KEY IDEA 1: PUSH SUM INSIDE PRODUCTS.

KEY IDEA 2: USE (NON-SERIAL) DYNAMIC PROGRAMMING TO CACHE SHARED SUBEXPRESSIONS.

\[P(J) = \sum L \sum S \sum G \sum R \sum I \sum D \sum C P(C, D, I, G, S, L, J, H) \]
\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \sum \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]

\[= \sum L \sum S \sum G \sum R \sum I \sum D \sum C \phi_j(L, S) \phi_k(L, G) \phi_u(H, G, J) \phi_d(S, I) \phi_l(I, J) \phi_g(G, I, D) \phi_c(C) \phi_d(D, C) \]
Bucket elimination

- We first multiply together all factors that mention C to create $\psi_1(C, D)$, and store the result in C’s bucket:

$$P(J) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \sum_H \phi_H(G, J) \sum_I \phi(\delta(I, J)) \sum_D \phi(D, I, D) \sum_c \phi_c(C) \phi_D(D, C)$$

- Then we sum out C to make $\tau_1(D)$:

$$P(J) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \sum_H \phi_H(G, J) \sum_I \phi(\delta(I, J)) \sum_D \phi(D, I, D) \sum_c \phi_c(C, D)$$

- and multiply into D’s bucket to make $\psi_2(G, I, D)$:

$$P(J) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \sum_H \phi_H(G, J) \sum_I \phi(\delta(I, J)) \sum_D \phi(D, I, D) \sum_c \phi_c(G, I, D)$$

- Then we sum out D to make $\tau_2(G, I)$:

$$P(J) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \sum_H \phi_H(G, J) \sum_I \phi(\delta(I, J)) \sum_D \phi(D, I, D) \sum_c \phi_c(G, I, D)$$

- and multiply into I’s bucket to make $\psi_3(G, S, I)$, etc.

Computing the partition function

- Let

$$P(X_{1:n}) = \frac{1}{Z} P'(X_{1:n})$$

$$= \frac{1}{Z} \prod_c \phi_c(X_c)$$

- For Bayes nets, $Z = 1$ (since each ϕ_c is a CPD).

- If we marginalize out all variables except Q is a CPD).

$$F(Q) = \sum_{X_{1:n}} \prod_c \phi_c(X_c)$$

- Hence if $Q = \emptyset$, we get

$$F(\emptyset) = \sum_{X_{1:n}} \prod_c \phi_c(X_c) = Z$$

Dealing with evidence

- Method 1: we instantiate observed variables to their observed values, by taking the appropriate “slices” of the factors

 e.g., evidence $I = 1, H = 0$:

$$P(I, H = 1, J = 0) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \phi_H(H = 0, G, J) \delta(I, J = 1) \phi(\delta(I, J = 1)) \sum_D \phi(D, I = 1, D) \sum_c \phi_c(C) \phi_D(D, C)$$

- Method 2: we multiply in local evidence factors $\phi_1(X_i)$ for each node. If X_i is observed to have value x_i^e, we set

$$\phi_1(X_i) = \delta(X_i, x_i^e).$$

$$P(I, H = 1, J = 0) = \sum_L \sum_s \phi_L(J, L, S) \sum_C \phi_C(L, G) \phi_H(H = 0, G, J) \delta(H, 0) \delta(I, J = 1) \phi(\delta(I, J = 1)) \sum_D \phi(D, I = 1, D) \sum_c \phi_c(C) \phi_D(D, C)$$

- Once we instantiate evidence, the final factor is

$$F(Q, e) = P'(Q, e)$$

- Hence

$$P(Q|e) = \frac{P(Q, e)}{P(e)} = \frac{P(Q, e)}{(1/Z) P'(Q, e)}$$

$$= \frac{(1/Z) \sum_{q'} P'(q', e)}{(1/Z) \sum_{q'} \sum_{q'} F(q', e)}$$

- and

$$P(e) = \sum_{q'} P(q', e) = (1/Z) \sum_{q'} F(q', e)$$
Ordering 1

\[
P(J) = \sum_{i} \sum_{L} \sum_{S} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{G}(I, D) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)
\]

\[
= \sum_{i} \sum_{L} \sum_{S} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \phi_{G}(I, D) \phi_{D}(D, C) \tau_{D}(I, J)
\]

\[
= \sum_{i} \sum_{L} \sum_{S} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \phi_{S}(S, I) \phi_{I}(I) \tau_{I}(G, I) \tau_{I}(G, S)
\]

\[
= \sum_{i} \sum_{L} \phi_{I}(L, G) \phi_{I}(I) \tau_{I}(G, I) \tau_{I}(G, S)
\]

\[
= \sum_{i} \sum_{L} \phi_{I}(L, G) \tau_{I}(L, I) \tau_{I}(I, S)
\]

\[
= \sum_{I} \tau_{I}(L, I) \tau_{I}(I, S)
\]

Different ordering

\[
P(J) = \sum_{i} \sum_{L} \sum_{S} \phi_{L}(D, C) \sum_{H} \sum_{I} \sum_{S} \phi_{I}(I) \phi_{S}(S, I) \sum_{G} \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J)
\]

\[
= \sum_{i} \sum_{L} \sum_{S} \phi_{L}(D, C) \sum_{H} \sum_{I} \sum_{S} \phi_{I}(I) \phi_{S}(S, I) \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J) \tau_{D}(L, J)
\]

\[
= \sum_{i} \sum_{L} \sum_{S} \phi_{I}(I) \phi_{S}(S, I) \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J) \tau_{D}(L, J)
\]

\[
= \sum_{i} \sum_{L} \phi_{I}(I) \phi_{S}(S, I) \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J) \tau_{D}(L, J)
\]

\[
= \sum_{i} \sum_{L} \phi_{I}(I) \phi_{S}(S, I) \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J) \tau_{D}(L, J)
\]

\[
= \sum_{i} \sum_{L} \phi_{I}(I) \phi_{S}(S, I) \phi_{G}(I, D) \phi_{G}(L, D) \phi_{G}(H, G, J) \tau_{D}(L, J)
\]

Elimination as graph transformation

- Start by moralizing the graph (if necessary), so all terms in each factor form a (sub)clique.
- When we eliminate a variable \(X_i \), we connect it to all variables that share a factor with \(X_i \) (to reflect new factor \(\tau_i \)). Such edges are called “fill-in edges” (e.g., \(\sum_i \) induces \(G - S \)).

Cliques and factors

- Let \(I_{G,\prec} \) be the (undirected) graph induced by applying variable elimination to \(G \) using ordering \(\prec \).
- Thm 7.3.4: Every factor generating by VE is a subclique of \(I_{G,\prec} \).
- Thm 7.3.4: Every maximal clique of \(I_{G,\prec} \) corresponds to an intermediate term created by VE.
- e.g., \(\prec = (C, D, I, H, G, S, L) \), max cliques = \{\{C, D\}, \{D, I, G\}, \{G, L, S, J\}, \{G, J, H\}, \{G, I, S\}\}
Complexity of variable elimination

- Consider an ordering \prec.
- Define the induced width of the graph as the size of the largest factor (induced clique) minus 1:
 $$W_{G, \prec} = \max_i |\psi_i| - 1$$
- Define the width of the graph as the minimal induced width:
 $$W_G = \min_{\prec} W_{G, \prec}$$
- e.g., width of an undirected tree is 1 (cliques = edges).
- Thm: the complexity of VarElim is $O(NV^{W_G+1})$.

Chordal (triangulated) graphs

- An undirected graph is chordal if every loop $X_1 - X_2 - \cdots - X_k - X_1$ for $k \geq 4$ has a chord, i.e., an edge $X_i - X_j$ for non-adjacent i, j.
- Thm 7.3.6: every induced graph is chordal.
- The left graph is not chordal, because the cycle $2 - 6 - 8 - 4 - 2$ does not have any of the chords $2 - 8$ or $6 - 4$.
- The right graph is chordal; the max cliques are
 $$\{1, 2, 4\}, \{2, 3, 6\}, \{4, 7, 8\}, \{6, 8, 9\}, \{2, 4, 5, 6\}, \{4, 5, 6, 8\}$$

Max cardinality search

- Thm 7.3.9: $X - Y$ is a fill-in edge if and only if there is a path $X - Z_1 - \cdots - Z_k - Y$ s.t. $Z_i \prec X$ and $Z_i \prec Y$ for all $i = 1, \ldots, k$.
- Hence should try to find nodes X where many of their neighbors Z are already ordered, so $X \prec Z$.

```matlab
function pi = max-cardinality-search(H)
    mark all nodes as unmarked
    for i=N downto 1
        X = the unmarked variable with the largest number of marked neighbors
        pi(X) = i
        mark X
    end
```
- Thm 7.3.10: if G is chordal, and $\prec = \text{max cardinality ordering}$, then $I_{G, \prec}$ has no fill-in edges.

Triangulation

- Thm 7.3.8: finding the ordering \prec which minimizes the max induced clique size, $W_{G, \prec}$, is NP-hard.
- Max cardinality ordering is only optimal if G is already triangulated.
- In practice, people use greedy (one-step-lookahead) algorithms:

```matlab
function pi = find-elim-order-greedy(H, score-fn)
    for i=1:N
        X = the node that minimizes score-fn(H, X)
        pi(X) = i
        Add edges between all neighbors of X
        Remove X from H
    end
```
Triangulation: heuristic cost functions score\((H, X)\)

- Min-fill (min discrepancy): minimize number of fill-ins.
- Min-size: minimize size of induced clique, \(|C_t|\).
- Min-weight: minimize number of states of induced clique, \(\prod_{j \in C_t} |v_j|\).
- Min-weight works best in practice: a 3-clique of binary nodes is better than a 2-clique of ternary nodes, since \(2^3 < 3^2\).

Inefficiencies of cutset conditioning

- If we condition on \(U\), we repeatedly call VarElim once for each value of \(|U|\).
- This may involved redundant work.
- Left: if we condition on \(A_k\), we repeatedly eliminate \(A_1 \rightarrow \cdots \rightarrow A_{k-1}\).
- Right: if we condition on \(A_2, A_4, \ldots, A_k\), we break all the loops, but the cutset has size \(V^{k/2}\), whereas VarElim would take \(O(kV^3)\).

Conditioning

- We can instantiate some hidden variables, perform VarElim on the rest, and then repeat for each possible value, e.g.,
 \[P(J) = \sum_i P(J | I = i) P(I = i) \]
- If the resulting subgraph is a tree, this is called cutset conditioning.

Conditioning vs VarElim is space-time tradeoff

- Thm 7.5.6: Conditioning on \(L\) takes the same amount of time as it would to do VarElim on a modified graph, in which we connect \(L\) to all other nodes (i.e., add \(L\) to every factor).

- Thm 7.5.7: The space required is that needed to store the induced cliques in the subgraph created by removing all links from \(L\) (i.e., remove \(L\) from every factor).
- Hence conditioning takes less space but more time.
Exploiting local structure

- VarElim exploits the factorization properties implied by the graph to push sums inside products.
- Hence VarElim works for any kind of factor.
- However, some factors have local structure which can be exploited to further speed up inference.
- Two main methods:
 1. Make local structure graphically explicit (by adding extra nodes), then run stand VarElim on expanded graph; or
 2. Implement the \sum and \times operators for structured factors in a special way.
- We will focus on the first method, since it can be used to speed up any graph-based inference engine.
- David Poole has focused on the second method (structured VarElim).

Independence of causal influence (ICI)

- In general, a node with k parents creates a factor of size V^{k+1} to represent its CPD $P(Y|X_{1:k})$.
- Hence it takes $O(V^{k+1})$ time to eliminate this clique, and there are $O(V^{k+1})$ parameters to learn.
- If the parents X_i do not interact with each other (only with the child), the family can be eliminated in $O(k)$ time, and there are only $O(k)$ parameters to learn.
- e.g., noisy-or, generalized linear model

Exploiting context-specific independence (CSI)

- Suppose $P(Y|A, X_{1:4})$ is represented as a decision tree. Then we can make the structure explicit using multiplexer nodes.
- If $Y \perp X_3, X_4|A = 1$ and $Y \perp X_1, X_2|A = 0$, then

\[P(Y = 0|X_{1:4}) = q_0 \prod_{i=1}^{4} q_i^{X_i} \]
(Recursive) conditioning provides a simpler method of exploiting CSI.

Project idea: implement both methods and compare.

Stochastic context free grammars (SCFGs)

- Represent production rule $X \rightarrow YZ$ by a binary variable R_1, and $X \rightarrow Y'Z'$ by R_2. If $R_1 = 1$, the structure of the graph is different than if $R_2 = 1$.

- If you construct a graphical model given a grammar and a sentence of length N, the treewidth is $O(N)$, suggesting inference takes $O(2^N)$.
- However, we can do exact inference using the inside-outside algorithm in $O(N^3)$ time.
- The reason is that there is a lot of CSI.

Project idea: implement this algorithm and compare to inside-outside algorithm.