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Abstract

Research into methods for reasoning under uncertainty is currently one of the most excit-
ing areas of artificial intelligence, largely because it has recently become possible to record,
store and process large amounts of data. While impressive achievements have been made
in pattern classification problems such as handwritten character recognition, face detection,
speaker identification and prediction of gene function, it is even more exciting that researchers
are on the verge of introducing systems that can perform large-scale combinatorial analyzes
of data, decomposing the data into interacting components. For example, computational
methods for automatic scene analysis are now emerging in the computer vision community.
These methods decompose an input image into its constituent objects, lighting conditions,
motion patterns, and so on. Two of the main challenges are finding effective representations
and models in specific applications, and finding efficient algorithms for inference and learning
in these models. In this paper, we advocate the use of graph-based probability models and
their associated inference and learning algorithms. We review exact techniques and various
approximate, computationally efficient techniques, including iterative conditional modes, the
expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational
techniques, structured variational techniques and the sum-product algorithm and “loopy” be-
lief propagation. We describe how each technique can be applied in a vision model of multi-
ple, occluding objects, and contrast the behaviors and performances of the techniques using

a unifying cost function, free energy.
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1 Introduction

Using the eyeball of an ox, René Descartes demonstratdteid7th century that the backside of the
eyeball contains a 2-dimensional projection of the 3-dish@mal scene. Isolated during the plague, Isaac
Newton slipped a bodkin between his eyeball and socket,ptie backside of his eyeball at different
locations, and saw small white and colored rings of varymtgnsity. These discoveries helped to for-
malize the problem of vision: What computational mechaniam interpret a 3-dimensional scene using
2-dimensional light intensity images as input? Histotigalision has played a key role in the development
of models and computational mechanisms for sensory primgeasd artificial intelligence.

By the mid-19th century, there were two main theories of ratvsion: the “nativist theory”, where
vision is a consequence of the lower nervous system and ties @b the eye, and the “empiricist theory”,
where vision is a consequence of learned models createddhgsical and visual experiences. Hermann
von Helmholtz advocated the empiricist theory, and in patér that vision involves psychological in-
ferences in the higher nervous system, based on learnedswgaieed from experience. He conjectured
that the brain learns a generative model of how scene compoaee put together to explain the visual
input and that vision is inference in these models [7]. A cataponal approach to probabilistic inference
was pioneered by Thomas Bayes and Pierre-Simon Laplace ib8th century, but it was not until the
20th century that these approaches could be used to prazgesamounts of data using computers. The
availability of computer power motivated researchers tilalarger problems and develop more efficient
algorithms. In the past 15 years, we have seen a flurry of seteexciting, and productive research in
complex, large-scale probability models and algorithnigpfobabilistic inference and learning.

This paper has two purposes: First, to advocate the use phdrased probability models for ana-
lyzing sensory input; and second, to describe and compartatést inference and learning algorithms.
Throughout the review paper, we use an illustrative examptemodel that learns to describe pictures of
scenes as a composition of images of foreground and bacdkgjahjects, selected from a learned library.
We describe the latest advances in inference and learngugitlms, using the above model as a case
study, and compare the behaviors and performances of timusanethods. This material is based on
tutorials we have run at several conferences, inclu@W®R00QICASSPO1CVPR03andISITO4

2 Graphical Probability Models and Reasoning Under Uncertanty

In practice, our inference algorithms must cope with uraeties in the data, uncertainties about which
features are most useful for processing the data, unceein the relationships between variables, and

uncertainties in the value of the action that is taken as aemurence of inference. Probability theory offers



a mathematically consistent way to formulate inferenceriigms when reasoning under uncertainty.

There are two types of probability model.ddscriminative modepredicts the distribution of the out-
put given the input:P(output|input). Examples include linear regression, where the output iseat
function of the input, plus Gaussian noise; and SVMs wheeelhary class variable is Bernoulli dis-
tributed with a probability given by the distance from thpumto the support vectors. generative model
accounts for all of the data?(data), or P(input, output). An example is the factor analyzer, where the
combined input/output vector is a linear function of a sh@aussian hidden vector, plus independent
Gaussian noise. Generative models can be used for disatignirby computing? (output|input) using
marginalization and Bayes rule. In the case of factor amglitgurns out that the output is a linear function
of alow-dimensional representatiaf the input, plus Gaussian noise.

Ng and Jordan [34] show that within the context of logistigression, for a given problem complexity
,generative approaches work better than discriminatipecgrhes when the training data is limited. Dis-
criminative approaches work best when the data is extdggiveprocessed, so that the amount of data
relative to the complexity of the task is increased. Sucprmeessing involves analyzing the unprocessed
inputs that will be encountered situ. This task is performed by a user who may or may not use automat
data analysis tools, and involves building a model of theiinB(input), that is either conceptual or oper-
ational. An operational model can be used to perform preggsing automatically. For example, PCA can
be used to reduce the dimensionality of the input data, iltipe that the low-dimensional representation
will work better for discrimination. Once an operational debof the input is available, the combination
of the preprocessing modét(input) and the discriminative modeP(output|input) corresponds to a
particular decomposition of a generative mode@loutput, input) = P(output|input)P(input).

Generative models provide a more general way to combinerd@qcessing task and the discrimi-
native task. By jointly modeling the input and output, a gatige model can discover useful, compact
representations and use these to better model the datax&wopke, factor analysis jointly finds a low-
dimensional representation that models the irgnatis good at predicting the output. In contrast, prepro-
cessing the input using PCA, ignores the output. Also, bpaeting for all of the data, a generative model
can help solve one problem.§, face detection) by solving another, related probleng,(identifying a
foreground obstruction that can explain why only part of@efe visible).

Formally, a generative model is a probability model for whtbe observed data is an event in the
sample space. So, sampling from the model generates a sahpguesible observed data. If the training
data has high probability, the model is “a good fit”. Howeube goal is not to find the model that is
the best fit, but to find a model that fits the data veitl is consistent with prior knowledge. Graphical
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Figure 1: Some of the 300 images used to train the model in Sec. 2.1. Each image was created by randomly
selecting 1 of 7 backgrounds and 1 of 5 foreground objects from the Yale face database, combining them into a
2-layer image, and adding normal noise with std. dev. of 2% of the dynamic range. Each foreground object always
appears in the same location in the image, but different foreground objects appear in different places so that each
pixel in the background is seen in several training images.

models provide a way to specify prior knowledge, and in pafér structural prior knowledge.qg, in a

video sequence, the future is independent of the past, tfieecurrent state.

2.1 Example: A Model of Foregrounds, Backgrounds and Transprency
The use of probability models in vision applications is, oficse, extensive. Here, we introduce a model
that is simple enough to study in detail here, but also ctyr@ccounts for an important effect in vision:
occlusion. Fig. 1 illustrates the training data. The godhefmodel is to separate the 5 foreground objects
and the 7 background scenes in these images. This is an emp@roblem in vision that has broad
applicability. For example, by identifying which pixelslbag to the background, it is possible to improve
the performance of a foreground object classifier, sinceremmade by noise in the background will be
avoided.

The occlusion model explains an input image, with pixelmsigesz, . .., zx, as a composition of a

foreground image and a background image (c.f. [1]), and eatihese images is selected from a library



of .J possible images (a mixture model). Although separaterigsacan be used for the foreground and
background, for notational simplicity, we assume they stmcommon image library. The generative
process is illustrated in Fig. 2a. To begin with, a foregebunage is randomly selected from the library
by choosing the class indgxfrom the distributionP(f). Then, depending on the class of the foreground,
a binary maskn = (my,...,mg), m; € {0,1} is randomly chosenmn; = 1 indicates that pixet; is a
foreground pixel, whereas; = 0 indicates that pixet; is a background pixel. The distribution over mask
RVs depends on the foreground class, since the mask musbtittithe foreground object. However,
given the foreground class, the mask RVs are chosen indepydP (m|f) = [[X, P(im,|f). Next, the
class of the background,c {1,..., J}, is randomly chosen fror®(b). Finally, the intensity of the pixels
in the image are selected independently, given the maskldlss of the foreground, and the class of the
background:P(z|m, f,b) = Hfil P(z;\m;, f,b). The joint distribution is given by the following product

of distributions:

Pmmmm—HWWXﬁmmnﬂﬁwaJ@) o

In this equationP(z;|m;, f, b) can be further factorized by noticing thatif;, = 0 the class is given by the
RV b, and ifm; = 1 the class is given by the R¥. So, we can writé®(z;|m;, f,b) = P(z;| f)™ P(z;|b)' ™,
whereP(z;|f) and P(z;|b) are the distributions over thigh pixel intensity given by the foreground and
background respectively. These distributions accounthierdependence of the pixel intensity on the

mixture index, as well as independent observation noise.jdint distribution can thus be written:

K K K

P(z.m, £,6) = PGP ([T Ponl ) ([T PCi1™ ) (T PCalo) ). 2)
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In comparison with (1), this factorization reduces the nendf arguments in some of the factors.

For representational and computational efficiency, itismtiseful to specify a model using parametric
distributions. Given a foreground or background classxnidewe assume; is equal toyu,; plus zero-
mean Gaussian noise with variangg. This noise accounts for distortions that are not expjicrtbdeled,
such as sensor noise and fluctuations in illumination. If asS&n model of these noise sources is too
inaccurate, extra hidden RVs can be added to better modebike, as described in Sec. 3. Note that in
the above parameterization, the foreground and backgrivnades are selected from the same libtary

Denote the probability of clagsby 7, and let the probability that,;, = 1 given that the foreground class

Lf it is desirable that the foreground and background imagese from separate libraries, the class Rvandb can be
constrainede.g, so thatf € {1,...,n},b€ {n+1,...,n+ 1}, in which case the first images in the library are foreground
images and the nextimages are background images.



is f, beay;. Since the probability that,; = 0is 1 — ay,;, we haveP (m,[f) = o7 (1 — ayi)' ™. Using

these parametric forms, the joint distribution is

K
Pz,m, £,6) = g (T (1= @) =™ N (a5 g, )™ N (s iy 90) ™). 3)

=1
whereN (z; i, ¢) is the normal density function onwith meany, and variance). An equivalent form is
P(z.m, f,b) = mmp ([T o (1 — ) "™ N (25 mapgs + (1 — ma) i, mabpi + (1 — mi)iby,)), where
here the mask RVs “screen” the mean and variance of the Gaugssi

In the remainder of this review paper, the above occlusiodehis used as an example. One of the

appeals of generative models is in their modularity and #se avith which they can be extended to cope
with more complex data. In Sec. 3, we describe extensiorgeatclusion model that enable it to account

for motion, object deformations and object-specific changellumination.

2.2 Graphical Models

Graphical models describe the topology (in the sense ofrikpecies) of the components of a complex
probability model, clarify assumptions about the représtgonm, and lead to algorithms that make use
of the topology to achieve exponential speed-ups. Whentaaisg a complex probability model, we
are faced with the following challenges: Ensuring that thadet reflects our prior knowledge; Deriving
efficient algorithms for inference and learning; Transigtihe model to a different form; Communicating
the model to other researchers and users. Graphical modgsisoone these challenges in a wide variety
of situations. After commenting on each of these issues, nedlyoreview 3 kinds of graphical model:
Bayesian networks (BNs), Markov random fields (MRFs), amtiodiagraphs (FGs). For a more extensive
treatment, see [4,9, 25, 26, 35].

Prior knowledge usually includes strong beliefs about thstence of hidden random variables (RVs)
and the relationships between RVs in the system. This nofiémodularity” is a central aspect of graph-
ical models. In a graphical model, the existence of a retatip is depicted by a path that connects the
two RVs. Probabilistic inference in a probability model camprinciple, be carried out using Bayes rule.
However, for the complex probability models that accusati#scribe a visual scene, direct application
of Bayes rule leads to an intractable number of computatidrgraphical models identifies the modules
in the system and can be used to derive algorithms that makefuthis modular structure to achieve
exponential speedups, compared to direct application ge8aule. In a complex probability model,

computational inference and interpretation usually béfefim judiciously groupings of RVs and these



clusters should take into account dependencies between@RWer types of useful transformation include
splitting RVs, eliminating (integrating over) RVs, and ditioning on RVs. By examining the graph, we
can often easily identify transformations steps that veild to simpler models or models that are better
suited to our goals and in particular our choice of inferealg@rithm. For example, we may be able to
transform a graphical model that contains cycles to a tne@ tlaus use an exact, but efficient, inference
algorithm. By examining a picture of the graph, a researoh@ser can quickly identify the dependency
relationships between RVs in the system and understand ieunfluence of an RV flows through the
system to change the distributions over other RVs. Wherleak bliagrams enable us to efficiently com-
municate how computations and signals flow through a sysgemphical models enable us to efficiently

communicate the dependencies between components in aanggiatem.

2.3 Bayesian Network (BN) for the Occlusion Model

A Bayesian networkBN) [4,26,35] for RVsr,, ...,z IS a directed acyclic graph (no directed cycles) on
the set of RVs, along with one conditional probability fuoatfor each RV given its parent®)(x;|z 4,),
where A; is the set of indices of;’s parents. The joint distribution is given by the productatifthe
conditional probability functionsP (z) = [[X, P(x;|z4,).

Fig. 2b shows the BN for the occlusion model in (1), with= 3 pixels. By grouping the mask RVs
together and the pixels together, we obtain the BN showngnZe. Here; is areal vector; = (z1, 2, 23)
andm is a binary vector;n = (my, mo, m3). Although this graph is simpler than the graph in Fig. 2b, it
is also less explicit about conditional independenciesrayxels and mask RVs.

The graph indicates conditional independencies, as destin [35]. In a BN, observing a child
induces a dependence between its parents. Here, the BMieslithatf andb are dependent givenand
m, even though they are not (observimgdecouples andb). This demonstrates that BNs are not good at
indicating conditional independence. However, the BNaatks thayf andb are marginally independent,

demonstrating that BNs are good at indicating marginalpedelence.

2.4 Markov Random Field (MRF) for the Occlusion Model

A Markov Random FieldMRF) [4, 26, 35] for RVszy, ...,z is an undirected graph on the set of RVs,
along with one potential function for each maximal cliqyg(zc, ), whereCy, is the set of indices of the
RVs in thekth maximal clique. The joint distribution is given by the grect of all the potential functions,
divided by a normalizing constang, called thepartition function P(z) = % H,f:] gr(zc, ), where

Z =) an (TI, 9k (z¢,))- A clique is a fully connected subgraph, and a maximal cligue clique
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Figure 2: (a) A generative process that explains an image as a composition of the image of a foreground object
with the image of the background, using a transparency map, or mask. The foreground and background are each
selected stochastically from a library, and the generation of the mask depends on the foreground that was selected.
We refer to this model as the occlusion model. (b) A BN for an occlusion model with 3 pixels, where f is the index of
the foreground image, b is the index of the background image, m; is a binary mask RV that specifies whether pixel
z; is from the foreground image (m; = 1) or the background image (m; = 0). (c) A simpler, but less explicit, BN is
obtained by grouping the mask RVs together and the pixels together. (d) An MRF for the occlusion model. (e) An
MRF corresponding to the BN in (c). (f) An FG for the occlusion model. (g) A directed FG expressing all properties
of the BN in (c) and the MRF in (e).

that cannot be made larger while still being a clique. Fovityewe use the term “clique” to refer to a
maximal cliqueg.g, the potentials on maximal cliques are usually catibgue potentials

The above factorization of the joint distribution is sinmita the factorization for the BN, where each
conditional probability function can be viewed as a cliqudential. However, there is an important
difference: In a BN, the conditional probability functioaee individually normalized w.r.t. the child, so
the product of conditional probabilities is automaticaityrmalized, and = 1.

An MRF for the occlusion model is shown in Fig. 2d and the \@rsvhere the mask RVs are grouped
and the pixels are grouped is shown in Fig. 2e. Note that thé& MiRludes an edge fromn to b, in-
dicating they are dependent, even though they are not. Em®dstrates that MRFs are not good at
indicating marginal independence. However, the MRF iné€# andb are independent givenandm,

demonstrating that MRFs are good at indicating conditiamd¢pendence.
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2.5 Factor Graph (FG) for the Occlusion Model

Factor graphs (FGs) [9, 25] subsume BNs and MRFs. Any BN or MRf be easily converted to an
FG, without loss of information. Further, there exists medbat have independence relationships that
cannot be expressed in a BN or an MRF, but that can be expresardFG. Also, belief propagation takes
on a simple form in FGs, so that inference in both BNs and MRifshie simplified to a single, unified
inference algorithm.

A factor graph(FG) for RVszy, . .., xy andlocal functionsy; (x¢, ), - - ., gk (z¢, ), i @ bipartite graph
on the set of RVs and a set of nodes corresponding to the @unsstiwhere each function node is
connected to the RVs in its argument, . The joint distribution is given by the product of all the fitions:
P(z) = £ 15, 9r(zc,). Infact, Z = 1 if the FG is a directed graph, as described below. Otherwise
Z ensures the distribution is normalized. Note that the Idwattions may be positive potentials, as in
MREFs, or conditional probability functions, as in BNs.

Fig. 2f shows an FG for the occlusion model. It is more expéabiout the factorization of the distribu-
tion, than BNs and MRFs. As with BNs and MRFs, we can groupatéess to obtain a simpler FG. Also,
we can indicate conditional distributions in an FG usingdied edges, in which case = 1. Fig. 29
shows such directedFG for the model with variables grouped together. This FQesgesll properties
of the BN and MRF. As described in [9], all independencies$ tiaa be expressed in BNs and MRFs can
be expressed in FGs. Here, the directed FG indicatesfthatls are independent (expressed by the BN
but not the MRF)andit indicates thatf andb are independent givenandm (expressed by the MRF but
not the BN). Another advantage of FGs is that because thdjcikpidentify functions, they provide a

useful graph for message-passing algorithms, such as psdigagation.

2.6 Converting Between FGs, BNs and MRFs
BNs and MRFs represent different independence propehigd;Gs can represent all the properties that
BNs and MRFs can represent.

A BN can be converted to an FG by “pinning” the edges arrivingeech variable together and creating
a function node associated with the conditional distrinutiDirected edges are used to indicate the parent-
child relationship, as shown in Fig. 2h. A directed FG can tweverted to to a BN by “unpinning” each
function node. An MRF can be converted to an FG by creatingametion node for each maximal clique,
connecting the function node to the variables in the maxuthalie, and setting the function to the clique
potential. An FG can be converted to an MRF by creating a malxatque for each function node, and

setting the clique potential to the function.



In fact, if a BN is converted to a directed FG and back agai@sdmeBN is obtained. Similarly, if
an MRF is converted to an FG and back again,dameMRF is obtained. Consequently, the rules for
determining conditional independence in BNs and MRFs magléssly to FGg,e., FGs can express all
conditional independencies that BNs and MRFs can expréescadnverse is not true: There are FGs that
express independencies that cannot be expressed in a BNMRBre.g, the FG in Fig. 2g. It is also the
case that multiple FGs may be converted to the same BN or MREoAsequence of the fact that FGs are
more explicit about factorization.

Another way to interconvert between representations igpaied the graph to include extra edges and

extra variables (c.f. [38]).

3 Building Complex Models Using Modularity

Graphical models provide a way to link simpler models togetin a principled fashion that respects
the rules of probability theory. Fig. 3 shows how the ocausimodel can be used as a module in a
larger model that accounts for changing object positioefyrinations, object occlusion, and changes in
illumination. The figure shows a BN, where the appearancenaask vector RVs are shown as images,
and the brightness, deformation and position RVs are shaetorally. After inference and learning, the
video frame is automatically decomposed into the parts stiowhe BN. In previous papers, we describe
efficient techniques for inference and learning in modeds$ #ltcount for changes in object locations [11];
changes in appearances of moving objects using a subspatad [h0]; common motion patterns [22];
spatial deformations in object appearance [23]; layeredetsof occluding objects [20]; subspace models
of occluding objects [12]; and the “epitome” of componemsbject appearance and shape [21]. An
inference and learning algorithm in a combined model, Iike éne shown above, can be obtained by

linking together the modules and associated algorithms.

4 Parameterized Models and the Exponential Family

So far, we have studied graphical models as representatiatisictured probability models for computer
vision. We now turn to the general problem of how to learn ¢he®dels from training data. For the pur-
pose of learning, it is often convenient to express the danwil distributions or potentials in a graphical
model as parameterized functions. Choosing the forms qidn@meterized functions usually restricts the
model class, but can make computations easier. For exaB8gie2.1 shows how we can parameterize the

conditional probability functions in the occlusion model.
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Figure 3:Simple probability models can be combined in a principled way to build a more complex model that can
be learned from training data. Here, after the model parameters (some shown in the top row of pictures) are learned
from the input video, the model explains a particular video frame as a composition of 4 “card-board cutouts”, each of
which is decomposed into appearance, transparency (mask), position, brightness and deformation (which accounts
for the gait of the walking person).

4.1 Parameters as RVs

Usually, the model parameters are not known exactly, but ae Iprior knowledge and experimental
results that provide evidence for plausible values of theehparameters. Interpreting the parameters as
RVs, we can include them in the conditional distributiongotentials that specify the graphical model,
and encode our prior knowledge in the form of a distributivardhe parameters.

Including the parameters as RVs in the occlusion model, waimkhe following conditional distribu-
tions: P(b|mw) = my, P(f|m) = mp, P(my| f, 04, - - -, i) = a%"(l—aﬁ)“mi, Pl f, iy - tgis ris - - 00s)
= N (25 pugis ri)y PP(2ilb, pis oy fhgiy iy - o 05s) = N (235 i, thpi). We obtain a simpler model (but
one that is less specific about independencies) by clugt¢h@ mask RVs, the pixels, the mask pa-

rameters, and the pixel means and variances. The resultimgjtonal distributions aré’(b|r) = m,,

P(f|71') = Ty, P(m|f7 Oé) = Hz[il a;‘r:l(l - af’i)lim“ P(Z‘ma f; b: N;waﬂaw) = HfilN(Z“/Lf“wfl)m’
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Figure 4:(a) The parameter sets 7, a, u and ¢ can be included in the BN as RVs. (b) For a training set with 7 i.i.d.
cases, these parameters are shared across all training cases. (c) If the training cases are time-series data (e.g. a
video sequence), we may create one parameter set for each time instance, but require the parameters to change
slowly over time. (d) Generally, undirected graphical models must include a normalization function 1/2(#), which
makes inference of the parameters more difficult. Viewing the occlusion model as a member of the exponential
family, we can draw an undirected FG, which includes the function, 1/Z(#). (e) When the parameters specify
conditional distributions, Z(#) factorizes into local terms, leading to a representation that is equivalent to the one in

(a).
N (zi5 iy hpi) ™

Since we are interpreting the parameters as RVs, we musfyspelistribution for them. Generally, the
distribution over parameters can be quite complex, but Eiyinpy assumptions can be made for the sake
of computational expediency, as describe in later sectiéias now, we assume th&t(r, a, p, ¥, p) =
P(m)P(a)P(u)P(v). The BN for this parameterized model is shown in Fig. 4a, &edaint distribution
over RVs and parametersiXz, m, f, b, 7, «, pi, 1) = P(b|m)P(f|m)P(m|f, ) P(z|m, f,b, p, ) P(m)P()
P(u)P(4).
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4.2 Introducing Training Data

Training data can be used to infer plausible configuratidiseomodel parameters. We imagine that there
is a setting of the parameters that produced the trainiray ¢teawever, since we only see the training data,
there will be many settings of the parameters that are godadhasa to the training data, so the best we can
do is compute a distribution over the parameters.

Denote the hidden RVs biyand the visible RVs by. The hidden RVs can be divided into the param-
eters, denoted bg, and one set of hidden RVs", for each of the training cases= 1,...,7. So,h =
(0, h, ..., n™)). Similarly, there is one set of visible RVs for each traingage:v = (v, ..., v™).
Assuming the training cases are independent and identibaivn (i.i.d.), the distribution over all visible
RVs and hidden RVs (including parameters) is

T
P(h,v) =PO) [ P(h",v"]6).
t=1
P(f) is the parameter prior anfl[,_, P(h"), v |9) is the likelihood. In the occlusion model described
above, we havé = (u, ¢, 7, ), K = (fO b0 m®), andv® = 2, The BN forT i.i.d. training cases
is shown in Fig. 4b.

When the training cases consist of time-series data (suehvakeo sequence), the parameters often
can be thought of as RVs that change slowly over time. Fig.hbavs the above model, where there
is a different set of parameters for each training case, Ihargvwe assume the parameters are coupled
across time. Using) to denote the training case at time-= 1, ..., T, the following distributions couple
the parameters across time(z®|7z(¢=1), P(a® o=, P(u®|put=1), P(1)®]~1). The uncertainty
in these distributions specifies how quickly the parametarschange over time. Such a model can be
viewed as the basis for on-line learning algorithms. Forpéigity, in this paper, we assume the model

parameters are fixed for the entire training set.

4.3 The Exponential Family

Members of thexponential family2] have the following parameterizatiof®(z|0) = (1/Z(6)) exp(>_, 6:€%(z)),
wheref) = (6,,0,,...) is a parameter vector and;(z) is theith sufficient statistic The sufficient
statistics ofz contain all information that is needed to determine the iered «. Z(0) is the parti-

tion function, which normalize®(z|6): Z(0) = > exp(D>_, #:Q%(x)). For members of the exponen-

tial family, there is a simple relationship between the riistion for one training case and the distri-

bution for an entire training set. LefY be the hidderand visible variables for theth training case.
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Then P(z]0) = exp(Y, 0:¢%(2))/Z(0) and the likelihood for the entire training set #z|¢) =
[1, P(z?]0) = exp(X>, 6:(3 1, Qu(2®)))/Z(6)T. The sufficient statistics for the entire training set are
given by summing the sufficient statistics over trainingesas

To put the occlusion model in exponential family form, ndtattthe sufficient statistics for a normal
density orz; arez; andz?. The reader can confirm that the joint distribution can bétemi P (z, m, f,b) =
(1/Z(0) exp (7 (nm){[b = 51} + 35 (nmp){[f = jI} + X5, 27 (nag){m; = 1[f =
Y+ T i (1 — ag)flmi = O[f = 41} — X, X (120042 me = 1If = jl} +
Soiet o s/ i) {zalma = 1 = 41} =20050 2o (/2 {22 [ma = 0116 = 143005 5 (/)
{zi[m; = 0][b = j]}), where curly braces identify the sufficient statistics, agdare braces indicate Iver-
son’s notationjexpr| = 1if expr is true, andexpr| = 0 if expr is false.

Modular structure in members of the exponential family esisvhen each sufficient statistit;(x)
depends on a subset of R¥g, with indicesC;. Then,P(z) = (1/Z(0)) [1, exp(6:€%(z¢,)), so we can
expressP(z) using a graphical modek.g. a FG. In the FG, there can be one function node for each
sufficient statistic€2; and one variable node for each paraméteibut a more succinct FG is obtained
by grouping related sufficient statistics together and gy their corresponding parameters together.
Fig. 4d shows a FG for the exponential family representatfdhe occlusion model, where we have made
groups ofr’s, a’s, p's andy’s. Note that the FG must include the normalizing functigiZ ().

Generally, computingZ () is intractable since we must sum or integrate averHowever, if the
exponential family parameterization corresponds to a BN, dufficient statistics can be grouped so that
each group defines a conditional distribution in the BN. lis tase,Z(#) simplifies to a product of
local partition functions, where each local partition ftion ensures that the corresponding conditional
distribution is normalized. In the above model, the noraalon constants associated with the conditional
distributions forf, m, b andz are uncoupled, so we can wrigf) = Z(r) Z(«) Z(n) Z(¢), where,e.g,
Z(1p) = Il,x v/27¢;r. Fig. 4e shows the FG in this case, which has the same steuatuthe BN in
Fig. 4a.

4.4 Uniform and Conjugate Parameter Priors

Parameter priors encode the cost of specific configuratibtitegarameters. For simplicity, thumiform
prior is often used, wher&(6) = const. Then,P(h,v) o [[,_, P(h®,v"|9), and the dependence of the
parameters on the data is determined solely by the liketihbofact, a uniform prior is not uniform under
a different parameterization. Also, the uniform densitytfee real numbers does not exist, so the uniform

prior is improper. However, these facts are often ignored for computatiorpédiency. Importantly,
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the use of a uniform prior is justified when the amount of tirggndata is large relative to the maximum
model complexity, since then the prior will have little effeon the model. One exception is zeros in the
prior, which can never be overcome by the likelihood, buhshard constraints can be incorporated in the
learning algorithme.g, using Lagrange multipliers.

Assuming a uniform prior for all parameters in the occlusimadel, the joint distribution over RVs

and parameters is

P(M’w?”’ a? f(])’b(])7m(])7 et '7f(T)’b(T>7m(T)’Z(]>’ . "Z(T))

()

T K
() —m® t ( t —m®
x H(”ﬂtmbm (H iy (1= apn;) ™ NG g W)™ N (2 o, ;) ™™ )) 4)
t=1 =1

Note that when using uniform priors, parameter constrasush asZ;]:] m; = 1, must be taken into
account during inference and learning.

The conjugate prioroffers the same computational advantage as the uniform, b allows speci-
fication of stronger prior knowledge and is also a properrpfidne idea is to choose a prior that has the
same form as the likelihood, so the prior can be thought ofhadikelihood of fake, user-specified data.
The joint distribution over parameters and RVs is given lgyltkelihood of both the real datndthe fake
data. For members of the exponential family, the fake trgjniata takes the form of extra, user-specified
terms added to each sufficient statiséia, extra counts added for Bernoulli RVs.

In the occlusion model, imagine that before seeing theitrgidata, we observe; fake examples
from image clasg. The likelihood of the fake data for parameteris 7;%, so the conjugate prior for
T, .. P(my, ... my) oc [[, N if 37 m; = 1 and0 otherwise. This is the Dirichlet distribution
and P(m,...,m,) is the Dirichlet prior. The conjugate prior for the mean of auSsian distribution is
a Gaussian distribution, because the RV and its mean appeanetrically in the Gaussian pdf. The
conjugate prior for thénverse varianced of a Gaussian distribution is a Gamma distribution. Imagine
fake data consisting of examples where the squared difference between the RV amdeigs isd>.
The likelihood for this fake data is proportional t6'/2e °#/2)} = gM2e-(\°/2)6  This is a Gamma
distribution in 8 with mean1/6* + 2/\é% and variance(1/6% + 2/1§%)/\§?. Setting the prior fors to
be proportional to this likelihood, we see that the conjagaior for the inverse variance is the Gamma

distribution.

14



5 Algorithms for Inference and Learning

Once a generative model describing the image renderingepsocas been specified, vision consists of
probabilistic inference. In Fig. 4b, for training image¥ , . . ., ("), vision consists of inferring the set of
mean images and variance mapsy), the mixing proportions, the set of binary mask probabilitias,
and, for every training case, the class of the foregroundyang, the class of the background image,
and the binary mask used to combine these images,

Exact inference is often intractable, so we turn to apprexénalgorithms that search for distributions
that are close to the correct posterior distribution. Thisdcomplished by minimizing pseudo-distances on
distributions, called “free energies”. (For an alternatwew, see [36].) It is interesting that in the 1800's,
Helmholtz was one of the first researchers to propose thiirvis inference in a generative modahd
that nature seeks correct probability distributions ingpbgl systems by minimizing free energy. Although
there is no record that Helmholtz saw that the brain mighfigper vision by minimizing a free energy, we
can't help but wonder if he pondered this.

Viewing parameters as RVs, inference algorithms for RVs@ardmeters alike make use of the condi-
tional independencies in the graphical model. Itis posdibtiescribe graph-based propagation algorithms
for updating distributions over parameters [16]. It is oftmportant to treat parameters and RVs differ-
ently during inference. Whereas each RV plays a role in desiingining case, the parameters are shared
across many training cases. So, the parameters are imgactadre evidence than RVs and are often
pinned down more tightly by the data. This observation bexonelevant when we study approximate
inference techniques that obtain point estimates of tharpeters, such as the expectation maximization
algorithm [6].

We now turn to the general problem of inferring the values mbhserved (hidden) RVs, given the
values of the observed (visible) RVs. Denote the hidden Ry¥4 land the visible RVs by and par-

tition the hidden RVs into the parametérsand one set of hidden RV, for each training case =

1,...,T. So,h = (6,hM ... ™). Similarly, there is one set of visible RVs for each traincage:
v = (vV,..., v™)). Assuming the training cases are i.i.d., the distributiverall RVs is
T
P(h,v) = P(6) (H P(h®, v(t)|0)>. (5)

t=1

In the occlusion model) = (i, ¥, 7, ), R = (£ b m®), andv® = 2,

Exact inference consists of computing estimates or makeegstbns based on the posterior distribution
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over all hidden RVs (including the parameter8).|v). From Bayes rule,

P(h,v)

P(hlv) = m;

where we use the notatiof) to include summingover discrete hidden RVs. The denominator nor-
malizes the distribution, but if we need only a proportiohaiction, P(h,v) suffices, since w.r.t.h,
P(hlv) o< P(h,v). In the case of a graphical modét s, v) is equal to either the product of the condi-

tional distributions, or the product of the potential funas, divided by the partition function.

5.1 Partition Functions Complicate Learning
For undirected graphical models and general members okgienential family,P(z, §) = P(())% IL; ¢i(zc,)
andln P(z,0) = In P(0)—In Z(6)+>_, In ¢;(z¢,). When adjusting a particular parameter, the sum of log-
potentials nicely isolates the influence to those potentlat depend on the parameter, but the partition
function makes all parameters interdependent. Geneaallshown in Fig. 4dZ(¢) induces dependencies
between all parameters. Singgf) = > (][, #i(z¢,)), exactly determining the influence of a parameter
change on the partition function is often intractable. ket fdetermining this influence can also be viewed
as a problem of approximate inference, since the partitimetion is the complete marginalization of
L ¢i(z¢,). So, many of the techniques discussed in this paper can lbetasgproximately determine
the effect of the partition functiore(g, Gibbs sampling [19]). There are also learning technigbhasare
specifically aimed at undirected graphical models, suckeaative proportional fitting [4].

For directed models, the partition function factorizegilacal partition functions (c.f. Fig. 4e), so the

parameters can be directly inferred using the techniquesrithed in this paper.

5.2 Model Selection

Often, some aspects of the model structure are known, bat#ne not. In the occlusion model, we may
be confident about the structure of the BN in Fig. 4b, but nerthmber of classed, Unknown structure
can be represented as a hidden RV, so that inference of thiemiRV corresponds to Bayesian model
selection [17,27]. The BN in Fig. 4b can be modified to incladeRV, ./, whose children are all of the
andb variables and wherg limits the range of the class indices. Given a training $&t,dosterior over

J reveals how probable the different models are. When modedtsire is represented in this way, proper
priors should be specified for all model parameters, so beaptobability density of the extra parameters
needed in more complex models is properly accounted forafr@xample of Bayesian learning of infinite

mixture models, see [31].
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5.3 Numerical Issues

Many inference algorithms rely on the computation of expiwss of the formp = Hj ajf, where the
number of terms can be quite large. To avoid underflow, it mmon to work in the log-domain. Denoting
the log-domain value of a variable by ™, we can compute) «+ Z]. q;a;. If pis needed, seb <«
exp(p). Keep in mind that ifp is large and negative; may be set td). This problem can be avoided
when computing aormalizedset ofp;’s (e.g, probabilities). Supposg is the log-domain value of the
unnormalized version gf;. Since thep;’s are to be normalized, we can add a constant topthseto
raise them to a level where numerical underflow will not ocatnen taking exponentials. Computing
m < max; p; and then setting, < p;, —m, will ensure thatnax; p; = 0, so one of thexp(p;)’s will be 1.
Next, compute the log-normalizing constant— In(> . exp(p;)). The previous step ensures that the sum
in this expression will produce a strictly positive numkamidingln 0. Finally, thep,;’s are normalized,
pi < p; — ¢, and, if needed, the,’s are computedy; < exp(p;). In some cases, notably when computing
joint probabilities of RVs and observations using the sum-prodigorithm, we need to compute the
unnormalized sum = ) . p;, where eachp; is so small that it is stored in its log-domain forpm, The
above method can be used, butmust be added back in to retain the unnormalized form. Fstpute

m < max; p; and then set < m + In()_. exp(p; — m)).

5.4 Exact Inference in the Occlusion Model

We consider two cases: Exact inference when the model pseassraae known, and exact inference when
the model parameters are unknown. When the model paranstetsiown, the distribution over the
hidden RVs is given in (3)f andb each take o/ values and there ar& binary mask RVs, so the total
number of configurations of, b andm is J?2%. For moderate model sizes, even if we can compute
the posterior, we cannot store the posterior probabilitgu@ry configuration. However, from the BN in
Fig. 2b, we see that,; is independent ofn;, j # 7, given f, b andz; (the Markov blanket ofn;). Thus,

we represent the posterior distribution as follows:

K
P(m, f.bz) = P(f,b]2)P(m|f,b,z) = P(f,bl2) [ [ P(mil f.b, 2).
=1
Here, the posterior can be stored using/?) numbers for P(f,b|z) and for each configuration of
andb, O(K) numbers for the probabilitie®(m;|f,b,2), i = 1,..., K, giving a total storage require-
ment of O(KJ?) numbers. Using the fact tha®(m;|f,b,z) = P(m|f,b,2) o< Pz, m;|f,b) =

2We use0(-) to indicate the number of scalar memory elements or binalasoperations, up to a constant.
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P(m;|f,b)P(z|mi, f,b) = P(m;|f)P(z]m;, f,b) and substituting the definitions of the conditional dis-

tributions, we have

Oéfz‘N(Zz‘;HfM/in) .
apiN (233 pugis Vpi) + (1 — ap) N (235 tois Vo)

We need only stord’(m; = 1|f,b,z), sinceP(m; = 0|f,b,2z) = 1 — P(m; = 1|f,b,2)). For each

i = 1,...,K and each configuration of andb, this can be computed and normalized using a small
number of multiply-adds. The total number of multiply-adeded to computB(m,; = 1|f, b, z) for all

iis O(K J?).

P(f,b|) can be computed as follows:
P(f,b|z) Zmeb\ aZmebz
—WTfH(Z< i (1= ap)' N(zq;;ufq:,wmmW(zi;um,wbi)lf’"i))
= H (s Cai iy i) + (1 = )N (i s ) ).

For each value of andb, this can be computed usirig( /) multiply-adds. Once it is computed for all
J* combinations off andb, the result is normalized to giv( f, b/z). The total number of multiply-adds
needed to comput®( f, b|z) is O(K.J?). Combining this with the above technique, the exact pasteri
over f, b andm can be computed i® (K .J?) multiply-adds and stored i@( K .J?) numbers.

When the parameters are not known, we must infer the disimibwver them, as well as the RVs.
Assuming a uniform parameter prior, the posterior distidouover parameters and hidden RVs in the
occlusion model of Fig. 4b is proportional to the joint distition given in (4). This posterior can be
thought of as a very large mixture model. There 262X discrete configurations of the class RVs and
the mask RVs and for each configuration, there is a distobutiver the real-valued parameters. In each
mixture component, the class probabilities are Diricllistributed and the mask probabilities are Beta-
distributed. (The Beta pdf is the Dirichlet pdf when therendy one free parameter.) The pixel means and
variances are coupled in the posterior, but given the veeisythe means are normally distributed and given
the means, the inverse variances are Gamma-distributeitie training data is processed sequentially,
where one training case is absorbed at a time, the mixtutefpmscan be updated as shown in [5].

The exact posterior is intractable, because the numberstépor mixture components is exponential
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in the number of training cases, and the posterior disiobubver the pixel means and variances are
coupled. In the remainder of this paper, we describe a yaoieapproximate inference techniques and

discuss advantages and disadvantages of each approach.

5.5 Approximate Inference as Minimizing Free Energies
Usually, the above techniques cannot be applied directlfy (fgv), because this distribution cannot be
computed in a tractable manner. So, we must turn to variopapmations.

Many approximate inference techniques can be viewed asmiimg a cost function called “free
energy” [33], which measures the accuracy of an approxirpetbability distribution. These include
iterative conditional modes [3], the expectation maximaa (EM) algorithm [6, 33], variational tech-
niques [24, 33] structured variational techniques [24hliSisampling [32] and the sum-product algorithm
(a.k.a. loopy belief propagation) [25, 35].

The idea is to approximate the true posterior distribufigh|v) by asimplerdistribution (%), which
is then used for making decisions, computing estimatespsnming the dataetc. Here, approximate
inference consists of searching for the distributip(h) that is closest ta?(h|v). A natural choice for

a measure of similarity between the two distributions is tdlative entropy (a.k.a. Kullback-Leibler

D(Q. P) = /h Q)

This is a divergence, not a distance, because it is not syriemt((), P) # D(P, Q). However,D(Q, P)

divergence):

is similar to a distance in thd? (), P) > 0, andD(Q, P) = 0 if and only if the approximating distribution
exactly matches the true posterigih) = P(h|v). The reason we usB(Q), P) and notD(P, Q) is that
the former computes the expectation w.r.t. the simpleidigion, (), whereas the latter computes the
expectation w.r.tP, which is generally very compléx

Approximate inference techniques can be derived by exammiways of searching fap(k), to mini-
mize D(Q, P). In fact, directly computind) (@, P) is usually intractable, because it dependsgh|v).
If we already have a tractable form fét(h|v) to insert into the expression fdp((), P), we probably
don’t have a need for approximate inference. Fortunate{y), P) can be modified in a way that does not

alter the structure of the search spac&)f), but makes computations tractable. If we subttad®(v)

3Forexample iQ(h) = [1; Q(h:) thenD(P, Q) = [, P(h|v)In P(hlv) =3, [, P(hilv)InQ(h;). Under the constraint
fh = 1, the minimum ofD (P, Q) is given byQ(h;) = P(h;|v). However, computmg’(h |v) is an NP-hard problem,
o] m|n|m|2|ngD(P, Q) is also an NP-hard problem.
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from D(Q, P), we obtain

F(Q.P) = D(@.P) = P(u) = [ Qo /@ BinP() = [ Qi ” (6)

Notice thatln P(v) does not depend o@(h), so subtractindn P(v) will not influence the search for
Q(h). For BNs and directed FGs, v have a tractable expression fB(h, v), namely the product of
conditional distributions.

If we interpret—In P(h,v) as the energy function of a physical system &nd) as a distribution
over the state of the system, th&xi), P) is equal to the average energy minus the entropy. In statlsti
physics, this quantity is called tHeee energyof the system (a.k.aGibbs free energpr Helmholtz free
energy. Nature tends to minimize free energies, which correspaadinding the equilibrium Boltzmann
distribution of the physical system.

Another way to derive the free energy is by using Jensenépiality to bound the log-probability of the
visible RVs. Jensen’s inequality states that a concaveitumof a convex combination of points in a vector
space is greater than or equal to the convex combinatioreafdhcave function applied to the points. To
bound the log-probability of the visible RVE; P(v) = In( [, P( , We use an arbitrary distribution

Q(h) (a set of convex weights) to obtain a convex combinatiordim$ine concavin() function:

lnP(v)—l(/ hv ln /Q /Q ln

We see that the free energy is an upper bound on the negaiiddability of the visible RVSF'(Q, P) >
—In P(v). This can also be seen by noting tia¢c), P) > 0in (6).

>) — F(Q,P).

Free energy for i.i.d. training cases
From (5), for a training set ¢f i.i.d. training cases with hidden RVs= (4, (V) ..., h(T)) and visible
RVsv = (v, ..., o™), we haveP(h,v) = P(9) [],_, P(hV,v("|9). The free energy is

F(Q.P) = /Q )0 Q(h /Q D0 -3 [ QuO.pmPeO 0. @)

=1 /b0

The decomposition of" into a sum of one term for each training case simplifies learni
Exact inference revisited
The idea of approximate inference is to search@h) in a space of models that are simpler than

the true posterioP(h|v). It is instructive to not assum@ (k) is simplified and derive the minimizer of
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F(Q, P). The only constraint we put o@(h) is that it is normalized:)_, (k) = 1. To account for
this constraint, we form a Lagrangian frof((), P) with Lagrange multiplier\ and optimizeF'(Q, P)
w.rt. Q(h): O(F(Q,P) + A [, Q(h))/0Q(h) = InQ(h) + 1 — InP(h,v) + A. Setting this derivative
to 0 and solving for\, we findQ(h) = P(h,v)/ [, P(h,v) = P(h|v). So, minimizing the free energy
without any simplifying assumptions ap(h) produces exact inference. The minimum free energy is
ming F' = [, P(hlv)In(P(hlv)/P(h,v)) = —In P(v). The minimum free energy is equal to the
negative Iog-probability of the data. This minimum is aclei@ when))(h) = P(h|v).
Revisiting exact inference in the occlusion model

In the occlusion model, if we allow the approximating distion Q)( f, b, m) to be unconstrained,
we find that the minimum free energy is obtained wiig(y, b, m) = P(f,b|z) [[X, P(m|f,b,z). Of
course, nothing is gained computationally by using tpidistribution. In the following sections, we see

how the use of various approximate forms €@ff, b, m) lead to tremendous speed-ups.

5.6 MAP Estimation as Minimizing Free Energy
Maximum a posteriori (MAP) estimation searches fdr = argmax, P(h|v), which is the same as
argmax, P(h,v). For discrete hidden RVs, MAP estimation minimizZé&y, P) using aQ)-distribution
of the formQ(h) = [h = h|, where[expr] = 1 if expr is true, andexzpr] = 0 if expr is false. The free
energy in (6) simplifies to#(Q, P) = Y,[h = h]In[h = h]/P(h,v) = —In P(h,v), i.e, minimizing
F(Q, P) is equivalent to maximizing(h, v).

For continuous hidden RVs, th-distribution for a point estimate is a Dirac delta functmentered
at the estimateQ(h) = d(h — h). The free energy in (6) reduces ’{Q, P) = [, 6(h — h)Ind(h —
h)/P(h,v) = —InP(h,v) — Hys, where Hy is the entropy of the Dirac delta. This entropy does not
depend o, so minimizingF(Q, P) corresponds to searching for valuesiofhat maximizeP (h, v)*.

Two popular methods that use point inferences are iteratneitional modes and the EM algorithm.

5.7 Iterative Conditional Modes (ICM)
The most famous example of ICM ismeans clusteringwhere the hidden RVs are the cluster centers
and the class labels. Here, ICM iterates between assigatiyteaining case to the closest cluster center,

and setting each cluster center equal to the average ofaiméniy cases assigned to it. ICM is popular

4In fact, Hs — —oc. To see this, definé(z) = 1/eif 0 < = < e and0 otherwise. ThenHs = In ¢, which goes to-co as
e — 0. This infinite penalty inF'(Q, P) is a reflection of the fact that an infinite-precision poistimate ofh does a very poor
job of representing the uncertaintyinunderP (h|v).
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because it easy to implement. However, ICM does not takedntmunt uncertainties in hidden RVs
during inference, causing it to find poor local minima.

ICM works by searching for a configuration bthat maximizes?(h|v). The simplest version of ICM
examines each hidden RV, in turn, and sets the RV to its MAP value, given all other RvV#ncS all
hidden RVs but; are kept constant in this update, only the RVs in the Markewkét ofh; are relevant.
Denote these RVs hy,,, and denote the product of all conditional distributions otemtials that depend

onh; by f(hi, za,). ICM proceeds as follows:

Initialization. Pick values for all hidden RVE (randomly, or cleverly).
ICM Step. Consider one of the hidden RV&;. Holding all other RVs constant, set
h, to its MAP value:

h;i <= argmax, P(h;|h\ h;,v) = argmax,_f(hi, oar).

whereh \ h; is the set of all hidden RVs other than

Repeat for a fixed number of iterations or until convergence.

If h; is discrete, this procedure is straightforwardhlfis continuous and exact optimization iaf is not
possible, its current value can be used as the initial poirs search algorithm, such as a Newton method
or a gradient-based method.

The free energy for ICM is the free energy described abovegdoeral point inferences.
ICM in the occlusion model

Even when the model parameters in the occlusion model anerkribe computational cost of exact
inference can be rather high. When the number of clustésdarge, examining all/? configurations of
the foreground class and the background class is compuoddtifdourdensome. For ICM in the occlusion
model, the)-distribution for the entire training setdg = (11, 0 (mx—7x)) ([ 1, ; 6 (i — ki) ) (1155 0 (Vi —
Vi) (T, 0ows — ) (TT 6O = bONLLFY = FONLTLIm" = mi")). Substituting thisQ-
distribution and theP-distribution in (4) into the expression for the free enemyy(7), we obtain the

following:

F = — Z(ln #je + In fri)(t)) - Z(Z i I jo; + (1~ ) In(1 &f(t>z.))
t t [
3 Sl? (( = i)/ 2 s + n2rdji,) 2)
t 9
DD ) (A~ ) 2000, + (27 0y0,)/2) — H.
t 7
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H is the entropy of thé-functions and is constant during optimizatidnmeasures the mismatch between
the input image and the image obtained by combining the forewl and background using the mask.

To minimize the free energy w.r.t. all RVs and parameterscam iteratively solve for each RV or
parameters by setting the derivativeroto 0, keeping the other RVs and parameters fixed. These updates
can be applied in any order, but since the model paramet@mndeon values of all hidden RVs, we
first optimize for all hidden RVs, and then optimize for mogatameters. Furthermore, since for every
observation, the class RVs depend on all pixels, when upgl@iie hidden RVs, we first visit the mask
values for all pixels and then the class RVs.

After all parameters and RVs are set to random values, thatepare applied recursively, as described
in Fig. 5. To keep notation simple, the " symbol is dropped and in the updates for the varialbbesh
and f, the training case indeX is dropped.

5.8 Block ICM and Conjugate Gradients

One problem with the simple version of ICM described abovtsisevere greediness. Suppgsé;, z.,)

has almost the same value for two different values;0flCM will pick one value forh;, discarding the
fact that the other value df; is almost as good. This problem can be partly avoided by opitigp subsets

of h, instead of single elements bf At each step of thiblock ICM method, a tractable subgraph of the
graphical model is selected, and all RVs in the subgraphpdated to maximizé (h, v). Often, this can

be done efficiently using the max-product algorithm [25]. @&@mple of this method is training HMMs
using the Viterbi algorithm to select the most probableestssquence. For continuous hidden RVs, an

alternative to block ICM is to use a joint optimizer, such a®ajugate gradients.

5.9 The Expectation-Maximization Algorithm

The EM algorithm accounts for uncertainty in some RVs, wipggforming ICM-like updates for the
other RVs. Typically, for parametefsand remaining Rv&", ..., h*), EM obtains point estimates for
¢ and computes the exact posterior over the other RVs, divefhe Q-distribution isQ(h) = (0 —
9)Q(h", ... hM). Recall that for i.i.d. dataP(h,v) = P(0)(I],_, P(h®,v®9)). Givend, the RVs
associated with different training cases are independentye haveQ(h) = 6(8 — ) [, Q(h™). In
exact EM, no restrictions are placed on the distributioh#,")).

SubstitutingP (h, v) and@(h) into (6), we obtain the free energy:

F(Q,P) = —InP(d) + Z(/

t=1 7P

LY In
mQ( ) P(h
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EM alternates between minimizing(Q, P) w.r.t. the set of distribution§(h"), ..., Q(h™) in the E
step, and minimizing”(Q, P) w.r.t. § in the M step.

When updating) ("), the only constraint is thaf, ,, Q(h)) = 1. As described earlier, this con-
straint is accounted for using a Lagrange multiplier. 8gtthe derivative of'((), P) to zero and solving
for Q(h"), we obtain the solution(h®) = P(h"|v®, ). Taking the derivative of (Q, P) w.r.t. 0,

we obtain

Mﬂ

g%%EZ__—JP ,ﬂ(ém g%mp( 19)).

For M parameters, this is a set &f equations. These two solutions give the EM algorithm:

Initialization. Choose values for the parametet§tandomly, or cleverly).

E Step. Minimize F(Q, P) w.r.t. (Q using exact inference, by setting

Q(h") « P(h®]v®. 4),

for each training case, given the parameteasd the data(®

M Step. Minimize F(Q, P) w.r.t. the model parametefsby solving
) a G,
_In P(0) — A= 1In P(h®,v®|§)) = 0. 8
Smp0) =Y ( [ @ut)Sm e, o019) ®

t=1

This is the derivative of the expected log-probability of ttomplete data. Fal/
parameters, this is a system &f equations. Often, the prior on the parameters is
assumed to be uniformP(d) = const, in which case the first term in the above
expression vanishes.

Repeat for a fixed number of iterations or until convergence.

In Sec. 5.5, we showed that whénh) = P(hlv), F(Q,P) = —In P(v). So, the EM algorithm
alternates between obtaining a tight lower boundoR (v) and then maximizing this bound w.r.t. the
model parameters. This means that with each iteration,atygitobability of the dataln P(v), must
increase or stay the same.

EM in the occlusion model
As with ICM we approximate the distribution over the paraensusing) (#) = 6(6—6). As described

above, in the E step we sék(b, f,m) < P(b, f,m|z) for each training case, where, as described in
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Exact EM

ICM
E Step (Variable Updates) E Step
Fort=1,...,T: Fort=1,...,T:

Q(b, f) < ca mpmy 11, (Oéfi/\f(zi;ufm/)fi) + (1 — af )N (25 Mbm/)bi))

[+ argmax; (ﬂ'f Hf(zl (a}"ii(l — O‘fi)l’mi/\/(zﬂ#fi,wfi)mi))

Fori=1,...,K: .
e AT, { ?1fi/\f(?t(::)7/ﬁlff(:zi/)l}:;3,1/}bz) :; Z: i [11 } Fori=1,...,K:

b « argmax, (ﬂ'b I, N(Zi;ubi,wbi)kmi) Q(mi = 1|b, f) = c1 apiN (zi5 tpi, b gi)
M Step (Parameter Updates) Q(m; = 0[b, f) = c1 (1 — asi )N (zi; toi, Poi)
Forj=1,...,J: mj « 5= S/ ([F® = 4] + b = j)) Fori=1,...,K:
Forj=1,...,J: Fori=1,...,K: Q(mi,b) < 327 Q(milb, QD f), Q(mi, f) < 32, Q(milb, [)Q(b, f)

I =j]m") M Step
Forj=1,...,J: mj + 5= >, (Q(f® =j) + Q(b® = j))

i S TS =)

Tl =i orpM =j12 ()
Forj=1,...,J: Fori=1,...,K:

it ST O =5 o =5

() _q p(t) s
2 QUmy '=1,f""=j)
i < S G =

VYji Sz =g orb®) =12 (" —pz0)?
7 SE LW =jorb() =j]
o Ze@m =10 =prem =0t =) "
" QT =1, 5O =)+ QT =0.6(1) =)

P T (Qum{? =150 =j)+Q(m{" =08 =) (2} —uj1)?
ke T (Qm =150 =j)+Q(m!) =0,6() =)

Variational EM

Gibbs Sampling EM
E Step E Step
Fort=1,...,T: Fort=1,...,T:
K @imi=1) Q(m;=0)
Q(f) « c3 my Hizl((afi/v(ziiﬂfi:"pfi)) (1 —ay)@lme= )

m;
f = sample (”f | (O‘fiN(Zini,wfi)) (lfafi)lfmz')
Fori=1,...,K:

Q(mi = 1) « e1 [T (apN (253155, ¢ 7))

Fori=1,...,K:
N (zispgis g if m; =1
m; < sample,, . { ogiN (ziibyisVri) . " }
U (1 — o )N (265 pi, i) ifmy =0 o) o)
. Q(m; = 0) 1 (IT;(1 — ap) 2UN)(IT, N (2is mpis Y6i) )
b < sampley, (7Tb ILi=, N(Zimbi,wbi)l*mi)
st Q(b) 2 mp [T1Zy N (25 i ;) (i =)
ep
Forj=1,....J0 mj < 55 >, ([f® = 4]+ [b®) = j)) M Step
Forj =1,....J: Fori=1,...,K: Forj=1,....0: m) < 57 (32, QUM = 5) + 32, Q™ = j))
E[f(t):.]mgt) Forj=1,...,J: Fori=1,...,K:
o S
w o Seemi=neu M=)
S D =jore® =) I T QUM =j)
sz — Zt[f(t]:j orb(‘):]‘] . . .
o (e =0QU M =H+Q(m =0 =j)) :
i Sl = ?:;,(r):j]((f)gf)wﬁf‘ 7 = (@n =@M =) +Q(m{) =0)Q (") =)))
¢ Sl =jorp®) =j]
P > (Qm{ =1)Q(r P =) +Qm{) =0)Q (6" =) (z{") —u;:)?
b > (@ =)D =) +Q(m{) =0)Q(b() =j))

Figure 5:Inference and learning algorithms for the occlusion model. Iverson’s notation is used, where [expr] = 1 if
expr is true, and [exzpr] = 0 if expr is false. The constant ¢ is used to normalize distributions.
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Structured Variational EM

E Step
Fort=1,...,T:

K o Q(mi=1f)
QU « er my TS (greipyN is givri) )

(Q(lm"‘_fg‘f) | JF (Zz‘;Mbiﬂ/}bz‘)Q(b))Q(mi:O‘f)
Fori=1,...,K:
Q(m; = 1[f) < c2 apiN(2is pis¥si)
Q(m; = 0[f) +ca (1 — agp;) T, N(zi; i, Yoi) 2P
Q(mi, f) < Q(mi| Q(F), Q(mi) « 32, Q(mi, f)
Q(b) 3 my [T/ N (25 i Ppi ) 2™ =0)
M Step
Forj=1,....J: mj + 57 (3, QU = 5) + £, Q6™ = j))
Forj=1,...,J: Fori=1,...,K:

T, Qm{ =150 —j)
> QUM =j)

Qjj <
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Hji <

T (Qm{Y =1, W =j)+Q(m{V =0)Q (6 =j)) (2" —p;:)?
v, (@i =1, 1O =j)+@mP =0)Q () =)))

Yri

Sum-Product EM

E Step
Fort=1,...,T:
Fori=1,...,K: )\{(f) —c (ﬂfz‘N(ZUNfiawfi)
+(1—ap) Y, pﬁ’(b)/\/(zz';ubi,wbi))
Q) ey [T, M (F)
Fori=1,...,K: p/(f) + c3 QU)/AL(F)
Fori=1,...,K:
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7(0) « ca (pr (N = ayi)) (324 o2 (OIN (zis 1vi o))

(ml) — A (m;)

Fori=1,...,K: A2(b) ¢35 ((Zf Pz NP apiN (zis g, v5:))
+(Z o] (A = )N (i i i)
Q(b) + co mp [1; A2(b)
Fori=1,...,K: pb(b) < Q(b)/\b(b)
M Step
Forj=1,....Jim « 50 (3, QUM = j) + 3, Q™) = j))
Forj=1,...,J: Fori=1,...,K:

v, um{ =1 ®=j)
> QUF M =j)

Qjj <

¥, (@ =1 =j)+Q(m!" =0)Q (61 =j)) = ()
zt(Q(mﬁ”:1)Q(f(”:j)+cz(m§”:O)Q(Mf):n)

Hji <

= (Qm{ =1Q(r D =)+Q(m{V =0)Q (6 =) (z{") —p;:)?
¥, (@m{ =1)Q(f ) =j)+Q(m =0)Q () =)

Yri

Fig. 5 continued.
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Sec. 5.4,P(b, f,m|z) is represented in the form (b, f|z) [ [, P(m;|b, f, z). This distribution is used in
the M step to minimize the free energy w.r.t. the model paters¢) = {a, px, ¥r, 71} ,. The resulting
updates are given in Fig. 5, where we have dropped the tracase index in the E step for brevity, and
the constant is computed to normalize the appropriate distributionrt®tg with random parameters, the

E and M steps are iterated until convergence or for a fixed reumbiterations.

5.10 Generalized EM

The above derivation of the EM algorithm makes obvious sd\ggneralizations, all of which attempt to
decreasé’(Q, P) [33]. If F(Q, P) is a complex function of the parameteksit may not be possible to
exactly solve for thé that minimizesF'((), P) in the M step. Instead), can be modified so as to decrease
F(Q, P), e.g, by taking a step downhill in the gradient 1@, P). Or, if § contains many parameters, it
may be that?'(Q, P) can be optimized w.r.t. one parameter while holding thersthenstant. Although
doing this does not solve the system of equations, it doesdser' (Q), P).

Another generalization of EM arises when the posteriorithstion over the hidden RVs is too com-
plex to perform the exact updat®h()) < P(h® |y, §) that minimizesF(Q, P) in the E step. Instead,
the distributionQ (h)) from the previous E step can be modified to decrgage, P). In fact, ICM is a
special case of EM where in the E stép(QQ, P) is decreased by finding the value/df) that minimizes
F(Q, P) subject toQ (k") = 6(h® — h(1),

5.11 Gibbs Sampling and Monte Carlo Methods
Gibbs sampling is similar to ICM, but to circumvent the locainima, Gibbs samplingstochastically

selects the value df; at each step, instead of picking the MAP valuéof

Initialization. Pick values for all hidden RVA (randomly, or cleverly).
Gibbs Sampling Step.Consider one of the hidden RVk;. Holding all other RVs

constant, samplg;:

hi ~ P(hilh \ hi,v) = f(h’iaxMi)/(Zf(hiaxMi)>'
h;
wherezx . are the RVs in the Markov blanket éf and f (h;, x,;,) is the product of
all conditional distributions or potentials that dependign

Repeat for a fixed number of iterations or until convergence.
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Algorithmically, this is a minor modification of ICM, but in amy applications it is able to escape poor
local minima (c.f. [15, 19]). Also, the stochastically ckosvalues ofi; can be monitored to estimate the
uncertainty inh; under the posterior.

If n counts the number of sampling steps, thenpas> oc, the nth configuration of the hidden
RVs is guaranteed to be an unbiased sample from the exaerijposP (h|v). In fact, although a single
Gibbs sampler is not guaranteed to minimize the free enargifinite ensemble of Gibbs samplelises
minimize free energy, regardless of the initial distribatof the ensemble. L&) (k) be the distribution
overh given by the ensemble of samples at stefsuppose we obtain a new ensemble by sampgljrig
each sampler. The®"'(h) = Q"(h \ h;)P(h;|h \ hi,v). Substitutingd™ and@Q"*' into (6), we find
that F"+! < 7,

Generally, in a Monte Carlo method, the distribution o¥eis represented by a set of configura-
tionsh',..., 5. Then, the expected value of any function of the hidden R\(8), is approximated by
E[f(h)] = %Zf:] f(h*). For example, if» contains binary (0/1) RVs ankl, ..., h% are drawn from
P(h|v), then by selectingf(h) = h; the above equation gives an estimate/f; = 1|v). There are
many approaches to sampling, but the two general classemmgilers are exact samplers and Markov
chain Monte Carlo (MCMC) samplers (c.f. [32]). Whereas é¢xsammplers produce a configuration with
probability equal to the probability under the model, MCM&plers produce a sequence of configura-
tions such that in the limit the configuration is a sample fittvey model. If a modeP(h, v) is described
by a BN, then an exact sample bfand v can be obtained by successively sampling each RV given its
parents, starting with parent-less RVs and finishing witlhdeless RVs. Gibbs sampling is an example of
an MCMC technique.

MCMC techniques and Gibbs sampling in particular are guashto produce samples from the
probability model only after the memory of the initial confrgtion has vanished and the sampler has
reached equilibrium. For this reason, the sampler is oflewad to “burn in” before samples are used to
compute Monte Carlo estimates. This corresponds to disgatide samples obtained early on.

Gibbs sampling for EM in the occlusion model

Here, we describe a learning algorithm that uses ICM-upditte the model parameters, but uses
stochastic updates for the RVs. This technique can be viasexgeneralized EM algorithm, where the
E-Step is approximated by a Gibbs sampler. Replacing the XRupdates in ICM with sampling,
we obtain the algorithm in Fig. 5. The notatis@mple, indicates the expression on the right should be

normalized w.r.th and therh should be sampled.
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5.12 Variational Techniques and the Mean Field Method

A problem with ICM and Gibbs sampling is that when updatingagtipular RV, they do not account for
uncertainty in the neighboring RVs. Clearly, a neighbot teaintrustworthy should count for less when
updating an RV. If exact EM can be applied, then at least thetgosterior distribution is used for a subset
of the RVs. However, exact EM is often not possible becausexiact posterior is intractable. Also, exact
EM does not account for uncertainty in the parameters.

Variational techniques assume ttiath) comes from a restricted family of distributions that can be
efficiently searched over. Inference proceeds by miningizii@), P) w.r.t. Q(h), but the restriction on
Q(h) implies that a tight boundy” = —In P(v), is not in general achievable. In practice, the family of
distributions is usually chosen so that a closed form exgiwedor F'(Q), P) can be obtained and optimized.

The “starting point” when deriving variational techniqusshe product form (a.k.a. fully-factorized,
or mean-field)Q-distribution. If h consists ofA/ hidden RVsh = (h4, ..., hy), the product forn)

distribution is

Q(h) = _HQ(hi), 9)

where there is one variational parameter or one set of \@mtparameters that specifies the marginal
Q(h;) for each hidden R\;.

The advantage of the product form approximation is mostilgaden whenP(h, v) is described by
a BN. Suppose thkth conditional probability function is a function of RVg,, andvp, and denote it by
gr(hey,vp, ). SO,P(h,v) =[], 9x(he,, vp, ). Substituting this and (9) into (6), we obtain the mean field

free energy:

Z(/hicz(hmncz(hi))Z(/h (1T @@r)) mguthervn,))-

Cr ieCy

The high-dimensional integral over all hidden RVs simpdifieto a sum over the conditional probability
functions, of low-dimensional integrals over small coliens of hidden RVs. The first term is the sum
of the negative entropies of th@-distributions for individual hidden RVs. For many scala¥R(e.q,
Bernoulli, Gaussiaretc) the entropy can be written in closed form quite easily.

The second term is the sum of the expected log-conditios#liblutions, where for each conditional
distribution, the expectation is taken with respect to ttelpct of the()-distributions for the hidden RVs.
For appropriate forms of the conditional distributiongstterm can also be written in closed form. For

example, suppos€(h,|hy) = exp(—In(270?)/2 — (hy — ahy)?/20?) (i.€, hy is Gaussian with mean
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ahs), andQ(h;) and@(hs) are Gaussian with meaws; and¢,; and variances,, and¢,,. The entropy
terms forh; andh, are — In(2me¢2)/2 and — In(2wegyy) /2. The other term is the expected value of a
quadratic form under a Gaussian, which is straightforwambtmpute. The resultis In(270?)/2— (¢, —
ada1)?/20% — ¢12/20% — a’day /202, These expressions are easily-computed functions of thiaticenal
parameters. Their derivatives (needed for minimizit(@), P)) can also be computed quite easily.

In general, variational inference consists of searchimglfe value ofp that minimizest'(Q, P). For
convex problems, this optimization is easy. Usudilyt), P) is not convex iny) and iterative optimization

is required:

Initialization. Pick values for the variational parametesgrandomly, or cleverly).
Optimization Step. DecreaseF'((), P) by adjusting the parameter vectoy or a
subset ofy.

Repeat for a fixed number of iterations or until convergence.

This variational technique accounts for uncertaintyboth the hidden RVs and the hidden model
parameters. If the amount of training data is small, a vianal approximation to the parameters can be
used to represent uncertainty in the model due to the spaiseng data.

Often, variational techniques are used to approximate igtelmition over the hidden RVs in the E
step of the EM algorithm, but point estimates are used fomtloelel parameters. In suctariational
EM algorithms the Q-distribution isQ(h) = §(8 — 6) [,_, Q(h®; ¢"). Note that there is one set of

variational parameters for each training case. In this,casdave the following generalized EM steps:

Initialization. Pick values for the variational parametefs., . .., (") and the model
parameters (randomly, or cleverly).

Generalized E Step. Starting from the variational parameters from the previous
iteration, modifyp("), ..., ¢(") so as to decreage.

Generalized M Step. Starting from the model parameters from the previous itera-
tion, modify 6 so as to decreade.

Repeat for a fixed number of iterations or until convergence.

Variational inference for EM in the occlusion model
The fully-factorized)-distribution over the hidden RVs for a single data samptbéwocclusion model

isQ(m, f,b) = Q(b)Q(f) Hf; Q(m;). Substituting this)-distribution into the free energy for a single
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observed data sample in the occlusion model, we obtain

F=) Q@) %b) £ QU mED
b f

s

+ Z Z Qf) (Q(mz =1)In @
i f

+ZZQ(.f)Q(mi — 1)((Zl Q_wI;fz)2 N In 27;/)]%)
i f ;

+ZQ(mi =0) (Z Q(b)((zz ;wai)Q + In Q;waz))‘

+Q(m; = 0)In @lm; = 0) 0)>

Qg 1—af7;

The first two terms keeg)(b) and Q(f) close to their priorsr, andz;. The third term keep§)(m;)
close to the mask priors; for foreground classes that have high posterior probghilit/). The last
two terms favor mask values and foreground/backgroundgetathat minimize the variance-normalized
squared differences between the predicted pixel valuesrenobserved pixel values.

Setting the derivatives af' to zero, we obtain the updates for thedistributions in the E step. Once
the variational parameters are computed for all observedj@s, the total free energy = Y, F¥) is
optimized w.r.t. the model parameters to obtain the vani M step. The resulting updates are given
in Fig. 5. Each E step update can be compute@ (' .J) time, which is aK -fold speed-up over exact
inference used for exact EM. This speed-up is obtained Iseddue variational method assumes thand
b are independent in the posterior. Also, note that iftgadistributions place all mass on one configuration,
the E step updates reduce to the ICM updates The M step upatatesnilar to the updates for exact EM,
except that the exact posterior distributions are replagetieir factorized surrogates.

The above updates can be iterated in a variety of ways. Fangea each iteration may consist of
repeatedly updating the variational distributions unditheergence and then updating the parameters. Or,
each iteration may consist of updating each variationaliligion once, and then updating the parameters.
There are many possibilities and the update order that isabes/oiding local minima depends on the

problem.

5.13 Structured Variational Techniques

The product-form (mean-field) approximation does not antdor dependencies between hidden RVSs.
For example, if the posterior has two distinct modes, thétianal technique for the product-form ap-
proximation will find only one mode. With a different initiahtion, the technique may find another

mode, but the exact form of the dependence is not revealestruntured variational techniques, the
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distribution is itself specified by a graphical model, suwht#'((), P) can still be optimized. Fig. 6a shows
the original BN for the occlusion model and Fig. 6b shows thef8r the fully-factorized (mean field)-
distribution described above. Recall that the exact pimstean be writtenP(m, f,blz) = Q(m, f,b) =
Q(f,b) Hfil Q(m;|f,b). Fig. 6¢ shows the BN for thi@-distribution. Generally, increasing the number
of dependencies in th@-distribution leads to more exact inference algorithmsabeo increases the com-
putational demands of variational inference. In the ogolusnodel, whereas mean field inference takes
K J time, exact inference takds.J? time. However, additional dependencies can sometimesdoeiated
for at no extra computational cost. As described belowritdwut that the€)-distribution shown in Fig. 6d
leads to an inference algorithm with the same complexityhasnean field methodi(.J time), but can
account for dependencies of the mask RVs on the foregroasd.cl
Structured variational inference for EM in the occlusion model

The Q-distribution corresponding to the BN in Fig. 6¢c (m, f,0) = Q((b)Q(f) Hf; Q(m;|f).
Definingqy; = Q(m; = 1|f), we haveQ(m, f,b) = Q(b)Q(f) HZ.’; q7i' (1 — qp)'~ ™. Substituting this
@-distribution into the free energy for the occlusion moae, obtain

F —ZQ(b)ln%f) +ZQ(f)1n&f)
b s

™

+ZZQ(f)(Q(mi = 1/f) an(m;—jlf)jLQ(mi = 0lf) 1nQ(1m—:a;)f>)
) f ' fi /£

R — 7;2 In 27,
+ZZQ(f)Q(mi—1|f)(( w’;{‘) + 221/)f>
v f i

+ (S =op) Sam (gt M),

Setting the derivatives df' to zero, we obtain the updates given in Fig. 5. With some ¢hese updates
can be computed i® (K .J) time, which is a-fold speed-up over exact inference. Although the depen-
dencies off andm,, i = 1,..., K onb are not accounted for, the dependencengfon f is accounted

for by theq;;’s. The parameter updates in the M step have a similar forrorasxaict EM, except that the

exact posterior is replaced by the above, structdretistribution.

5.14 The Sum-Product Algorithm (Belief Propagation)
The sum-product algorithm (a.k.a. belief propagation bptolity propagation) performs inference by
passing messages along the edges of the graphical modg%éer an extensive review). The message

arriving at an RV is a probability distribution (or a funatidhat is proportional to a probability distribu-
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Figure 6: Starting with the BN of the original occlusion model (a), variational techniques ranging from the fully
factorized approximation to exact inference can be derived. (b) The BN for the factorized (mean field) Q-distribution.
z is observed, so it is not included in the graphical model for the @Q-distribution. (c) The BN for a Q-distribution that
can represent the exact posterior. (d) The BN for a @Q-distribution that can represent the dependence of the mask
RVs on the foreground class. Accounting for more dependencies improves the bound on the data likelihood, but the
choice of which dependencies are retained has a large impact on the improvement in the bound.

tion), that represents the inference for the RV, as givenhleypart of the graph that the message came
from. Pearl [35] showed that the algorithm is exact if thepyrés a tree. When the graph contains cycles,
the sum-product algorithm (a.k.a. “loopy belief propagat) is not exact and can diverge and oscillate.
However, it has been used in vision algorithms [8]. Surpghbi, we have also found that its oscillatory
behavior can be used to jump between modes of the postesor Ahas produced state-of-the-art results
on several difficult problems, including error-correctidgcoding [14], medical diagnosis [30hndom
satisfiability [28], and phase-unwrapping in 2-dimensifi§.

To see how the sum-product algorithm works, consider comgut(a) in the modelP(a, b, ¢, d) =
P(a|b)P(blc)P(c|d)P(d). One approach is to comput&a, b, ¢, d) for all values ofa, b, c andd and then
computeP(a) =", > >, P(a,b,c,d). For binary RVs, this take§& + 1)(2 -2 - 2 - 2) operations. Al-
ternatively, we can move the sums inside the produets;) = ), P(alb){D>_. P(b|c)[>_, P(c|d)P(d)]}.

If the terms are computed from the inner-most term out, #ies$(3)(2 + 2 + 2) operations, giving an
exponential speed-up in the number of RVs. The computati@ach term in braces corresponds to the
computation of a message in the sum-product algorithm.

In a graphical model, the joint distribution can be writt, v) = [, gx(h¢,. vp,), Whereh, and
vp, are the hidden and visible RVs in théh local function (or conditional distribution). The sumepluct
algorithm approximateB (h|v) by Q(h), whereQ)(h) is specified by marginald(h;) andclique marginals
Q(h¢, ). These are computed by combining messages that are comtautgively in the FG. Denote the
message sent from variableto functiong, by p;x(h;) and denote the message sent from functipto
variableh; by u;(h;). Note that the message passed on an edge is a function ofitfidoaeng variable.

A user-specifiednessage-passing schedigeused to determine which messages should be updated at
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each iteration. The sum-product algorithm proceeds agvist|

Initialization. Set all messages to be uniform.
Message Update Step.Update the messages specified in the message-passing

schedule. The message sent from variableo functiong, is updated as follows:

wir(hy) ¢ [T mas(hy), (10)

n:j€Cnp ,n#k
where ¢ is computed so as to normalize the message. The messager@ant f
function g, to variableh; is updated as follows:
pkj(hy) < ¢ Z (qk hey, vp,) H ik (B ) (11)
h(jk\J ze(‘k ’I#]
whereC} \ j is the set of indice§’; with j removed.

Fusion. A single-variable marginal or clique marginal can be coregudt any time

as follows:
1T #ni(hy), (12)
n:jeChp
Q(he,) + ¢ gilhey,vp,) [T min(ha), (13)
1€Cy

Repeat for a fixed number of iterations or until convergence.

If the graph is a tree, once messages have flowed from eves/toaevery other node, the estimates
of the posterior marginals aexact So, if the graph ha# edges, exact inference is accomplished by
propagating2 E messages according to the following message-passingdeheskelect one node as the
root and arrange the nodes in layers beneath the root. Ratgpagessages from the leaves to the réot (
messages) and then propagate messages from the root taube (anothef! messages). This procedure
ensures that messages flow from every node to every other Notiethat if the graph is a tree, if normal-
izations arenot performed during message-passing, the fusion equationpute thgoint probability of
the hidden variable(s) and the observed variadigs; ., 1n;(h;) = P(h;, v).

If the graph contains cycles, messages can be passed inativédashion for a fixed number of iter-
ations, until convergence is detected, or until divergeacketected. Also, various schedules for updating
the messages can be used and the quality of the results wéhdeon the schedule. It is proven in [37]
that when the “max-product” algorithm converges, all camfegions that differ by perturbing the RVs in

subgraphs that contain at most one cycle, will hiaweer posterior probabilities.
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If the graphical model is a BN, so that = 1, the sum-product algorithm can be used for inference in

a generalized EM algorithm as follows:

Initialization. Pick values for the model parametérg¢randomly, or cleverly), and
set all messages to be uniform.

Generalized E Step.For each training cas€’, apply one or more iterations of the
sum-product algorithm. Then, fuse messages as descriloed Hbcomputei)(h(cti)
for every child and its parents.

Generalized M Step.Modify the parameterg so as to maximize

ZZZQ lng C,?)%),H).

)

Repeat for a fixed number of iterations or until convergence.

The sum-product algorithm for EM in the occlusion model

For an occlusion model withk pixels, exact inference takés( K .J?) time. In contrast, loopy belief
propagation take® (K .J) time, assuming the number of iterations needed for conmeryés constant.
Generally, the computational gain from using loopy belisfgagation is exponential in the number of
RVs that combine to explain the data.

The graphical model has cycles, so before applying the suwddget algorithm, we modify it to reduce
the number of cycles, as shown in in Fig. 7a, where the obdgrxelsz, . . ., zx are not shown for visual
clarity. For each pixel, there isonelocal functiong; that combines the conditional distributions for each

mask RV and its corresponding pixel:
9i(f,0,m) = P(zilma, £,0)P(mal ) = N (zi5 prgas € p0) ™ N (25 i, b)) 0 (1= ap) ™0

Fig. 7b shows how we have labeled the messages along the efities FG. During message passing,
some messages will always be the same. In particular, a gees¢saving a singly-connected function
node will always be equal to the function. So, the messageig the nodes corresponding/g f) and
P(b) are equal taP(f) andP(b), as shown in Fig. 7b. Also, a message leaving a singly-cdade@riable
node will always be equal to the constantSo, the messages leaving the mask R¥sare1. Initially,

all other messages are set to the value

Before updating messages in the graph, we must specify inavtiar the messages should be updated.
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Figure 7:(a) The FG for the occlusion model with K pixels, after the observations (z1, ..., zx) are absorbed into

function nodes, g;(f,b,m;) = P(zi|m;, f,b)P(m;|f). (b) The sum-product algorithm (belief propagation) passes
messages along each edge of the graph. This graph fragment shows the different types of messages propagated
in the occlusion model.

This choice will influence how quickly the algorithm convegg and for graphs with cycles can influence
whether or not it converges at all. Messages can be passédamtergence, or for a fixed amount of
time. Here, we define one iteration to consist of passing agessfrom the'’s to b, from b to theg’s, from
theg'sto f, from f to theg’s, and from the;’s to them’s. Each iteration ensures that each RV propagates
its influence to every other RV. Since the graph has cyclésptiocedure should be repeated.

The message updates are derived from the general rulestadesabove. From (11), it is straightfor-
ward to show that the message sent frgito f should be updated as follows (f) < 3, >, PE(D)-1-
g:(f, b, m;). Note that since the resulting message is a functiohalbne b andm; must be summed over.
Substitutingg; (f, b, m;) from above and assuming thatb) is normalized, this update can be simplified:
M(f) — apN (2 ppi, ) + (1= agi) 32 pRO)N (235 i, ei). The last step in computing this message
is to normalize it (f) < A (f)/(3Z; M (1))

According to (10), the message sent frghto g; is given by the product of the other incoming mes-
sagesp! (f) < 7 [1;.: M (f), and itis then normalizeds! (f) « p! (f)/(3, o! (f).

The message sent fropto b is given byA2(b) < >, 5" pl (f) -1 g:(f,b,m;), which simplifies
to N(b) « (X2, ol (F)apiN (2 i i) + (35 oL ()1 = i) )N (235 i, 1) - Note that the terms in
large parentheses don’t dependipso they need to be computed only once when updating thisagess
Again, before proceeding, the message is normalixg@) < A2 (b)/(>-, A2(b)).

The message sent fromto g; is given by p!(b) « 7, [[;, A}(b), and then normalizedp?(b) <
pi(0)/ (3, AL (D).

Finally, the message sent froga to m; is updated as followsA;"(m;) < > >, ol (f) - pb(b) -
9i(f,b,m;). Form; = 1 andm; = 0 this update simplifies taj"(1) < >_, ol ()N (zi; g, Vgi)
and A/ (0) « (3, pl(F)(A = ) (3, pE(B)N (25 iy i) ). Normalization is performed by setting
A (mg) = A7 (mq) /(A7(0) + AT(1)).

At any point during message-passing, the fusion rule in¢ag)oe used to estimate posterior marginals
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of variables. The estimates 81 f|z), P(b|z) andP(m;|z) areQ(f) « (m; T1; M () / (X, 7, TL M (),
Q) « (m L A2(D)/ (X, m [T AL(D)), andQ(m;) < A™(m;). Itis common to compute these during
each iteration. In fact, computing the posterior margimalsften useful as an intermediate step for more
efficiently computing other messages. For example, direptementation of the above updates;ﬁé(f)
requires orded K time. However, ifQ)( f) is computed first (which takes ordéi time), thenp! (f) can

be updated in ordef K time usingp! (f) < Q(f)/A!(f), followed by normalization.

Fig. 5 shows the generalized EM algorithm where the E stepthsesum-product algorithm. Whereas
algorithms presented earlier have one update for eachbolaliahether in terms of its value or its distribu-
tion), the sum-product algorithm has one update for eack edtpe graph. Note that when updatiQg)
andQ(f), whereas variational methods adjust the effect of eaclititked term by raising it to a power,
the sum-product algorithm adds an offset that depends onlelthe other hidden variables account for
the data. In the M step, we have used a factorized approxdm#diQ) (m;, ) andQ(m;,b). In fact, these
cligue marginals can be computed using (13), to obtain a rexmet M step.

The sum-product algorithm as a variational method

The sum-product algorithm can be thought of as a variatite@inique. Recall that in contrast to
product-form variational techniques, structured vamiadil techniques account for more of the direct de-
pendencies (edges) in the original graphical model, byrigdl-distributions over disjoint substructures
(sub-graphs). However, one problem with structured vianal techniques is that dependencies induced
by the edges that connect the sub-graphs are accountedt®nagakly through the variational parameters
in the @-distributions for the sub-graphs. In contrast, the sundpct algorithm uses a set of sub-graphs
that coverall edges in the original graph and accounts for every direce¢l@pnceapproximately using
one or more&)-distributions.

To derive the sum-product algorithm as a variational metivaedfollow [38]. As described ear-
lier, the sum-product algorithm approximate$h|v) by Q(h), whereQ(h) is specified by marginals
Q) (h;) and clique marginal§)(h¢,). Notice that these sets of marginals coadiredges in the graphi-
cal model. Substituting the expression #(h, v) into (6) the free energy i$' = >, Q(h) InQ(h) —

Yok thk Q(hc,) Ingi(he,,vp, ). The second term is a local expectation that can usually tmgpuated or
approximated efficiently. However, since we don’'t have ddared expression fof)(h), the first term
is generally intractable. We can approximéié) inside the logarithm using thBethe approximation
Q(h) =~ ([T, Q(he,))/ (1, Q(hi)% "), whered; is the degree of;, i.e., the number of term& (/) that
h; appears in. The denominator is meant to account for the aywéxtween the clique marginals. For

trees, the Bethe approximation is exact (c.f. [26]).
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Substituting the Bethe approximation for the telm)(/), we obtain the Bethe free ener@¥eine,

which approximateghe true free energy;geine ~ F':

Foene = ) Y Qlhe,) nQ(he,) — Z (di = 1) ZQ JInQ(h) =Y > Qlhe,) ngi(hey, vp,)-

k hck k th

This approximation becomes exact if the graph is a tree. dfgtaph is not a tree, we can still try to
minimize Freine W.I.L. Q(h¢, ) and@Q(h;), but during optimization the marginals are usually not stesit
with any probability distribution oh. The statistical physics community has developed more t@mbput
more accurate approximations, such as the Kikuchi appratxam, which can be used to derive inference
algorithms [38].

The minimization ofF.i,e Must account for the marginalization constraints,: thk Qhe,) =1,
Vi), Q(hi) =1,andvk, Vi€ Cy thk\i Q(he,) = Q(h;), whereCy \ i is the set of indice§’; with
removed. The last constraint ensures that the singleblanmarginals and the clique marginals agree. De-
note the Lagrange multipliers for these constraintsy; and~;.(h;), where the last multiplier depends
on the value;, since there is one constraint for each valug;0fSetting the derivatives dfg.,,. Subject to
these constraints to 0, we obtaj{h;)% " o [],..cq, €+ andQ(he,) o gi(he,, vo,) [Ticq, €.

The sum-product algorithm can be viewed as an algorithnrézatrsively computes the Lagrange mul-
tipliers, ~v;x(h;), SO as to satisfy the above two equations and the margitializeonstraint everywhere
in the network. In the standard form of the sum-product albor, we defineu;.(h;) = evit(hi) to be
a “message” sent from variablg to functiong,. Using this notation, the equations and the marginal-
ization constraint give the following system of equatiorg(h,)% ! o [iice, tix(hs), Qlhe,) o
g(hews voy) [iee, win(hi), andys, Q(he,) = Q(hi).

One way of solving the system is to find a set of update equatidrose fixed points satisfy the system.
To do this, introduce “messages” that are sent from funsttorvariablesj;(h;) is a message sent from
function g, to variableh;. A fixed point of the sum-product updates in (10) to (13) $iassthe system of
equations. From (10), we ha¥@, ., 1ik(h;) = [xice, [niec, nok #ni(P) = (Tajec, iy ()7
Combining this with (12) we obtaifi[, ;... #jx(h;) = Q(h;)% " which satisfies the first equation in the
system. The second equation is satisfied trivially by suatipect update (13). To see how the third equa-
tion is satisfied, first sum ovéi, , ; in (13) and then use (11) to obtajrjhok\j Q(hey,) o pjn(hj) g (hy).
Then, substitute;,(h;) from (10) and use (12) to obtai hoys Qhey) o Ilajec, tnj(hy) o< Q(hy),

which satisfies the third equation.
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Method Update for mask variables Complexity

. . Q(m;=1/b,f) apN (zisppityi) 2
Exact inference (used in EM) Q0B T NG be) J°K
1. if apiN (ziippihy;) > 1
lterative conditional modes m; < (10 g )N (zisttniYvi) K
0, otherwise
. : apiN(zi; pfis¥ri) if m; =1
Gibbs sampling m; <— sample, . { a ffafi)N(ﬁzLif;ubif,wbi) o — 0 } K
. Q(m;=1) 1 (apilN (zispypipi)) @)
Mean field QUmi=0) < T, (1070 @), N (eriptns )20 T
iati Q(m;=1]f) apiN (zispgidyi)
Structured variational Qni=01) < a0 [T, M(zriani 0680 JK
. - F(hapiN (zismpiibss)
Sum-product algorithm QUmi=1) MLACILY, Al JK
p g Q(m;=0) F ol (F) (1= i) (X P2 (O)N (255008 001 ))

Table 1:A comparison of the updates for the mask variables for various algorithms discussed in this tutorial.

5.15 Annealing

In all of the above techniques, when searching@gh), local minima of /' can be a problem. One way
to try to avoid local minima is to introduce an inverse tenapere,5: F(5) = [, Q(h) InQ(h)/P(h,v)".
Wheng = 0, P(h,v)? is uniform and inference is easy. Whgn= 1, P(h,v)? = P(h,v) andF(3) = F,
the free energy we want to minimize. By searching ayevhile annealing the system — adjustifigrom

0 to 1 — the searcimayavoid local minima. In practice, the use of annealing rateedifficult question

of how to adjust? during inference.

6 Comparison of Algorithms

Each of the above techniques iteratively updates an appeiion to the exact posterior distribution while
searching for a minimum of the free energy. It is useful tagtiow the behaviors of the algorithms differ.
In Table 1, we give the update equations for the mask vasabléne occlusion model. These updates have
been written in a slightly different form than presented ig.5, to make comparisons between different
methods easier.

Whereas exact inference computes the distribution oydor every configuration of the neighboring
variablesh and f, ICM and Gibbs sampling select a new valuenofbased on theinglecurrent config-
uration ofb and f. Whereas updating all mask variables také# time for exact inference, it takes

time for ICM and Gibbs sampling.
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The update for the distributiof)(m;) overm; in the mean field (fully-factorized) variational method
can be compared to the update for exact inference. The pdadesimilar, but an important difference is
that each term that depends ¢ror b is replaced by its geometric average w.r.t. the currentidigion
Q(f) orQ(b). Each such geometric average talletime and there ar& mask variables, so updating all
mask variables takesK time.

In the structured variational method, the dependence;ain f is taken into account. The update for
the distribution@(m;| f) is similar to the update in the mean field method, but the géaeree/erages for
terms that depend ofiare not taken (since org-distribution is computed for each value ff. The term
that depends oh does not depend o), so its geometric average w.rli.can be computed once for all
f. The resulting updates for all mask variables takkés time, which is the same as for the mean field
method. This example shows that sometimes, accounting éoe mlependencies does not significantly
increase the time-complexity of a variational method.

Comparing the update fa@p(m,) in the sum-product algorithm with the corresponding updatie
fully-factorized variational method, we see that the geim@verages are replaced with arithmetic av-
erages. This is an important difference between the two oglsthWhile the geometric average favors
values ofm; that have high weight in all terms, the arithmetic averagerfavalues ofn; that have high
weight in at least 1 term. In this sense, the sum-productigo is more “inclusive” of possible config-
urations of hidden variables, than fully-factorized viaaal methods. Another difference between these
two methods is that while the variational method takes ayesav.r.t. the same distribution for all pixels,

Q(f) or Q(b), the sum-product algorithm uses pixel-specific distritwsip! () or p?(b).

7 Experimental Results

We explored the following algorithms for learning the paedens of the occlusion model described in
Sec. 2.1, using the data illustrated in Fig. 1: ICM, exact EBVhbs sampling; variational EM with a fully-
factorized posterior, structured variational EM, and tbemgproduct algorithm for EM. The MATLAB
scripts we used are available on our web sites.

We found that the structured variational method perfornmetbat identically to the fully-factorized
variational method, so we do not report results on the siradtvariational method. Generally, there
usually are structured variational approximations thaidpce bounds that are significantly better than
mean field, but are much more computationally efficient thaceinference (c.f. [12]).

Each technique can be tweaked in a variety of ways to imprevipnance. However, our goal is to

provide the reader with a “peek under the hood” of each imiggeengine and convey a qualitative sense
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of the similarities and differences between the technigeesve strove to make the initial conditions,
variable/parameter update scheduéds, as similar as possible. For details of training conditiaes, the
MATLAB scripts posted on our web sites.

The learning algorithms are at best guaranteed to convergdacal minimum of the free energy,
which is an upper bound on the negative log-likelihood ofdata. A common local minimum is a set of
images in which some of the true classes in the data are egpedtile the others are merged into blurry
images. To help avoid this type of local minimum, we providleel model with 14 clusters — 2 more than
the total number of different foregrounds and backgrou(iflsoo many clusters are used, the model tends
to overfit and learn specific combinations of foreground aackground.)

Each learning algorithm was run 5 times with different ramdimitializations and the run with the
highest log-likelihood was kept. For complex models, cotimmuthe log-likelihood is intractable and the
free energy should be used instead. The pixels in the claaasneere initialized to independent values
drawn from the uniform density if0, 1), the pixel variances were set to 1, and the mask probabidlity f
each pixel was set t@.5. All classes were allowed to be used in both foreground acldraund images.
To avoid numerical problems, the model variances and the pnd posterior probabilities on discrete
RVs f, b, m; were not allowed to drop belon) ©.

Fig. 8 shows the parameters after convergence of the lepedgorithms, and Fig. 9 shows the free
energy as a function of the number of computations needddgllearning. Most techniques managed
to find all classes of appearance, but the computationairegants varied by 2 orders of magnitude.
However, the greediest technique, ICM, failed to find alksks. The ability to disambiguate foreground
and background classes is indicated by the estimated mais&lgfitiesa (see also the example in Fig. 11),
as well as the total posterior probability of a class beirgpuss a background¥), and foregroundy(/).

Exact EM for the most part correctly infers which of the cksare used as foreground or background.
The only error it made is evident in the first two learned aassvhich are sometimes swapped to model
the combination of the background and foreground layeyalin the last example from the training set
in Fig. 1. This particular combination (12 images in the datais modeled with class 2 in the background
and class 1 in the foreground. This is a consequence of udiniadses, rather than the required 12 classes.
Without class 2, which is a repeated version of class 6, @dassuld be correctly used as a foreground
class for these examples. The other redundancy is classhiéh ends up with a probability close to zero,
indicating it is not used by the model.

The variational technique does not properly disambiguategifound from background classes, as is

evident from the total posterior probabilities of using ass in each layer/ andv®. For the classes that
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Figure 8: Comparison of the learned parameters of the model in Sec. 2.1 using various learning methods. For
each method, we show the mask probabilities «y, pixel means u;, and pixel variances 1 for each class & as
images, where black indicates a variance of 0. For exact EM and variational EM, we also show the total posterior
probability that each class is used in modeling the foreground (vf) and background (°): v, = % > QUf® = k),
vi=x%3, QY = k). These indicate when a class accounts for too much or too little data. Note that there is no

reason for the same class index for two techniques to correspond to the same object.
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Figure 9:Free energy versus number of floating point operations used during training, for ICM, exact EM, and EM
using Gibbs sampling, variational inference, and the sum-product algorithm in the E step.

exact EM always inferred as background classes, the vamalttechnique learned masks probabilities

that allow cutting holes in various places in order to pldmediasses in the foreground and show the faces
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Figure 10:How good are the free energy approximations to the negative log-likelihood? In (a) we compare the
mean-field variational free energy, the point estimate free energy and the negative log-likelihood during variational
EM. In (b) we compare the same three quantities during exact EM. To further illustrate the advantage of modeling
uncertainty in the posterior, in (c), we show the point-estimate free energy and the negative log-likelihood during
ICM learning. In (d), we compare the same two quantities during Gibbs sampling EM.

behindthem. The mask probabilities for these classes show ostlfidaces and have values that are
between zero and one indicating that the correspondindgspaxe not consistently used when the class is
picked to be in the foreground. Such mask values reduce thealblikelihood of the data and increase
the variational free energy, because the mask likelihBoa;|f) = o'/(1 — as;)' ™ has the highest
value whenoy; is either0 or 1, andm; has the same value. Consequently,the variational freg@gmner
always somewhat above the negative likelihood of the datarfp given parameters (see Fig. 10a). Similar
behavior is evident in the results of other approximateniegr techniques that effectively decouple the
posterior over the foreground and background classes, aubbtopy belief propagation (last column of
Fig. 8), and the structured variational technique. Noté¢ shaall differences in free energy may or may

not indicate a difference in the visual quality of the sajati
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One concern that is sometimes raised about minimizing e énergy, is that the approximage
distribution used for the hidden RVs may not be well-suitedhte model, causing the free energy to be
a poor bound on the negative log-likelihood. However, asifgal out in [18], since the free energy is
F(Q,P) = D(Q,P) — InP(v) (see (6)), if two models fit the data equally wdlh °(v) is the same),
minimizing the free energy will select the model that makes approximate)-distribution more exact
(selectP to minimize D(Q, P)).

We see this effect experimentally in Fig. 10. In Fig. 10a wevslhe free energy for the variational
mean-field method during 30 iterations of learning. In thase; a single iteration corresponds to the
shortest sequence of steps that update all variationahyedeas Q) (b), Q(f), Q(m;) for each training
case) and all model parameters. In the same plot, we showubenegative log-likelihood after each
iteration. We also show the point estimate of the free enesdych is evaluated at the modes of the
variational posterior. Since the parameters are updated tise variational technique, the variational
bound is the only one of the curves that theoretically hasetanlonotonic. While the negative of the
log-likelihood is consistently better than the other esties, the boundoesappear to be relatively tight
most of the time. Note that early on in learning, the poinineate gives a poor bound, but after learning
is essentially finished, the point estimate gives a good @ourhe fact that ICM performs poorly for
learning, but performs well for inference after learninghgsa better technique, indicates the importance
of accounting for uncertaintgarly in the learning process.

As shown in Fig. 10b, if the same energies are plotted for Hrampeters after each iterationeact
EM, the curves converge by the 5th iteration. Here, the nfiedah-variational free energy is computed
using the factorized posteri6}(f)Q(b) [ [; Q(m;) fitted by minimizing the KL distance to the exact pos-
terior P(f, b, m|z), while the point estimate is computed by further discardingrything but the peaks
in the variational posterior. When the posterior is stithdd early in the learning process, the variational
posterior leads to a tighter bound on the negative logthkeld than the point estimate. However, the
point estimate catches up quickly as EM converges and tegaterior itself becomes peaked.

If the parameters are updated using ICM (which uses poimhagts), as shown in Fig. 10c, poor local
minima are found and both the free energy and the true negkatiylikelihood are significantly worse
than the same quantities found using exact EM and varidtiehh Also, even after convergence, the
point estimate free energy is not a tight bound on the negéiiy-likelihood.

These plots are meant to illustrate that while fairly sewgngroximations of the posterior can provide a
tight bound near the local optimum of the log-likelihoodsithe behavior of the learning algorithm in the

early iterations that determines how close an approxineatenique will get to a local optimum of the the
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true log-likelihood. In the early iterations, to give the deba chance to get to a good local optimum, the
model parameters are typically initialized to model bro&ldributions, allowing the learning techniques
to explore more broadly the space of possibilities througatively flat posteriorseg.g, in our case we
initialize the variances to be equal to one, correspondirggstandard deviation of 100% of the dynamic
range of the image). If the approximate posterior makesdyreecisions early in the learning process,
it is often difficult to correct the errors in later iterat@nlCM, while very fast, is the most greedy of all
the techniques. Even if variances are initialized to lar@ees, ICM makes poor, greedy decisions for the
configuration of the hidden RVs early on in learning, and do®gecover from these mistakes.

Importantly, even computationally simple ways of accaogtfor uncertainty can improve perfor-
mance significantly, in comparison with ICM. In Fig. 10d, weow the point estimate free energy and
the negative log-likelihood when the ICM technique is madifio take some uncertainty into account, by
performing a Gibbs sampling step for each RV, instead ofipizkhe most probable valtieThis method
does not increase the computational cost per iteration acsddo ICM, but it obtains much better values
of both energies. Sampling sometimes makes the free enayggevduring the learning, but allows the
algorithm to account for uncertainty early on, when the fposterior distributions for RVs are broad.
While this single-step Gibbs sampling technique obtairtebenergies than ICM, it does not achieve the
lower energies obtained by exact EM and variational EM.

The effect of approximate probabilistic inference on theual quality of the parameters is illustrated
in Fig. 11, where we show how the model parameters changagiseveral iterations of EM where the
E step is performed using the sum-product algorithm. On éneifht of the figure, we illustrate the
inference over hidden RVs (foreground clgs$ackground classand the maskn) for 2 training cases.
After the first iteration, while finding good guesses for thesses that took part in the formation process,
the foreground and background are incorrectly invertetiéyposterior for the first training case, and this
situation persists even after convergence. Interestibglgpplying an additional 2 iterations of exact EM
after 30 iterations of sum-product EM, the model leaves dicallminimum. This is evident not only in
the first training case, but also in the rest of the trainingadas evidenced by the erasure of holes in the
estimated mask probabilities for the background classke.s@me improvement can be observed for the
variational technique. In fact, adding a small number ofceXaM iterations to improve the results of
variational learning can be seen as part of the same frarkevi@ptimizing the variational free energy,

except that not only the parameters of the variational pimsidut also its form can be varied to increase

SNote that because this technique does not use an ensembl®plies, it is not guaranteed to minimize free energy at each
step.
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Figure 11:Anillustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration,
we show: (a) model parameters, including mask priors, mean and variance parameters for each class, and (b)
inferred distribution over the mask and the most likely foreground and background class for two of the 300 training
cases. Although the algorithm (Sec. 5.14) converges quickly, it cannot escape a local minimum caused by an
overly-greedy decision made in the very first iteration, in which the foreground object is placed into the background
layer for the first illustrated training case. In this local minimum, some “background classes” (e.g., kK = 12) are used
as foregrounds (see the mask). An additional 2 iterations of exact EM (Sec. 5.9), which uses the exact posterior
Q(f,b)Q(m|f,b), allows the inference process to flip the foreground and background where needed, and escape
the local minimum (see the mask of class £ = 12 after EM).

the bound at each step.

When the nature of the local minima to which a learning teghaiis susceptible is well understood,
it is often possible to change either the model or the formhefapproximation to the posterior, to avoid
these minima without too much extra computation. In theusioh model, the problem is the background-

foreground inversion, which can be avoided by simply testire inversion hypothesis and switching the
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inferred background and foreground classes to check ifdhisrs the free energy, rather than exploring all
possible combinations of classes in the exact posterioeldgant way of doing this within the variational
framework is to add an additional “switch” RV to the model,iethin the generative process can switch
the two classes. Then, the mean field posterior would havenpaoent that models the uncertainty about
foreground-background inversion. While this would renther variational learning two times slower, it

would still be much faster than the exact EM.

8 Future Directions

In our view, the most interesting and potentially high-irapareas of current research include introduc-
ing effective representations and models of data; invgmiew inference and learning algorithms, that
can efficiently infer combinatorial explanations of datayveloping real-time, or near-real-time, modu-
lar software systems that enable researchers and developeraluate the effectiveness of combinations
of inference and learning algorithms for solving real-wlothsks; advancing techniques for combining
information from multiple sourceg,g, camera images, spectral features, microphones, tetitetiméor-
mation,etc, developing inference algorithms for active tasks, thegaively account for uncertainties in
the sensory inputs and the model of the environment, whemgalecisions about investigating the envi-
ronment. In our view, a core requirement in all of these dio&xs of research is that uncertainty should be
properly accounted for, both in the representations oflprab and in adapting to new data. Large-scale,
hierarchical probability models and efficient inferencd &arning algorithms will play a large role in the

successful implementation of these systems.
References

[1] E. H. Adelson and P. Anandan. Ordinal characteristic&raisparency. IfProceedings of AAAI
Workshop on Qualitative Visiod990.

[2] O. E. Barndorff-NielsonInformation and Exponential Familie®Viley Chichester, 1978.

[3] J. Besag. On the statistical analysis of dirty picturdsurnal of the Royal Statistical Society B
48:259-302, 1986.

[4] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spikkgdter. Probabilistic Networks and
Expert SystemsSpringer, New York NY., 1999.

a7



[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. G. Cowell, A. P. Dawid, and P. Sebastiani. A comparisbrsequential learning methods for

incomplete dataJournal of Bayesian Statistic5:581-588, 1996.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likebod from incomplete data via the
EM algorithm. Proceedings of the Royal Statistical Socjé&y39:1-38, 1977.

D. Cahan (editor)Hermann von HelmholtaJniversity of California Press, Los Angeles CA., 1993.

W. Freeman and E. Pasztor. Learning low-level visionPtaceedings of the International Confer-

ence on Computer Visippages 1182-1189, 1999.

B. J. Frey. Extending factor graphs so as to unify dird@ad undirected graphical models.Rro-
ceedings of the Nineteenth Conference on Uncertainty ifiddal Intelligence Morgan Kaufmann,

Acapulco, Mexico, 2003.

B. J. Frey and N. Jojic. Transformed component analykigt estimation of spatial transformations
and image components. Rroceedings of the IEEE International Conference on Comp\uision
September 1999.

B. J. Frey and N. Jojic. Transformation-invariant ¢ersng using the EM algorithmEEE Transac-

tions on Pattern Analysis and Machine Intelligen2g(1), 2003.

B. J. Frey, N. Jojic, and A. Kannan. Learning appearamzktransparency manifolds of occluded ob-
jectsin layers. IfProceedings of the IEEE Conference on Computer Vision attéffeRecognition
2003.

B. J. Frey, R. Koetter, and N. Petrovic. Very loopy bkfeopagation for unwrapping phase im-
ages. In T. G. Dietterich, S. Becker, and Z. Ghahramanipegjifdvances in Neural Information

Processing Systems.IMIT Press, 2002.

B. J. Frey and D. J. C. MacKay. A revolution: Belief prgadion in graphs with cycles. In M. I.
Jordan, M. |. Kearns, and S. A. Solla, editofglvances in Neural Information Processing Systems
1997, Volume 1(pages 479-485. MIT Press, 1998.

S. Geman and D. Geman. Stochastic relaxation, Giblighiifon and the Bayesian restoration of

images.|IEEE Transactions on Pattern Analysis and Machine Intelige 6:721-741, 1984.

48



[16] Z. Ghahramani and M. Beal. Propagation algorithms foiational Bayesian learning. In T. Leen,
T. Dietterich, and V. Tresp, editorg\dvances in Neural Information Processing SystemaVil3
Press, 2001.

[17] D. Heckerman. A tutorial on learning with Bayesian netls. In M. |. Jordan, editot.earning in

Graphical ModelsKluwer Academic Publishers, Norwell MA., 1998.

[18] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wsleep algorithm for unsupervised
neural networksScience268:1158-1161, 1995.

[19] G. E. Hinton and T. J. Sejnowski. Learning and releagnmBoltzmann machines. In D. E. Rumel-
hart and J. L. McClelland, editorRarallel Distributed Processing: Explorations in the Motruc-
ture of Cognitionvolume I, pages 282—-317. MIT Press, Cambridge MA., 1986.

[20] N. Jojic and B. J. Frey. Learning flexible sprites in vadayers. InProceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognit@@01.

[21] N. Jojic, B. J. Frey, and A. Kannan. Epitomic analysiappearance and shape.Rroceedings of

the IEEE International Conference on Computer Visi8aptember 2003.

[22] N. Jojic, N. Petrovic, B. J. Frey, and T. S. Huang. Transfed hidden markov models: Estimating
mixture models of images and inferring spatial transforame in video sequences. Rroceedings

of the IEEE Conference on Computer Vision and Pattern RattognJune 2000.

[23] N. Jojic, P. Simard, B. J. Frey, and D. Heckerman. Sdpayappearance from deformation. In

Proceedings of the IEEE Conference on Computer Vision attéfPeRecognitionJuly 2001.

[24] M. 1. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K.ISAn introduction to variational methods
for graphical models. In M. I. Jordan, editdrearning in Graphical ModelsKluwer Academic
Publishers, Norwell MA., 1998.

[25] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Fagmphs and the sum-product algorithm.
IEEE Transactions on Information Theory, Special Issue ode3 on Graphs and Iterative Algo-
rithms 47(2):498-519, February 2001.

[26] S. L. Lauritzen.Graphical Models Oxford University Press, New York NY., 1996.

49



[27] D. J. C. MacKay. Bayesian neural networks and densitywoiks. Nuclear Instruments and Methods
in Physics Resear¢l354:73-80, 1995.

[28] M. Mézard, G. Parisi, and R. Zecchina. Analytic andagithmic solution of random satisfiability
problems.Science297:812-815, 2002.

[29] T.P.Minka. Expectation propagation for approximatg/Bsian inference. ldncertainty in Artificial

Intelligence 2001Morgan Kaufmann, Seattle, Washington, 2001.

[30] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Lgopelief propagation for approximate
inference: An empirical study. Ibncertainty in Artificial Intelligence 1999%tockholm, Sweden,
1999.

[31] R. M. Neal. Bayesian mixture modeling by Monte Carlo siation. Technical Report CRG-TR-91-
2, University of Toronto, 1991.

[32] R. M. Neal. Probabilistic inference using Markov chonte Carlo methods. University of Toronto
Technical Report, 1993.

[33] R. M. Neal and G. E. Hinton. A view of the EM algorithm thastifies incremental, sparse, and other
variants. In M. I. Jordan, editoLearning in Graphical Modelspages 355—-368. Kluwer Academic
Publishers, Norwell MA., 1998.

[34] A.Y.Ngand M. |. Jordan. A comparison of logistic regsesm and naive Bayes. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editgkslvances in Neural Information Processing System$/1%
Press, Cambridge MA., 2002.

[35] J. Pearl.Probabilistic Reasoning in Intelligent SystenhMorgan Kaufmann, San Mateo CA., 1988.

[36] M. J. Wainwright and M. I. Jordan. Graphical models,&aonal inference and exponential families.
Technical Report 649, UC Berkeley, Dept. of Statistics,200

[37] Y. Weiss and W. Freeman. On the optimaility of solutiarighe max-product belief propagation
algorithm in arbitrary graphdEEE Transactions on Information Theory, Special Issue odé&3 on

Graphs and lIterative Algorithmg7(2):736—744, February 2001.

[38] J. Yedidia, W. T. Freeman, and Y. Weiss. Understandilgebpropagation and its generalizations.

In Proceedings of the International Joint Conference on Aitfilntelligence 2001.

50



