treat parameters and RVs differ-

ently during inference. Whereas each RV plays a role in a single training case, the parameters are shared

across many training cases. So, the parameters are impactedby more evidence than RVs and are often

pinned down more tightly by the data. This observation becomes relevant when we study approximate

inference techniques that obtain point estimates of the parameters, such as the expectation maximization

algorithm [6].

We now turn to the general problem of inferring the values of unobserved (hidden) RVs, given the

values of the observed (visible) RVs. Denote the hidden RVs by h and the visible RVs byv and par-

tition the hidden RVs into the parameters� and one set of hidden RVsh(t), for each training caset =1; : : : ; T . So,h = (�; h(1); : : : ; h(T )). Similarly, there is one set of visible RVs for each trainingcase:v = (v(1); : : : ; v(T )). Assuming the training cases are i.i.d., the distribution over all RVs isP (h; v) = P (�)� TYt=1 P (h(t); v(t)j�)�: (5)

In the occlusion model,� = (�;  ; �; �), h(t) = (f (t); b(t); m(t)), andv(t) = z(t).
Exact inference consists of computing estimates or making decisions based on the posterior distribution
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over all hidden RVs (including the parameters),P (hjv). From Bayes rule,P (hjv) = P (h; v)Rh P (h; v) ;
where we use the notation

Rh to includesummingover discrete hidden RVs. The denominator nor-

malizes the distribution, but if we need only a proportionalfunction, P (h; v) suffices, since w.r.t.h,P (hjv) / P (h; v). In the case of a graphical model,P (h; v) is equal to either the product of the condi-

tional distributions, or the product of the potential functions, divided by the partition function.

5.1 Partition Functions Complicate Learning

For undirected graphical models and general members of the exponential family,P (x; �) = P (�) 1Z(�)Qi �i(xCi)
andlnP (x; �) = lnP (�)�lnZ(�)+Pi ln�i(xCi). When adjusting a particular parameter, the sum of log-

potentials nicely isolates the influence to those potentials that depend on the parameter, but the partition

function makes all parameters interdependent. Generally,as shown in Fig. 4d,Z(�) induces dependencies

between all parameters. SinceZ(�) =Px(Qi �i(xCi)), exactly determining the influence of a parameter

change on the partition function is often intractable. In fact, determining this influence can also be viewed

as a problem of approximate inference, since the partition function is the complete marginalization ofQi �i(xCi). So, many of the techniques discussed in this paper can be used to approximately determine

the effect of the partition function (e.g., Gibbs sampling [19]). There are also learning techniques that are

specifically aimed at undirected graphical models, such as iterative proportional fitting [4].

For directed models, the partition function factorizes into local partition functions (c.f. Fig. 4e), so the

parameters can be directly inferred using the techniques described in this paper.

5.2 Model Selection

Often, some aspects of the model structure are known, but others are not. In the occlusion model, we may

be confident about the structure of the BN in Fig. 4b, but not the number of classes,J . Unknown structure

can be represented as a hidden RV, so that inference of this hidden RV corresponds to Bayesian model

selection [17,27]. The BN in Fig. 4b can be modified to includean RV,J , whose children are all of thef
andb variables and whereJ limits the range of the class indices. Given a training set, the posterior overJ reveals how probable the different models are. When model structure is represented in this way, proper

priors should be specified for all model parameters, so that the probability density of the extra parameters

needed in more complex models is properly accounted for. Foran example of Bayesian learning of infinite

mixture models, see [31].
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5.3 Numerical Issues

Many inference algorithms rely on the computation of expressions of the formp = Qj aqjj , where the

number of terms can be quite large. To avoid underflow, it is common to work in the log-domain. Denoting

the log-domain value of a variable by “~”, we can compute~p  Pj qj~aj. If p is needed, setp  exp(~p). Keep in mind that if~p is large and negative,p may be set to0. This problem can be avoided

when computing anormalizedset ofpi’s (e.g., probabilities). Suppose~pi is the log-domain value of the

unnormalized version ofpi. Since thepi’s are to be normalized, we can add a constant to the~pi’s to

raise them to a level where numerical underflow will not occurwhen taking exponentials. Computing~m maxi ~pi and then setting~pi  ~pi� ~m, will ensure thatmaxi ~pi = 0, so one of theexp(~pi)’s will be 1.

Next, compute the log-normalizing constant,~ ln(Pi exp(~pi)). The previous step ensures that the sum

in this expression will produce a strictly positive number,avoidingln 0. Finally, the~pi’s are normalized,~pi  ~pi� ~, and, if needed, thepi’s are computed,pi  exp(~pi). In some cases, notably when computing

joint probabilities of RVs and observations using the sum-product algorithm, we need to compute the

unnormalized sums = Pi pi, where eachpi is so small that it is stored in its log-domain form,~pi. The

above method can be used, but~m must be added back in to retain the unnormalized form. First,compute~m maxi ~pi and then set~s ~m + ln(Pi exp(~pi � ~m)).
5.4 Exact Inference in the Occlusion Model

We consider two cases: Exact inference when the model parameters are known, and exact inference when

the model parameters are unknown. When the model parametersare known, the distribution over the

hidden RVs is given in (3).f andb each take onJ values and there areK binary mask RVs, so the total

number of configurations off , b andm is J22K. For moderate model sizes, even if we can compute

the posterior, we cannot store the posterior probability ofevery configuration. However, from the BN in

Fig. 2b, we see thatmi is independent ofmj; j 6= i, givenf , b andzi (the Markov blanket ofmi). Thus,

we represent the posterior distribution as follows:P (m; f; bjz) = P (f; bjz)P (mjf; b; z) = P (f; bjz) KYi=1 P (mijf; b; z):
Here, the posterior can be stored usingO(J2) numbers2 for P (f; bjz) and for each configuration off
andb, O(K) numbers for the probabilitiesP (mijf; b; z), i = 1; : : : ; K, giving a total storage require-

ment ofO(KJ2) numbers. Using the fact thatP (mijf; b; z) = P (mijf; b; zi) / P (zi; mijf; b) =
2We useO(�) to indicate the number of scalar memory elements or binary scalar operations, up to a constant.
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P (mijf; b)P (zijmi; f; b) = P (mijf)P (zijmi; f; b) and substituting the definitions of the conditional dis-

tributions, we haveP (mi = 1jf; b; z) = �fiN (zi;�fi;  fi)�fiN (zi;�fi;  fi) + (1� �fi)N (zi;�bi;  bi) :
We need only storeP (mi = 1jf; b; z), sinceP (mi = 0jf; b; z) = 1 � P (mi = 1jf; b; z)). For eachi = 1; : : : ; K and each configuration off and b, this can be computed and normalized using a small

number of multiply-adds. The total number of multiply-addsneeded to computeP (mi = 1jf; b; z) for alli isO(KJ2).P (f; bjz) can be computed as follows:P (f; bjz) =Xm P (m; f; bjz) /Xm P (m; f; b; z)= �b�f KYi=1�Xmi ��mifi (1� �fi)1�miN (zi;�fi;  fi)miN (zi;�bi;  bi)1�mi��= �b�f KYi=1��fiN (zi;�fi;  fi) + (1� �fi)N (zi;�bi;  bi)�:
For each value off andb, this can be computed usingO(K) multiply-adds. Once it is computed for allJ2 combinations off andb, the result is normalized to giveP (f; bjz). The total number of multiply-adds

needed to computeP (f; bjz) is O(KJ2). Combining this with the above technique, the exact posterior

overf , b andm can be computed inO(KJ2) multiply-adds and stored inO(KJ2) numbers.

When the parameters are not known, we must infer the distribution over them, as well as the RVs.

Assuming a uniform parameter prior, the posterior distribution over parameters and hidden RVs in the

occlusion model of Fig. 4b is proportional to the joint distribution given in (4). This posterior can be

thought of as a very large mixture model. There areJ2T2KT discrete configurations of the class RVs and

the mask RVs and for each configuration, there is a distribution over the real-valued parameters. In each

mixture component, the class probabilities are Dirichlet-distributed and the mask probabilities are Beta-

distributed. (The Beta pdf is the Dirichlet pdf when there isonly one free parameter.) The pixel means and

variances are coupled in the posterior, but given the variances, the means are normally distributed and given

the means, the inverse variances are Gamma-distributed. Ifthe training data is processed sequentially,

where one training case is absorbed at a time, the mixture posterior can be updated as shown in [5].

The exact posterior is intractable, because the number of posterior mixture components is exponential
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in the number of training cases, and the posterior distribution over the pixel means and variances are

coupled. In the remainder of this paper, we describe a variety of approximate inference techniques and

discuss advantages and disadvantages of each approach.

5.5 Approximate Inference as Minimizing Free Energies

Usually, the above techniques cannot be applied directly toP (hjv), because this distribution cannot be

computed in a tractable manner. So, we must turn to various approximations.

Many approximate inference techniques can be viewed as minimizing a cost function called “free

energy” [33], which measures the accuracy of an approximateprobability distribution. These include

iterative conditional modes [3], the expectation maximization (EM) algorithm [6, 33], variational tech-

niques [24,33] structured variational techniques [24], Gibbs sampling [32] and the sum-product algorithm

(a.k.a. loopy belief propagation) [25,35].

The idea is to approximate the true posterior distributionP (hjv) by asimplerdistributionQ(h), which

is then used for making decisions, computing estimates, summarizing the data,etc. Here, approximate

inference consists of searching for the distributionQ(h) that is closest toP (hjv). A natural choice for

a measure of similarity between the two distributions is therelative entropy (a.k.a. Kullback-Leibler

divergence): D(Q;P ) = ZhQ(h) ln Q(h)P (hjv) :
This is a divergence, not a distance, because it is not symmetric: D(Q;P ) 6= D(P;Q). However,D(Q;P )
is similar to a distance in thatD(Q;P ) � 0, andD(Q;P ) = 0 if and only if the approximating distribution

exactly matches the true posterior,Q(h) = P (hjv). The reason we useD(Q;P ) and notD(P;Q) is that

the former computes the expectation w.r.t. the simple distribution,Q, whereas the latter computes the

expectation w.r.t.P , which is generally very complex3.

Approximate inference techniques can be derived by examining ways of searching forQ(h), to mini-

mizeD(Q;P ). In fact, directly computingD(Q;P ) is usually intractable, because it depends onP (hjv).
If we already have a tractable form forP (hjv) to insert into the expression forD(Q;P ), we probably

don’t have a need for approximate inference. Fortunately,D(Q;P ) can be modified in a way that does not

alter the structure of the search space ofQ(h), but makes computations tractable. If we subtractlnP (v)
3For example, ifQ(h) =QiQ(hi) thenD(P;Q) = Rh P (hjv) lnP (hjv)�Pi Rhi P (hijv) lnQ(hi). Under the constraintRhi Q(hi) = 1, the minimum ofD(P;Q) is given byQ(hi) = P (hijv). However, computingP (hijv) is an NP-hard problem,

so minimizingD(P;Q) is also an NP-hard problem.
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fromD(Q;P ), we obtainF (Q;P ) = D(Q;P )� lnP (v) = ZhQ(h) ln Q(h)P (hjv) � ZhQ(h) lnP (v) = ZhQ(h) ln Q(h)P (h; v) : (6)

Notice thatlnP (v) does not depend onQ(h), so subtractinglnP (v) will not influence the search forQ(h). For BNs and directed FGs, wedo have a tractable expression forP (h; v), namely the product of

conditional distributions.

If we interpret� lnP (h; v) as the energy function of a physical system andQ(h) as a distribution

over the state of the system, thenF (Q;P ) is equal to the average energy minus the entropy. In statistical

physics, this quantity is called thefree energyof the system (a.k.a.,Gibbs free energyor Helmholtz free

energy). Nature tends to minimize free energies, which corresponds to finding the equilibrium Boltzmann

distribution of the physical system.

Another way to derive the free energy is by using Jensen’s inequality to bound the log-probability of the

visible RVs. Jensen’s inequality states that a concave function of a convex combination of points in a vector

space is greater than or equal to the convex combination of the concave function applied to the points. To

bound the log-probability of the visible RVs,lnP (v) = ln(Rh P (h; v)), we use an arbitrary distributionQ(h) (a set of convex weights) to obtain a convex combination inside the concaveln() function:lnP (v) = ln�Zh P (h; v)� = ln�ZhQ(h)P (h; v)Q(h) � � ZhQ(h) ln�P (h; v)Q(h) � = �F (Q;P ):
We see that the free energy is an upper bound on the negative log-probability of the visible RVs:F (Q;P ) �� lnP (v). This can also be seen by noting thatD(Q;P ) � 0 in (6).

Free energy for i.i.d. training cases

From (5), for a training set ofT i.i.d. training cases with hidden RVsh = (�; h(1); : : : ; h(T )) and visible

RVs v = (v(1); : : : ; v(T )), we haveP (h; v) = P (�)QTt=1 P (h(t); v(t)j�). The free energy isF (Q;P ) = ZhQ(h) lnQ(h)� Z�Q(�) lnP (�)� TXt=1 Zh(t);�Q(h(t); �) lnP (h(t); v(t)j�): (7)

The decomposition ofF into a sum of one term for each training case simplifies learning.

Exact inference revisited

The idea of approximate inference is to search forQ(h) in a space of models that are simpler than

the true posteriorP (hjv). It is instructive to not assumeQ(h) is simplified and derive the minimizer of
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F (Q;P ). The only constraint we put onQ(h) is that it is normalized:
PhQ(h) = 1. To account for

this constraint, we form a Lagrangian fromF (Q;P ) with Lagrange multiplier� and optimizeF (Q;P )
w.r.t. Q(h): �(F (Q;P ) + � RhQ(h))=�Q(h) = lnQ(h) + 1 � lnP (h; v) + �. Setting this derivative

to 0 and solving for�, we findQ(h) = P (h; v)= Rh P (h; v) = P (hjv). So, minimizing the free energy

without any simplifying assumptions onQ(h) produces exact inference. The minimum free energy isminQ F (Q;P ) = Rh P (hjv) ln(P (hjv)=P (h; v)) = � lnP (v). The minimum free energy is equal to the

negative log-probability of the data. This minimum is achieved whenQ(h) = P (hjv).
Revisiting exact inference in the occlusion model

In the occlusion model, if we allow the approximating distributionQ(f; b;m) to be unconstrained,

we find that the minimum free energy is obtained whenQ(f; b;m) = P (f; bjz)QKi=1 P (mijf; b; z). Of

course, nothing is gained computationally by using thisQ-distribution. In the following sections, we see

how the use of various approximate forms forQ(f; b;m) lead to tremendous speed-ups.

5.6 MAP Estimation as Minimizing Free Energy

Maximum a posteriori (MAP) estimation searches for̂h = argmaxh P (hjv), which is the same asargmaxh P (h; v). For discrete hidden RVs, MAP estimation minimizesF (Q;P ) using aQ-distribution

of the formQ(h) = [h = ĥ℄, where[expr℄ = 1 if expr is true, and[expr℄ = 0 if expr is false. The free

energy in (6) simplifies toF (Q;P ) = Ph[h = ĥ℄ ln[h = ĥ℄=P (h; v) = � lnP (ĥ; v), i.e., minimizingF (Q;P ) is equivalent to maximizingP (ĥ; v).
For continuous hidden RVs, theQ-distribution for a point estimate is a Dirac delta functioncentered

at the estimate:Q(h) = Æ(h � ĥ). The free energy in (6) reduces toF (Q;P ) = Rh Æ(h � ĥ) ln Æ(h �ĥ)=P (h; v) = � lnP (ĥ; v) � HÆ, whereHÆ is the entropy of the Dirac delta. This entropy does not

depend on̂h, so minimizingF (Q;P ) corresponds to searching for values ofĥ that maximizeP (ĥ; v)4.

Two popular methods that use point inferences are iterativeconditional modes and the EM algorithm.

5.7 Iterative Conditional Modes (ICM)

The most famous example of ICM isk-means clustering, where the hidden RVs are the cluster centers

and the class labels. Here, ICM iterates between assigning each training case to the closest cluster center,

and setting each cluster center equal to the average of the training cases assigned to it. ICM is popular

4In fact,HÆ ! �1. To see this, defineÆ(x) = 1=� if 0 � x � � and0 otherwise. Then,HÆ = ln �, which goes to�1 as�! 0. This infinite penalty inF (Q;P ) is a reflection of the fact that an infinite-precision point-estimate ofh does a very poor
job of representing the uncertainty inh underP (hjv).
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because it easy to implement. However, ICM does not take intoaccount uncertainties in hidden RVs

during inference, causing it to find poor local minima.

ICM works by searching for a configuration ofh that maximizesP (hjv). The simplest version of ICM

examines each hidden RVhi in turn, and sets the RV to its MAP value, given all other RVs. Since all

hidden RVs buthi are kept constant in this update, only the RVs in the Markov blanket ofhi are relevant.

Denote these RVs byxMi and denote the product of all conditional distributions or potentials that depend

onhi by f(hi; xMi). ICM proceeds as follows:

Initialization. Pick values for all hidden RVsh (randomly, or cleverly).

ICM Step. Consider one of the hidden RVs,hi. Holding all other RVs constant, sethi to its MAP value:hi  argmaxhiP (hijh n hi; v) = argmaxhif(hi; xMi):
whereh n hi is the set of all hidden RVs other thanhi.
Repeat for a fixed number of iterations or until convergence.

If hi is discrete, this procedure is straightforward. Ifhi is continuous and exact optimization ofhi is not

possible, its current value can be used as the initial point for a search algorithm, such as a Newton method

or a gradient-based method.

The free energy for ICM is the free energy described above, for general point inferences.

ICM in the occlusion model

Even when the model parameters in the occlusion model are known, the computational cost of exact

inference can be rather high. When the number of clustersJ is large, examining allJ2 configurations of

the foreground class and the background class is computationally burdensome. For ICM in the occlusion

model, theQ-distribution for the entire training set isQ = (Qk Æ(�k��̂k))(Qk;i Æ(�ki��̂ki))(Qk;i Æ( ki� ̂ki))(Qk;i Æ(�ki � �̂ki))(Qt[b(t) = b̂(t)℄)(Qt[f (t) = f̂ (t)℄)(QtQi[m(t)i = m̂(t)i ℄). Substituting thisQ-

distribution and theP -distribution in (4) into the expression for the free energyin (7), we obtain the

following:F = �Xt �ln �̂f̂(t) + ln �̂b̂(t)��Xt �Xi m̂(t)i ln �̂f̂(t)i + (1� m̂(t)i ) ln(1� �̂f̂(t)i)�+Xt Xi m̂(t)i �(z(t)i � �̂f̂(t)i)2=2 ̂f̂(t)i + ln(2� ̂f̂(t)i)=2�+Xt Xi (1� m̂(t)i )�(z(t)i � �̂b̂(t)i)2=2 ̂b̂(t)i + ln(2� ̂b̂(t)i)=2��H:
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H is the entropy of theÆ-functions and is constant during optimization.F measures the mismatch between

the input image and the image obtained by combining the foreground and background using the mask.

To minimize the free energy w.r.t. all RVs and parameters, wecan iteratively solve for each RV or

parameters by setting the derivative ofF to 0, keeping the other RVs and parameters fixed. These updates

can be applied in any order, but since the model parameters depend on values of all hidden RVs, we

first optimize for all hidden RVs, and then optimize for modelparameters. Furthermore, since for every

observation, the class RVs depend on all pixels, when updating the hidden RVs, we first visit the mask

values for all pixels and then the class RVs.

After all parameters and RVs are set to random values, the updates are applied recursively, as described

in Fig. 5. To keep notation simple, the “^ ” symbol is dropped and in the updates for the variablesmi, b
andf , the training case index(t) is dropped.

5.8 Block ICM and Conjugate Gradients

One problem with the simple version of ICM described above isits severe greediness. Supposef(hi; xMi)
has almost the same value for two different values ofhi. ICM will pick one value forhi, discarding the

fact that the other value ofhi is almost as good. This problem can be partly avoided by optimizing subsets

of h, instead of single elements ofh. At each step of thisblock ICM method, a tractable subgraph of the

graphical model is selected, and all RVs in the subgraph are updated to maximizeP (h; v). Often, this can

be done efficiently using the max-product algorithm [25]. Anexample of this method is training HMMs

using the Viterbi algorithm to select the most probable state sequence. For continuous hidden RVs, an

alternative to block ICM is to use a joint optimizer, such as aconjugate gradients.

5.9 The Expectation-Maximization Algorithm

The EM algorithm accounts for uncertainty in some RVs, whileperforming ICM-like updates for the

other RVs. Typically, for parameters� and remaining RVsh(1); : : : ; h(T ), EM obtains point estimates for� and computes the exact posterior over the other RVs, given�. TheQ-distribution isQ(h) = Æ(� ��̂)Q(h(1); : : : ; h(T )). Recall that for i.i.d. data,P (h; v) = P (�)(QTt=1 P (h(t); v(t)j�)). Given�, the RVs

associated with different training cases are independent,so we haveQ(h) = Æ(� � �̂)QTt=1Q(h(t)). In

exact EM, no restrictions are placed on the distributions,Q(h(t)).
SubstitutingP (h; v) andQ(h) into (6), we obtain the free energy:F (Q;P ) = � lnP (�̂) + TXt=1�Zh(t) Q(h(t)) ln Q(h(t))P (h(t); v(t)j�̂)�:
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EM alternates between minimizingF (Q;P ) w.r.t. the set of distributionsQ(h(1)); : : : ; Q(h(T )) in the E

step, and minimizingF (Q;P ) w.r.t. �̂ in the M step.

When updatingQ(h(t)), the only constraint is that
Rh(t) Q(h(t)) = 1. As described earlier, this con-

straint is accounted for using a Lagrange multiplier. Setting the derivative ofF (Q;P ) to zero and solving

for Q(h(t)), we obtain the solution,Q(h(t)) = P (h(t)jv(t); �̂). Taking the derivative ofF (Q;P ) w.r.t. �̂,
we obtain �F (Q;P )��̂ = � ���̂ lnP (�̂)� TXt=1�Zh(t) Q(h(t)) ���̂ lnP (h(t); v(t)j�̂)�:
ForM parameters, this is a set ofM equations. These two solutions give the EM algorithm:

Initialization. Choose values for the parameters,�̂ (randomly, or cleverly).

E Step.MinimizeF (Q;P ) w.r.t.Q using exact inference, by settingQ(h(t)) P (h(t)jv(t); �̂);
for each training case, given the parameters�̂ and the datav(t).
M Step. MinimizeF (Q;P ) w.r.t. the model parameterŝ� by solving� ���̂ lnP (�̂)� TXt=1�Zh(t) Q(h(t)) ���̂ lnP (h(t); v(t)j�̂)� = 0: (8)

This is the derivative of the expected log-probability of the complete data. ForM
parameters, this is a system ofM equations. Often, the prior on the parameters is

assumed to be uniform,P (�̂) = onst, in which case the first term in the above

expression vanishes.

Repeat for a fixed number of iterations or until convergence.

In Sec. 5.5, we showed that whenQ(h) = P (hjv), F (Q;P ) = � lnP (v). So, the EM algorithm

alternates between obtaining a tight lower bound onlnP (v) and then maximizing this bound w.r.t. the

model parameters. This means that with each iteration, the log-probability of the data,lnP (v), must

increase or stay the same.

EM in the occlusion model

As with ICM we approximate the distribution over the parameters usingQ(�) = Æ(���̂). As described

above, in the E step we setQ(b; f;m)  P (b; f;mjz) for each training case, where, as described in
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ICM

E Step (Variable Updates)

For t = 1; : : : ; T :f  argmaxf��f QKi=1��mifi (1 � �fi)1�miN (zi;�fi;  fi)mi��
For i = 1; : : : ;K:mi  argmaxmi n �fiN (zi;�fi;  fi) if mi = 1(1� �fi)N (zi;�bi;  bi) if mi = 0 ob argmaxb��bQKi=1N (zi;�bi;  bi)1�mi�

M Step (Parameter Updates)

For j = 1; : : : ; J : �j  12T PTt=1([f(t) = j℄ + [b(t) = j℄)
For j = 1; : : : ; J : For i = 1; : : : ;K:�ji  PTt=1[f(t)=j℄m(t)iPTt=1[f(t)=j℄�ji  PTt=1[f(t)=j or b(t)=j℄z(t)iPTt=1[f(t)=j or b(t)=j℄ ji  PTt=1[f(t)=j or b(t)=j℄(z(t)i ��ji)2PTt=1[f(t)=j or b(t)=j℄

Exact EM

E Step

For t = 1; : : : ; T :Q(b; f) 2 �b�f QKi=1��fiN (zi;�fi;  fi) + (1 � �fi)N (zi;�bi;  bi)�Q(b) Pf Q(b; f); Q(f) PbQ(b; f)
For i = 1; : : : ;K:Q(mi = 1jb; f) 1 �fiN (zi;�fi;  fi)Q(mi = 0jb; f) 1 (1� �fi)N (zi;�bi;  bi)
For i = 1; : : : ;K:Q(mi; b) Pf Q(mijb; f)Q(b; f); Q(mi; f) PbQ(mijb; f)Q(b; f)

M Step

Forj = 1; : : : ; J : �j  12T Pt(Q(f(t) = j) +Q(b(t) = j))
Forj = 1; : : : ; J : For i = 1; : : : ;K:�ji  Pt Q(m(t)i =1;f(t)=j)Pt Q(f(t)=j)�ji  Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0;b(t)=j)�z(t)iPt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0;b(t)=j)� ki  Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0;b(t)=j)�(z(t)i ��ji)2Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0;b(t)=j)�

Gibbs Sampling EM

E Step

For t = 1; : : : ; T :f  samplef ��f QKi=1��fiN (zi;�fi;  fi)�mi (1� �fi)1�mi�
For i = 1; : : : ;K:mi  samplemi n �fiN (zi;�fi;  fi) if mi = 1(1� �fi)N (zi;�bi;  bi) if mi = 0 ob sampleb ��bQKi=1N (zi;�bi;  bi)1�mi�

M Step

For j = 1; : : : ; J : �j  12T Pt([f(t) = j℄ + [b(t) = j℄)
For j = 1; : : : ; J : For i = 1; : : : ;K:�ji  Pt[f(t)=j℄m(t)iPt[f(t)=j℄�ji  Pt[f(t)=j or b(t)=j℄z(t)iPt[f(t)=j or b(t)=j℄ ji  Pt[f(t)=j or b(t)=j℄(z(t)i ��ji)2Pt[f(t)=j or b(t)=j℄

Variational EM

E Step

For t = 1; : : : ; T :Q(f) 3 �f QKi=1���fiN (zi;�fi;  fi)�Q(mi=1)(1� �fi)Q(mi=0)�
For i = 1; : : : ;K:Q(mi = 1) 1 Qf (�fiN (zi;�fi;  fi))Q(f)Q(mi = 0) 1 (Qf (1 � �fi)Q(f))(QbN (zi;�bi;  bi)Q(b))Q(b) 2 �bQKi=1N (zi;�bi;  bi)Q(mi=0)

M Step

Forj = 1; : : : ; J : �j  12T (PtQ(f(t) = j) +PtQ(b(t) = j))
Forj = 1; : : : ; J : For i = 1; : : : ;K:�ji  Pt Q(m(t)i =1)Q(f(t)=j)Pt Q(f(t)=j)�ji  Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�z(t)iPt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)� ki  Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�(z(t)i ��ji)2Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�

Figure 5:Inference and learning algorithms for the occlusion model. Iverson’s notation is used, where [expr℄ = 1 ifexpr is true, and [expr℄ = 0 if expr is false. The constant  is used to normalize distributions.
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Structured Variational EM

E Step

For t = 1; : : : ; T :Q(f) 1 �f QKi=1� �fiQ(mi=1jf)N (zi;�fi;  fi)�Q(mi=1jf)�� 1��fiQ(mi=0jf) QJb=1N (zi;�bi;  bi)Q(b)�Q(mi=0jf)
For i = 1; : : : ;K:Q(mi = 1jf) 2 �fiN (zi;�fi;  fi)Q(mi = 0jf) 2 (1� �fi)QbN (zi;�bi;  bi)Q(b)Q(mi; f) Q(mijf)Q(f); Q(mi) Pf Q(mi; f)Q(b) 3 �bQKi=1N (zi;�bi;  bi)Q(mi=0)

M Step

For j = 1; : : : ; J : �j  12T (PtQ(f(t) = j) +PtQ(b(t) = j))
For j = 1; : : : ; J : For i = 1; : : : ;K:�ji  Pt Q(m(t)i =1;f(t)=j)Pt Q(f(t)=j)�ji  Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�z(t)iPt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0)Q(b(t)=j)� ki  Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�(z(t)i ��ji)2Pt�Q(m(t)i =1;f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�
Sum-Product EM

E Step

For t = 1; : : : ; T :

For i = 1; : : : ;K: �fi (f) 1 ��fiN (zi;�fi;  fi)+(1� �fi)Pb �bi (b)N (zi ;�bi;  bi)�Q(f) 2 �f Qi �fi (f)
For i = 1; : : : ;K: �fi (f) 3 Q(f)=�fi (f)
For i = 1; : : : ;K:�mi (1) 4 Pf �fi (f)�fiN (zi;�fi;  fi)�mi (0) 4 �Pf �fi (f)(1 � �fi)��Pb �bi (b)N (zi;�bi;  bi)�Q(mi) �mi (mi)
For i = 1; : : : ;K: �bi (b) 5 ��Pf �fi (f)�fiN (zi;�fi;  fi)�+�Pf �fi (f)(1 � �fi)�N (zi;�bi;  bi)�Q(b) 6 �bQi �bi (b)
For i = 1; : : : ;K: �bi (b) Q(b)=�bi (b)

M Step

For j = 1; : : : ; J : �j  12T (PtQ(f(t) = j) +PtQ(b(t) = j))
For j = 1; : : : ; J : For i = 1; : : : ;K:�ji  Pt Q(m(t)i =1)Q(f(t)=j)Pt Q(f(t)=j)�ji  Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�z(t)iPt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)� ki  Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�(z(t)i ��ji)2Pt�Q(m(t)i =1)Q(f(t)=j)+Q(m(t)i =0)Q(b(t)=j)�

Fig. 5 continued.
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Sec. 5.4,P (b; f;mjz) is represented in the formP (b; f jz)Qi P (mijb; f; z). This distribution is used in

the M step to minimize the free energy w.r.t. the model parameters,� = f�k; �k;  k; �kgKk=1. The resulting

updates are given in Fig. 5, where we have dropped the training case index in the E step for brevity, and

the constant is computed to normalize the appropriate distribution. Starting with random parameters, the

E and M steps are iterated until convergence or for a fixed number of iterations.

5.10 Generalized EM

The above derivation of the EM algorithm makes obvious several generalizations, all of which attempt to

decreaseF (Q;P ) [33]. If F (Q;P ) is a complex function of the parameters�, it may not be possible to

exactly solve for the� that minimizesF (Q;P ) in the M step. Instead,� can be modified so as to decreaseF (Q;P ), e.g., by taking a step downhill in the gradient ofF (Q;P ). Or, if � contains many parameters, it

may be thatF (Q;P ) can be optimized w.r.t. one parameter while holding the others constant. Although

doing this does not solve the system of equations, it does decreaseF (Q;P ).
Another generalization of EM arises when the posterior distribution over the hidden RVs is too com-

plex to perform the exact updateQ(h(t)) P (h(t)jv(t); �̂) that minimizesF (Q;P ) in the E step. Instead,

the distributionQ(h(t)) from the previous E step can be modified to decreaseF (Q;P ). In fact, ICM is a

special case of EM where in the E step,F (Q;P ) is decreased by finding the value ofĥ(t) that minimizesF (Q;P ) subject toQ(h(t)) = Æ(h(t) � ĥ(t)).
5.11 Gibbs Sampling and Monte Carlo Methods

Gibbs sampling is similar to ICM, but to circumvent the localminima, Gibbs samplingstochastically

selects the value ofhi at each step, instead of picking the MAP value ofhi:
Initialization. Pick values for all hidden RVsh (randomly, or cleverly).

Gibbs Sampling Step.Consider one of the hidden RVs,hi. Holding all other RVs

constant, samplehi:hi � P (hijh n hi; v) = f(hi; xMi)=�Xhi f(hi; xMi)�:
wherexMi are the RVs in the Markov blanket ofhi andf(hi; xMi) is the product of

all conditional distributions or potentials that depend onhi.
Repeat for a fixed number of iterations or until convergence.
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Algorithmically, this is a minor modification of ICM, but in many applications it is able to escape poor

local minima (c.f. [15, 19]). Also, the stochastically chosen values ofhi can be monitored to estimate the

uncertainty inhi under the posterior.

If n counts the number of sampling steps, then, asn ! 1, the nth configuration of the hidden

RVs is guaranteed to be an unbiased sample from the exact posterior,P (hjv). In fact, although a single

Gibbs sampler is not guaranteed to minimize the free energy,an infinite ensemble of Gibbs samplersdoes

minimize free energy, regardless of the initial distribution of the ensemble. LetQn(h) be the distribution

overh given by the ensemble of samples at stepn. Suppose we obtain a new ensemble by samplinghi in

each sampler. Then,Qn+1(h) = Qn(h n hi)P (hijh n hi; v). SubstitutingQn andQn+1 into (6), we find

thatF n+1 � F n.

Generally, in a Monte Carlo method, the distribution overh is represented by a set of configura-

tionsh1; : : : ; hS. Then, the expected value of any function of the hidden RVs,f(h), is approximated byE[f(h)℄ � 1SPSs=1 f(hs). For example, ifh contains binary (0/1) RVs andh1; : : : ; hS are drawn fromP (hjv), then by selectingf(h) = hi the above equation gives an estimate ofP (hi = 1jv). There are

many approaches to sampling, but the two general classes of samplers are exact samplers and Markov

chain Monte Carlo (MCMC) samplers (c.f. [32]). Whereas exact samplers produce a configuration with

probability equal to the probability under the model, MCMC samplers produce a sequence of configura-

tions such that in the limit the configuration is a sample fromthe model. If a modelP (h; v) is described

by a BN, then an exact sample ofh and v can be obtained by successively sampling each RV given its

parents, starting with parent-less RVs and finishing with child-less RVs. Gibbs sampling is an example of

an MCMC technique.

MCMC techniques and Gibbs sampling in particular are guaranteed to produce samples from the

probability model only after the memory of the initial configuration has vanished and the sampler has

reached equilibrium. For this reason, the sampler is often allowed to “burn in” before samples are used to

compute Monte Carlo estimates. This corresponds to discarding the samples obtained early on.

Gibbs sampling for EM in the occlusion model

Here, we describe a learning algorithm that uses ICM-updates for the model parameters, but uses

stochastic updates for the RVs. This technique can be viewedas a generalized EM algorithm, where the

E-Step is approximated by a Gibbs sampler. Replacing the MAPRV updates in ICM with sampling,

we obtain the algorithm in Fig. 5. The notationsampleb indicates the expression on the right should be

normalized w.r.t.b and thenb should be sampled.
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5.12 Variational Techniques and the Mean Field Method

A problem with ICM and Gibbs sampling is that when updating a particular RV, they do not account for

uncertainty in the neighboring RVs. Clearly, a neighbor that is untrustworthy should count for less when

updating an RV. If exact EM can be applied, then at least the exact posterior distribution is used for a subset

of the RVs. However, exact EM is often not possible because the exact posterior is intractable. Also, exact

EM does not account for uncertainty in the parameters.

Variational techniques assume thatQ(h) comes from a restricted family of distributions that can be

efficiently searched over. Inference proceeds by minimizing F (Q;P ) w.r.t. Q(h), but the restriction onQ(h) implies that a tight bound,F = � lnP (v), is not in general achievable. In practice, the family of

distributions is usually chosen so that a closed form expression forF (Q;P ) can be obtained and optimized.

The “starting point” when deriving variational techniquesis the product form (a.k.a. fully-factorized,

or mean-field)Q-distribution. If h consists ofM hidden RVsh = (h1; : : : ; hM), the product formQ
distribution is Q(h) = MYi=1Q(hi); (9)

where there is one variational parameter or one set of variational parameters that specifies the marginalQ(hi) for each hidden RVhi.
The advantage of the product form approximation is most readily seen whenP (h; v) is described by

a BN. Suppose thekth conditional probability function is a function of RVshCk andvDk and denote it bygk(hCk ; vDk). So,P (h; v) = Qk gk(hCk ; vDk). Substituting this and (9) into (6), we obtain the mean field

free energy:F (Q;P ) =Xi �Zhi Q(hi) lnQ(hi)��Xk �ZhCk�Yi2CkQ(hi)� ln gk(hCk ; vDk)�:
The high-dimensional integral over all hidden RVs simplifies into a sum over the conditional probability

functions, of low-dimensional integrals over small collections of hidden RVs. The first term is the sum

of the negative entropies of theQ-distributions for individual hidden RVs. For many scalar RVs (e.g.,

Bernoulli, Gaussian,etc.) the entropy can be written in closed form quite easily.

The second term is the sum of the expected log-conditional distributions, where for each conditional

distribution, the expectation is taken with respect to the product of theQ-distributions for the hidden RVs.

For appropriate forms of the conditional distributions, this term can also be written in closed form. For

example, supposeP (h1jh2) = exp(� ln(2��2)=2 � (h1 � ah2)2=2�2) (i.e., h1 is Gaussian with mean
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ah2), andQ(h1) andQ(h2) are Gaussian with means�11 and�21 and variances�12 and�22. The entropy

terms forh1 andh2 are� ln(2�e�12)=2 and� ln(2�e�22)=2. The other term is the expected value of a

quadratic form under a Gaussian, which is straightforward to compute. The result is� ln(2��2)=2�(�11�a�21)2=2�2 � �12=2�2 � a2�22=2�2. These expressions are easily-computed functions of the variational

parameters. Their derivatives (needed for minimizingF (Q;P )) can also be computed quite easily.

In general, variational inference consists of searching for the value of� that minimizesF (Q;P ). For

convex problems, this optimization is easy. Usually,F (Q;P ) is not convex inQ and iterative optimization

is required:

Initialization. Pick values for the variational parameters,� (randomly, or cleverly).

Optimization Step. DecreaseF (Q;P ) by adjusting the parameter vector�, or a

subset of�.

Repeat for a fixed number of iterations or until convergence.

This variational technique accounts for uncertainty inboth the hidden RVs and the hidden model

parameters. If the amount of training data is small, a variational approximation to the parameters can be

used to represent uncertainty in the model due to the sparse training data.

Often, variational techniques are used to approximate the distribution over the hidden RVs in the E

step of the EM algorithm, but point estimates are used for themodel parameters. In suchvariational

EM algorithms, theQ-distribution isQ(h) = Æ(� � �̂)QTt=1Q(h(t);�(t)). Note that there is one set of

variational parameters for each training case. In this case, we have the following generalized EM steps:

Initialization. Pick values for the variational parameters�(1); : : : ; �(T ) and the model

parameterŝ� (randomly, or cleverly).

Generalized E Step. Starting from the variational parameters from the previous

iteration, modify�(1); : : : ; �(T ) so as to decreaseF .

Generalized M Step. Starting from the model parameters from the previous itera-

tion, modify �̂ so as to decreaseF .

Repeat for a fixed number of iterations or until convergence.

Variational inference for EM in the occlusion model

The fully-factorizedQ-distribution over the hidden RVs for a single data sample inthe occlusion model

is Q(m; f; b) = Q(b)Q(f)QKi=1Q(mi). Substituting thisQ-distribution into the free energy for a single
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observed data sample in the occlusion model, we obtainF =Xb Q(b) ln Q(b)�b +Xf Q(f) ln Q(f)�f+Xi Xf Q(f)�Q(mi = 1) ln Q(mi = 1)�fi +Q(mi = 0) ln Q(mi = 0)1� �fi �+Xi Xf Q(f)Q(mi = 1)�(zi � �fi)22 fi + ln 2� fi2 �+Xi Q(mi = 0)�Xb Q(b)�(zi � �bi)22 bi + ln 2� bi2 ��:
The first two terms keepQ(b) andQ(f) close to their priors�b and�f . The third term keepsQ(mi)
close to the mask priors�fi for foreground classes that have high posterior probability Q(f). The last

two terms favor mask values and foreground/background classes that minimize the variance-normalized

squared differences between the predicted pixel values andthe observed pixel values.

Setting the derivatives ofF to zero, we obtain the updates for theQ-distributions in the E step. Once

the variational parameters are computed for all observed images, the total free energyF = Pt F (t) is

optimized w.r.t. the model parameters to obtain the variational M step. The resulting updates are given

in Fig. 5. Each E step update can be computed inO(KJ) time, which is aK-fold speed-up over exact

inference used for exact EM. This speed-up is obtained because the variational method assumes thatf andb are independent in the posterior. Also, note that if theQ-distributions place all mass on one configuration,

the E step updates reduce to the ICM updates The M step updatesare similar to the updates for exact EM,

except that the exact posterior distributions are replacedby their factorized surrogates.

The above updates can be iterated in a variety of ways. For example, each iteration may consist of

repeatedly updating the variational distributions until convergence and then updating the parameters. Or,

each iteration may consist of updating each variational distribution once, and then updating the parameters.

There are many possibilities and the update order that is best at avoiding local minima depends on the

problem.

5.13 Structured Variational Techniques

The product-form (mean-field) approximation does not account for dependencies between hidden RVs.

For example, if the posterior has two distinct modes, the variational technique for the product-form ap-

proximation will find only one mode. With a different initialization, the technique may find another

mode, but the exact form of the dependence is not revealed. Instructured variational techniques, theQ-
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distribution is itself specified by a graphical model, such thatF (Q;P ) can still be optimized. Fig. 6a shows

the original BN for the occlusion model and Fig. 6b shows the BN for the fully-factorized (mean field)Q-

distribution described above. Recall that the exact posterior can be writtenP (m; f; bjz) = Q(m; f; b) =Q(f; b)QKi=1Q(mijf; b). Fig. 6c shows the BN for thisQ-distribution. Generally, increasing the number

of dependencies in theQ-distribution leads to more exact inference algorithms, but also increases the com-

putational demands of variational inference. In the occlusion model, whereas mean field inference takesKJ time, exact inference takesKJ2 time. However, additional dependencies can sometimes be accounted

for at no extra computational cost. As described below, it turns out that theQ-distribution shown in Fig. 6d

leads to an inference algorithm with the same complexity as the mean field method (KJ time), but can

account for dependencies of the mask RVs on the foreground class.

Structured variational inference for EM in the occlusion model

TheQ-distribution corresponding to the BN in Fig. 6c isQ(m; f; b) = Q(b)Q(f)QKi=1Q(mijf).
Definingqfi = Q(mi = 1jf), we haveQ(m; f; b) = Q(b)Q(f)QKi=1 qmifi (1� qfi)1�mi . Substituting thisQ-distribution into the free energy for the occlusion model,we obtainF =Xb Q(b) ln Q(b)�b +Xf Q(f) ln Q(f)�f+Xi Xf Q(f)�Q(mi = 1jf) ln Q(mi = 1jf)�fi +Q(mi = 0jf) ln Q(mi = 0jf)1� �fi �+Xi Xf Q(f)Q(mi = 1jf)�(zi � �fi)22 fi + ln 2� fi2 �+Xi ��Xf Q(f)Q(mi = 0jf)�Xb Q(b)�(zi � �bi)22 bi + ln 2� bi2 ��:
Setting the derivatives ofF to zero, we obtain the updates given in Fig. 5. With some care,these updates

can be computed inO(KJ) time, which is aK-fold speed-up over exact inference. Although the depen-

dencies off andmi, i = 1; : : : ; K on b are not accounted for, the dependence ofmi on f is accounted

for by theqfi’s. The parameter updates in the M step have a similar form as for exact EM, except that the

exact posterior is replaced by the above, structuredQ-distribution.

5.14 The Sum-Product Algorithm (Belief Propagation)

The sum-product algorithm (a.k.a. belief propagation, probability propagation) performs inference by

passing messages along the edges of the graphical model (see[25] for an extensive review). The message

arriving at an RV is a probability distribution (or a function that is proportional to a probability distribu-
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Figure 6: Starting with the BN of the original occlusion model (a), variational techniques ranging from the fully
factorized approximation to exact inference can be derived. (b) The BN for the factorized (mean field) Q-distribution.z is observed, so it is not included in the graphical model for the Q-distribution. (c) The BN for a Q-distribution that
can represent the exact posterior. (d) The BN for a Q-distribution that can represent the dependence of the mask
RVs on the foreground class. Accounting for more dependencies improves the bound on the data likelihood, but the
choice of which dependencies are retained has a large impact on the improvement in the bound.

tion), that represents the inference for the RV, as given by the part of the graph that the message came

from. Pearl [35] showed that the algorithm is exact if the graph is a tree. When the graph contains cycles,

the sum-product algorithm (a.k.a. “loopy belief propagation”) is not exact and can diverge and oscillate.

However, it has been used in vision algorithms [8]. Surprisingly, we have also found that its oscillatory

behavior can be used to jump between modes of the posterior Also, it has produced state-of-the-art results

on several difficult problems, including error-correctingdecoding [14], medical diagnosis [30],random

satisfiability [28], and phase-unwrapping in 2-dimensions[13].

To see how the sum-product algorithm works, consider computing P (a) in the modelP (a; b; ; d) =P (ajb)P (bj)P (jd)P (d). One approach is to computeP (a; b; ; d) for all values ofa, b,  andd and then

computeP (a) =PbPPd P (a; b; ; d). For binary RVs, this takes(3 + 1)(2 � 2 � 2 � 2) operations. Al-

ternatively, we can move the sums inside the products:P (a) =Pb P (ajb)fP P (bj)[Pd P (jd)P (d)℄g.
If the terms are computed from the inner-most term out, this takes(3)(2 + 2 + 2) operations, giving an

exponential speed-up in the number of RVs. The computation of each term in braces corresponds to the

computation of a message in the sum-product algorithm.

In a graphical model, the joint distribution can be writtenP (h; v) = Qk gk(hCk ; vDk), wherehCk andvDk are the hidden and visible RVs in thekth local function (or conditional distribution). The sum-product

algorithm approximatesP (hjv) byQ(h), whereQ(h) is specified by marginalsQ(hi) andclique marginalsQ(hCk). These are computed by combining messages that are computediteratively in the FG. Denote the

message sent from variablehi to functiongk by �ik(hi) and denote the message sent from functiongk to

variablehi by �ki(hi). Note that the message passed on an edge is a function of the neighboring variable.

A user-specifiedmessage-passing scheduleis used to determine which messages should be updated at
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each iteration. The sum-product algorithm proceeds as follows:

Initialization. Set all messages to be uniform.

Message Update Step. Update the messages specified in the message-passing

schedule. The message sent from variablehj to functiongk is updated as follows:�jk(hj)  Yn:j2Cn;n6=k�nj(hj); (10)

where  is computed so as to normalize the message. The message sent from

functiongk to variablehj is updated as follows:�kj(hj)  XhCknj�gk(hCk ; vDk) Yi2Ck;i6=j �ik(hi)�; (11)

whereCk n j is the set of indicesCk with j removed.

Fusion. A single-variable marginal or clique marginal can be computed at any time

as follows: Q(hj)  Yn:j2Cn �nj(hj); (12)Q(hCk)  gk(hCk ; vDk) Yi2Ck �ik(hi); (13)

Repeat for a fixed number of iterations or until convergence.

If the graph is a tree, once messages have flowed from every node to every other node, the estimates

of the posterior marginals areexact. So, if the graph hasE edges, exact inference is accomplished by

propagating2E messages according to the following message-passing schedule. Select one node as the

root and arrange the nodes in layers beneath the root. Propagate messages from the leaves to the root (E
messages) and then propagate messages from the root to the leaves (anotherE messages). This procedure

ensures that messages flow from every node to every other node. Note that if the graph is a tree, if normal-

izations arenot performed during message-passing, the fusion equations compute thejoint probability of

the hidden variable(s) and the observed variables:
Qn:j2Cn �nj(hj) = P (hj; v).

If the graph contains cycles, messages can be passed in an iterative fashion for a fixed number of iter-

ations, until convergence is detected, or until divergenceis detected. Also, various schedules for updating

the messages can be used and the quality of the results will depend on the schedule. It is proven in [37]

that when the “max-product” algorithm converges, all configurations that differ by perturbing the RVs in

subgraphs that contain at most one cycle, will havelower posterior probabilities.
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If the graphical model is a BN, so thatZ = 1, the sum-product algorithm can be used for inference in

a generalized EM algorithm as follows:

Initialization. Pick values for the model parameters� (randomly, or cleverly), and

set all messages to be uniform.

Generalized E Step.For each training casev(t), apply one or more iterations of the

sum-product algorithm. Then, fuse messages as described above to computeQ(h(t)Ck)
for every child and its parents.

Generalized M Step.Modify the parameters� so as to maximizeXt Xk Xh(t)Ck Q(h(t)Ck) ln gk(h(t)Ck ; v(t)Dk ; �):
Repeat for a fixed number of iterations or until convergence.

The sum-product algorithm for EM in the occlusion model

For an occlusion model withK pixels, exact inference takesO(KJ2) time. In contrast, loopy belief

propagation takesO(KJ) time, assuming the number of iterations needed for convergence is constant.

Generally, the computational gain from using loopy belief propagation is exponential in the number of

RVs that combine to explain the data.

The graphical model has cycles, so before applying the sum-product algorithm, we modify it to reduce

the number of cycles, as shown in in Fig. 7a, where the observed pixelsz1; : : : ; zK are not shown for visual

clarity. For each pixeli, there isonelocal functiongi that combines the conditional distributions for each

mask RV and its corresponding pixel:gi(f; b;mi) = P (zijmi; f; b)P (mijf) = N (zi;�fi;  fi)miN (zi;�bi;  bi)1�mi�mifi (1� �fi)1�mi :
Fig. 7b shows how we have labeled the messages along the edgesof the FG. During message passing,

some messages will always be the same. In particular, a message leaving a singly-connected function

node will always be equal to the function. So, the messages leaving the nodes corresponding toP (f) andP (b) are equal toP (f) andP (b), as shown in Fig. 7b. Also, a message leaving a singly-connected variable

node will always be equal to the constant1. So, the messages leaving the mask RVs,mi are1. Initially,

all other messages are set to the value1.

Before updating messages in the graph, we must specify in what order the messages should be updated.
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Figure 7: (a) The FG for the occlusion model with K pixels, after the observations (z1; : : : ; zK) are absorbed into
function nodes, gi(f; b;mi) = P (zijmi; f; b)P (mijf). (b) The sum-product algorithm (belief propagation) passes
messages along each edge of the graph. This graph fragment shows the different types of messages propagated
in the occlusion model.

This choice will influence how quickly the algorithm converges, and for graphs with cycles can influence

whether or not it converges at all. Messages can be passed until convergence, or for a fixed amount of

time. Here, we define one iteration to consist of passing messages from theg’s to b, from b to theg’s, from

theg’s to f , from f to theg’s, and from theg’s to them’s. Each iteration ensures that each RV propagates

its influence to every other RV. Since the graph has cycles, this procedure should be repeated.

The message updates are derived from the general rules described above. From (11), it is straightfor-

ward to show that the message sent fromgi to f should be updated as follows:�fi (f) PbPmi �bi(b) �1 �gi(f; b;mi). Note that since the resulting message is a function off alone,b andmi must be summed over.

Substitutinggi(f; b;mi) from above and assuming that�bi(b) is normalized, this update can be simplified:�fi (f) �fiN (zi;�fi;  fi) + (1� �fi)Pb �bi(b)N (zi;�bi;  bi). The last step in computing this message

is to normalize it:�fi (f) �fi (f)=(Pf �fi (f)).
According to (10), the message sent fromf to gi is given by the product of the other incoming mes-

sages,�fi (f) �fQj 6=i �fi (f), and it is then normalized:�fi (f) �fi (f)=(Pf �fi (f).
The message sent fromgi to b is given by�bi(b)  PfPmi �fi (f) � 1 � gi(f; b;mi), which simplifies

to �bi(b)  �Pf �fi (f)�fiN (zi;�fi;  fi)� + �Pf �fi (f)(1� �fi)�N (zi;�bi;  bi). Note that the terms in

large parentheses don’t depend onb, so they need to be computed only once when updating this message.

Again, before proceeding, the message is normalized:�bi(b) �bi(b)=(Pb �bi(b)).
The message sent fromb to gi is given by�bi(b)  �bQj 6=i �bi(b), and then normalized:�bi(b)  �bi(b)=(Pb �bi(b).
Finally, the message sent fromgi to mi is updated as follows:�mi (mi)  PfPb �fi (f) � �bi(b) �gi(f; b;mi). Formi = 1 andmi = 0 this update simplifies to�mi (1)  Pf �fi (f)�fiN (zi;�fi;  fi)

and�mi (0)  �Pf �fi (f)(1 � �fi)��Pb �bi(b)N (zi;�bi;  bi)�. Normalization is performed by setting�mi (mi) �mi (mi)=(�mi (0) + �mi (1)).
At any point during message-passing, the fusion rule in (12)can be used to estimate posterior marginals
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of variables. The estimates ofP (f jz),P (bjz) andP (mijz) areQ(f) ��fQi �fi (f)�=�Pf �f Qi �fi (f)�,Q(b)  ��bQi �bi(b)�=�Pb �bQi �bi(b)�, andQ(mi)  �mi (mi). It is common to compute these during

each iteration. In fact, computing the posterior marginalsis often useful as an intermediate step for more

efficiently computing other messages. For example, direct implementation of the above updates for�fi (f)
requires orderJK2 time. However, ifQ(f) is computed first (which takes orderJK time), then�fi (f) can

be updated in orderJK time using�fi (f) Q(f)=�fi (f), followed by normalization.

Fig. 5 shows the generalized EM algorithm where the E step uses the sum-product algorithm. Whereas

algorithms presented earlier have one update for each variable (whether in terms of its value or its distribu-

tion), the sum-product algorithm has one update for each edge in the graph. Note that when updatingQ(b)
andQ(f), whereas variational methods adjust the effect of each likelihood term by raising it to a power,

the sum-product algorithm adds an offset that depends on howwell the other hidden variables account for

the data. In the M step, we have used a factorized approximation toQ(mi; f) andQ(mi; b). In fact, these

clique marginals can be computed using (13), to obtain a moreexact M step.

The sum-product algorithm as a variational method

The sum-product algorithm can be thought of as a variationaltechnique. Recall that in contrast to

product-form variational techniques, structured variational techniques account for more of the direct de-

pendencies (edges) in the original graphical model, by findingQ-distributions over disjoint substructures

(sub-graphs). However, one problem with structured variational techniques is that dependencies induced

by the edges that connect the sub-graphs are accounted for quite weakly through the variational parameters

in theQ-distributions for the sub-graphs. In contrast, the sum-product algorithm uses a set of sub-graphs

that coverall edges in the original graph and accounts for every direct dependenceapproximately, using

one or moreQ-distributions.

To derive the sum-product algorithm as a variational methodwe follow [38]. As described ear-

lier, the sum-product algorithm approximatesP (hjv) by Q(h), whereQ(h) is specified by marginalsQ(hi) and clique marginalsQ(hCk). Notice that these sets of marginals coverall edges in the graphi-

cal model. Substituting the expression forP (h; v) into (6) the free energy isF = PhQ(h) lnQ(h) �PkPhCk Q(hCk) ln gk(hCk ; vDk). The second term is a local expectation that can usually be computed or

approximated efficiently. However, since we don’t have a factorized expression forQ(h), the first term

is generally intractable. We can approximateQ(h) inside the logarithm using theBethe approximation:Q(h) � (QkQ(hCk))=(QiQ(hi)di�1), wheredi is the degree ofhi, i.e., the number of termsQ(hCk) thathi appears in. The denominator is meant to account for the overlap between the clique marginals. For

trees, the Bethe approximation is exact (c.f. [26]).
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Substituting the Bethe approximation for the termlnQ(h), we obtain the Bethe free energyFBethe,
whichapproximatesthe true free energy,FBethe � F :FBethe =Xk XhCk Q(hCk) lnQ(hCk)�Xi (di � 1)Xhi Q(hi) lnQ(hi)�Xk XhCk Q(hCk) ln gk(hCk ; vDk):
This approximation becomes exact if the graph is a tree. If the graph is not a tree, we can still try to

minimizeFBethe w.r.t.Q(hCk) andQ(hi), but during optimization the marginals are usually not consistent

with any probability distribution onh. The statistical physics community has developed more complex, but

more accurate approximations, such as the Kikuchi approximation, which can be used to derive inference

algorithms [38].

The minimization ofFBethe must account for the marginalization constraints,8k :PhCk Q(hCk) = 1,8i :Phi Q(hi) = 1, and8k; 8i 2 Ck :PhCkni Q(hCk) = Q(hi), whereCkni is the set of indicesCk with i
removed. The last constraint ensures that the single-variable marginals and the clique marginals agree. De-

note the Lagrange multipliers for these constraints by�k, �i andik(hi), where the last multiplier depends

on the valuehi, since there is one constraint for each value ofhi. Setting the derivatives ofFBethe subject to

these constraints to 0, we obtainQ(hj)dj�1 /Qk:j2Ck ejk(hj) andQ(hCk) / gk(hCk ; vDk)Qi2Ck eik(hi).
The sum-product algorithm can be viewed as an algorithm thatrecursively computes the Lagrange mul-

tipliers, ik(hi), so as to satisfy the above two equations and the marginalization constraint everywhere

in the network. In the standard form of the sum-product algorithm, we define�ik(hi) = eik(hi) to be

a “message” sent from variablehi to functiongk. Using this notation, the equations and the marginal-

ization constraint give the following system of equations:Q(hj)dj�1 / Qk:i2Ck �jk(hj), Q(hCk) /gk(hCk ; vDk)Qi2Ck �ik(hi), and
PhCkni Q(hCk) = Q(hi).

One way of solving the system is to find a set of update equations whose fixed points satisfy the system.

To do this, introduce “messages” that are sent from functions to variables:�kj(hj) is a message sent from

functiongk to variablehj. A fixed point of the sum-product updates in (10) to (13) satisfies the system of

equations. From (10), we have
Qk:i2Ck �jk(hj) =Qk:i2CkQn:j2Cn;n6=k �nj(hj) = �Qn:j2Cn �nj(hj)�dj�1.

Combining this with (12) we obtain
Qk:i2Ck �jk(hj) = Q(hj)dj�1 which satisfies the first equation in the

system. The second equation is satisfied trivially by sum-product update (13). To see how the third equa-

tion is satisfied, first sum overhCknj in (13) and then use (11) to obtain
PhCknj Q(hCk) / �jk(hj)�kj(hj).

Then, substitute�jk(hj) from (10) and use (12) to obtain
PhCknj Q(hCk) / Qn:j2Cn �nj(hj) / Q(hj),

which satisfies the third equation.
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Method Update for mask variables Complexity

Exact inference (used in EM) Q(mi=1jb;f)Q(mi=0jb;f)  �fiN (zi;�fi; fi)(1��fi)N (zi;�bi; bi) J2K
Iterative conditional modes mi  (1; if �fiN (zi;�fi fi)(1��fi)N (zi;�bi; bi) > 10; otherwise

K
Gibbs sampling mi  samplemi n �fiN (zi;�fi;  fi) if mi = 1(1� �fi)N (zi;�bi;  bi) if mi = 0 o K
Mean field Q(mi=1)Q(mi=0)  Qf (�fiN (zi;�fi; fi))Q(f)(Qf (1��fi)Q(f))(QbN (zi;�bi; bi)Q(b)) JK
Structured variational Q(mi=1jf)Q(mi=0jf)  �fiN (zi;�fi; fi)(1��fi)QbN (zi;�bi; bi)Q(b) JK
Sum-product algorithm Q(mi=1)Q(mi=0)  Pf �fi (f)�fiN (zi;�fi; fi)(Pf �fi (f)(1��fi))(Pb �bi (b)N (zi ;�bi; bi)) JK

Table 1:A comparison of the updates for the mask variables for various algorithms discussed in this tutorial.

5.15 Annealing

In all of the above techniques, when searching forQ(h), local minima ofF can be a problem. One way

to try to avoid local minima is to introduce an inverse temperature,�: F (�) = RhQ(h) lnQ(h)=P (h; v)�.
When� = 0, P (h; v)� is uniform and inference is easy. When� = 1, P (h; v)� = P (h; v) andF (�) = F ,

the free energy we want to minimize. By searching overQ while annealing the system – adjusting� from0 to 1 – the searchmayavoid local minima. In practice, the use of annealing raisesthe difficult question

of how to adjust� during inference.

6 Comparison of Algorithms
Each of the above techniques iteratively updates an approximation to the exact posterior distribution while

searching for a minimum of the free energy. It is useful to study how the behaviors of the algorithms differ.

In Table 1, we give the update equations for the mask variables in the occlusion model. These updates have

been written in a slightly different form than presented in Fig. 5, to make comparisons between different

methods easier.

Whereas exact inference computes the distribution overmi for every configuration of the neighboring

variablesb andf , ICM and Gibbs sampling select a new value ofmi based on thesinglecurrent config-

uration ofb andf . Whereas updating all mask variables takesJ2K time for exact inference, it takesK
time for ICM and Gibbs sampling.
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The update for the distributionQ(mi) overmi in the mean field (fully-factorized) variational method

can be compared to the update for exact inference. The updates are similar, but an important difference is

that each term that depends onf or b is replaced by its geometric average w.r.t. the current distributionQ(f) orQ(b). Each such geometric average takesJ time and there areK mask variables, so updating all

mask variables takesJK time.

In the structured variational method, the dependence ofmi onf is taken into account. The update for

the distributionQ(mijf) is similar to the update in the mean field method, but the geometric averages for

terms that depend onf are not taken (since oneQ-distribution is computed for each value off ). The term

that depends onb does not depend onf , so its geometric average w.r.t.b can be computed once for allf . The resulting updates for all mask variables takesJK time, which is the same as for the mean field

method. This example shows that sometimes, accounting for more dependencies does not significantly

increase the time-complexity of a variational method.

Comparing the update forQ(mi) in the sum-product algorithm with the corresponding updatein the

fully-factorized variational method, we see that the geometric averages are replaced with arithmetic av-

erages. This is an important difference between the two methods. While the geometric average favors

values ofmi that have high weight in all terms, the arithmetic average favors values ofmi that have high

weight in at least 1 term. In this sense, the sum-product algorithm is more “inclusive” of possible config-

urations of hidden variables, than fully-factorized variational methods. Another difference between these

two methods is that while the variational method takes averages w.r.t. the same distribution for all pixels,Q(f) orQ(b), the sum-product algorithm uses pixel-specific distributions,�fi (f) or �bi(b).
7 Experimental Results
We explored the following algorithms for learning the parameters of the occlusion model described in

Sec. 2.1, using the data illustrated in Fig. 1: ICM, exact EM,Gibbs sampling; variational EM with a fully-

factorized posterior, structured variational EM, and the sum-product algorithm for EM. The MATLAB

scripts we used are available on our web sites.

We found that the structured variational method performed almost identically to the fully-factorized

variational method, so we do not report results on the structured variational method. Generally, there

usually are structured variational approximations that produce bounds that are significantly better than

mean field, but are much more computationally efficient than exact inference (c.f. [12]).

Each technique can be tweaked in a variety of ways to improve performance. However, our goal is to

provide the reader with a “peek under the hood” of each inference engine and convey a qualitative sense
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of the similarities and differences between the techniques, so we strove to make the initial conditions,

variable/parameter update schedules,etc.as similar as possible. For details of training conditions,see the

MATLAB scripts posted on our web sites.

The learning algorithms are at best guaranteed to converge to a local minimum of the free energy,

which is an upper bound on the negative log-likelihood of thedata. A common local minimum is a set of

images in which some of the true classes in the data are repeated while the others are merged into blurry

images. To help avoid this type of local minimum, we providedthe model with 14 clusters – 2 more than

the total number of different foregrounds and backgrounds.(If too many clusters are used, the model tends

to overfit and learn specific combinations of foreground and background.)

Each learning algorithm was run 5 times with different random initializations and the run with the

highest log-likelihood was kept. For complex models, computing the log-likelihood is intractable and the

free energy should be used instead. The pixels in the class means were initialized to independent values

drawn from the uniform density in[0; 1), the pixel variances were set to 1, and the mask probability for

each pixel was set to0:5. All classes were allowed to be used in both foreground and background images.

To avoid numerical problems, the model variances and the prior and posterior probabilities on discrete

RVsf; b;mi were not allowed to drop below10�6.
Fig. 8 shows the parameters after convergence of the learning algorithms, and Fig. 9 shows the free

energy as a function of the number of computations needed during learning. Most techniques managed

to find all classes of appearance, but the computational requirements varied by 2 orders of magnitude.

However, the greediest technique, ICM, failed to find all classes. The ability to disambiguate foreground

and background classes is indicated by the estimated mask probabilities� (see also the example in Fig. 11),

as well as the total posterior probability of a class being used as a background (�b), and foreground (�f ).
Exact EM for the most part correctly infers which of the classes are used as foreground or background.

The only error it made is evident in the first two learned classes, which are sometimes swapped to model

the combination of the background and foreground layers, shown in the last example from the training set

in Fig. 1. This particular combination (12 images in the dataset) is modeled with class 2 in the background

and class 1 in the foreground. This is a consequence of using 14 classes, rather than the required 12 classes.

Without class 2, which is a repeated version of class 6, class6 would be correctly used as a foreground

class for these examples. The other redundancy is class 13, which ends up with a probability close to zero,

indicating it is not used by the model.

The variational technique does not properly disambiguate foreground from background classes, as is

evident from the total posterior probabilities of using a class in each layer�f and�b. For the classes that
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Figure 8: Comparison of the learned parameters of the model in Sec. 2.1 using various learning methods. For
each method, we show the mask probabilities �k, pixel means �k, and pixel variances  k for each class k as
images, where black indicates a variance of 0. For exact EM and variational EM, we also show the total posterior
probability that each class is used in modeling the foreground (�f ) and background (�b): �fk = 1T PtQ(f (t) = k),�bk = 1T PtQ(b(t) = k). These indicate when a class accounts for too much or too little data. Note that there is no
reason for the same class index for two techniques to correspond to the same object.
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Figure 9:Free energy versus number of floating point operations used during training, for ICM, exact EM, and EM
using Gibbs sampling, variational inference, and the sum-product algorithm in the E step.

exact EM always inferred as background classes, the variational technique learned masks probabilities

that allow cutting holes in various places in order to place the classes in the foreground and show the faces
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Figure 10:How good are the free energy approximations to the negative log-likelihood? In (a) we compare the
mean-field variational free energy, the point estimate free energy and the negative log-likelihood during variational
EM. In (b) we compare the same three quantities during exact EM. To further illustrate the advantage of modeling
uncertainty in the posterior, in (c), we show the point-estimate free energy and the negative log-likelihood during
ICM learning. In (d), we compare the same two quantities during Gibbs sampling EM.

behind them. The mask probabilities for these classes show outlines of faces and have values that are

between zero and one indicating that the corresponding pixels are not consistently used when the class is

picked to be in the foreground. Such mask values reduce the overall likelihood of the data and increase

the variational free energy, because the mask likelihoodP (mijf) = �mifi (1 � �fi)1�mi has the highest

value when�fi is either0 or 1, andmi has the same value. Consequently,the variational free energy is

always somewhat above the negative likelihood of the data for any given parameters (see Fig. 10a). Similar

behavior is evident in the results of other approximate learning techniques that effectively decouple the

posterior over the foreground and background classes, suchas loopy belief propagation (last column of

Fig. 8), and the structured variational technique. Note that small differences in free energy may or may

not indicate a difference in the visual quality of the solution.
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One concern that is sometimes raised about minimizing the free energy, is that the approximateQ-

distribution used for the hidden RVs may not be well-suited to the model, causing the free energy to be

a poor bound on the negative log-likelihood. However, as pointed out in [18], since the free energy isF (Q;P ) = D(Q;P ) � lnP (v) (see (6)), if two models fit the data equally well (lnP (v) is the same),

minimizing the free energy will select the model that makes the approximateQ-distribution more exact

(selectP to minimizeD(Q;P )).
We see this effect experimentally in Fig. 10. In Fig. 10a we show the free energy for the variational

mean-field method during 30 iterations of learning. In this case, a single iteration corresponds to the

shortest sequence of steps that update all variational parameters (Q(b); Q(f); Q(mi) for each training

case) and all model parameters. In the same plot, we show the true negative log-likelihood after each

iteration. We also show the point estimate of the free energy, which is evaluated at the modes of the

variational posterior. Since the parameters are updated using the variational technique, the variational

bound is the only one of the curves that theoretically has to be monotonic. While the negative of the

log-likelihood is consistently better than the other estimates, the bounddoesappear to be relatively tight

most of the time. Note that early on in learning, the point estimate gives a poor bound, but after learning

is essentially finished, the point estimate gives a good bound. The fact that ICM performs poorly for

learning, but performs well for inference after learning using a better technique, indicates the importance

of accounting for uncertaintyearly in the learning process.

As shown in Fig. 10b, if the same energies are plotted for the parameters after each iteration ofexact

EM, the curves converge by the 5th iteration. Here, the mean-field variational free energy is computed

using the factorized posteriorQ(f)Q(b)QiQ(mi) fitted by minimizing the KL distance to the exact pos-

terior P (f; b;mjz), while the point estimate is computed by further discardingeverything but the peaks

in the variational posterior. When the posterior is still broad early in the learning process, the variational

posterior leads to a tighter bound on the negative log-likelihood than the point estimate. However, the

point estimate catches up quickly as EM converges and the true posterior itself becomes peaked.

If the parameters are updated using ICM (which uses point estimates), as shown in Fig. 10c, poor local

minima are found and both the free energy and the true negative log-likelihood are significantly worse

than the same quantities found using exact EM and variational EM. Also, even after convergence, the

point estimate free energy is not a tight bound on the negative log-likelihood.

These plots are meant to illustrate that while fairly severeapproximations of the posterior can provide a

tight bound near the local optimum of the log-likelihood, itis the behavior of the learning algorithm in the

early iterations that determines how close an approximate technique will get to a local optimum of the the
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true log-likelihood. In the early iterations, to give the model a chance to get to a good local optimum, the

model parameters are typically initialized to model broad distributions, allowing the learning techniques

to explore more broadly the space of possibilities through relatively flat posteriors (e.g., in our case we

initialize the variances to be equal to one, corresponding to a standard deviation of 100% of the dynamic

range of the image). If the approximate posterior makes greedy decisions early in the learning process,

it is often difficult to correct the errors in later iterations. ICM, while very fast, is the most greedy of all

the techniques. Even if variances are initialized to large values, ICM makes poor, greedy decisions for the

configuration of the hidden RVs early on in learning, and doesnot recover from these mistakes.

Importantly, even computationally simple ways of accounting for uncertainty can improve perfor-

mance significantly, in comparison with ICM. In Fig. 10d, we show the point estimate free energy and

the negative log-likelihood when the ICM technique is modified to take some uncertainty into account, by

performing a Gibbs sampling step for each RV, instead of picking the most probable value5. This method

does not increase the computational cost per iteration compared to ICM, but it obtains much better values

of both energies. Sampling sometimes makes the free energy worse during the learning, but allows the

algorithm to account for uncertainty early on, when the trueposterior distributions for RVs are broad.

While this single-step Gibbs sampling technique obtains better energies than ICM, it does not achieve the

lower energies obtained by exact EM and variational EM.

The effect of approximate probabilistic inference on the visual quality of the parameters is illustrated

in Fig. 11, where we show how the model parameters change during several iterations of EM where the

E step is performed using the sum-product algorithm. On the far right of the figure, we illustrate the

inference over hidden RVs (foreground classf , background classb and the maskm) for 2 training cases.

After the first iteration, while finding good guesses for the classes that took part in the formation process,

the foreground and background are incorrectly inverted in the posterior for the first training case, and this

situation persists even after convergence. Interestingly, by applying an additional 2 iterations of exact EM

after 30 iterations of sum-product EM, the model leaves the local minimum. This is evident not only in

the first training case, but also in the rest of the training data, as evidenced by the erasure of holes in the

estimated mask probabilities for the background classes. The same improvement can be observed for the

variational technique. In fact, adding a small number of exact EM iterations to improve the results of

variational learning can be seen as part of the same framework of optimizing the variational free energy,

except that not only the parameters of the variational posterior, but also its form can be varied to increase

5Note that because this technique does not use an ensemble of samples, it is not guaranteed to minimize free energy at each
step.
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Figure 11:An illustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration,
we show: (a) model parameters, including mask priors, mean and variance parameters for each class, and (b)
inferred distribution over the mask and the most likely foreground and background class for two of the 300 training
cases. Although the algorithm (Sec. 5.14) converges quickly, it cannot escape a local minimum caused by an
overly-greedy decision made in the very first iteration, in which the foreground object is placed into the background
layer for the first illustrated training case. In this local minimum, some “background classes” (e.g., k = 12) are used
as foregrounds (see the mask). An additional 2 iterations of exact EM (Sec. 5.9), which uses the exact posteriorQ(f; b)Q(mjf; b), allows the inference process to flip the foreground and background where needed, and escape
the local minimum (see the mask of class k = 12 after EM).

the bound at each step.

When the nature of the local minima to which a learning technique is susceptible is well understood,

it is often possible to change either the model or the form of the approximation to the posterior, to avoid

these minima without too much extra computation. In the occlusion model, the problem is the background-

foreground inversion, which can be avoided by simply testing the inversion hypothesis and switching the
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inferred background and foreground classes to check if thislowers the free energy, rather than exploring all

possible combinations of classes in the exact posterior. Anelegant way of doing this within the variational

framework is to add an additional “switch” RV to the model, which in the generative process can switch

the two classes. Then, the mean field posterior would have a component that models the uncertainty about

foreground-background inversion. While this would renderthe variational learning two times slower, it

would still be much faster than the exact EM.

8 Future Directions
In our view, the most interesting and potentially high-impact areas of current research include introduc-

ing effective representations and models of data; inventing new inference and learning algorithms, that

can efficiently infer combinatorial explanations of data; developing real-time, or near-real-time, modu-

lar software systems that enable researchers and developers to evaluate the effectiveness of combinations

of inference and learning algorithms for solving real-world tasks; advancing techniques for combining

information from multiple sources,e.g., camera images, spectral features, microphones, text, tactile infor-

mation,etc.; developing inference algorithms for active tasks, that effectively account for uncertainties in

the sensory inputs and the model of the environment, when making decisions about investigating the envi-

ronment. In our view, a core requirement in all of these directions of research is that uncertainty should be

properly accounted for, both in the representations of problems and in adapting to new data. Large-scale,

hierarchical probability models and efficient inference and learning algorithms will play a large role in the

successful implementation of these systems.
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