Probabilistic graphical models
CPSC 532c (Topics in AI)
Stat 521a (Topics in multivariate analysis)

Lecture 7

Kevin Murphy

Monday 4 October, 2004
Homework 3 due Wednesday, 9.30am; send by email to crowley@cs.ubc.ca.
Variable elimination algorithm

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.

\[
P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)
\]

\[
= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C)P(D|C)P(I)P(G|I, D)P(S|I)P(L|G)P(J|L, S)P(H|G, J)
\]

\[
= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_C(C)\phi_D(D, C)\phi_I(I)\phi_G(G, I, D)\phi_S(S, I)\phi_L(L, G)\phi_J(J, L, S)\phi_H(H, G, J)
\]

\[
= \sum_{L} \sum_{S} \phi_J(J, L, S) \sum_{G} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_S(S, I)\phi_I(I) \sum_{D} \phi(G, I, D) \sum_{C} \phi_C(C)\phi_D(D, C)
\]
Working right to left (peeling)

\[
P(J) = \sum_{L} \sum_{S} \sum_{G} \phi_J(J, L, S) \sum_{L} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_S(S, I) \phi_I(I) \sum_{D} \phi(G, I, D) \sum_{C} \phi_C(C) \phi_D(D, C) \\
= \sum_{L} \sum_{S} \sum_{G} \phi_J(J, L, S) \sum_{L} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_S(S, I) \phi_I(I) \sum_{D} \phi(G, I, D) \tau_1(D) \\
= \sum_{L} \sum_{S} \sum_{G} \phi_J(J, L, S) \sum_{L} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_S(S, I) \phi_I(I) \tau_2(G, I) \\
= \sum_{L} \sum_{S} \sum_{G} \phi_J(J, L, S) \sum_{L} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \tau_3(G, S) \\
= \sum_{L} \sum_{S} \sum_{G} \phi_J(J, L, S) \sum_{L} \phi_L(L, G) \tau_4(G, J) \tau_3(G, S) \\
= \sum_{L} \sum_{S} \phi_J(J, L, S) \tau_5(J, L, S) \\
= \sum_{L} \tau_6(J, L) \\
= \tau_7(J)
\]
Bucket elimination

- We first multiply together all factors that mention C to create $\psi_1(C, D)$, and store the result in C’s bucket:

$$P(J) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \phi(G, I, D) \sum_C \phi_C(C) \phi_D(D, C) \underbrace{\psi_1(C, D)}_{\psi_1(C, D)}$$

- Then we sum out C to make $\tau_1(D)$:

$$P(J) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \phi(G, I, D) \sum_C \psi_1(C, D) \underbrace{\tau_1(D)}_{\tau_1(D)}$$

- and multiply into D’s bucket to make $\psi_2(G, I, D)$:

$$P(J) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \phi(G, I, D) \sum_C \tau_1(D) \underbrace{\psi_2(G, I, D)}_{\psi_2(G, I, D)}$$

- Then we sum out D to make $\tau_2(G, I)$:

$$P(J) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \psi_2(G, I, D) \underbrace{\tau_2(G, I)}_{\tau_2(G, I)}$$

- and multiply into I’s bucket to make $\psi_3(G, S, I)$, etc.
Computing the partition function

- Let

\[P(X_{1:n}) = \frac{1}{Z} P'(X_{1:n}) \]
\[= \frac{1}{Z} \prod_c \phi_c(X_c) \]

- For Bayes nets, \(Z = 1 \) (since each \(\phi_c \) is a CPD).

- If we marginalize out all variables except \(Q \), the result is

\[F(Q) = \sum_{X_{1:n} \setminus Q} \prod_c \phi_c(X_c) \]

- Hence if \(Q = \emptyset \), we get

\[F(\emptyset) = \sum_{X_{1:n}} \prod_c \phi_c(X_c) = Z \]
Dealing with evidence

- Method 1: we instantiate observed variables to their observed values, by taking the appropriate “slices” of the factors
- e.g., evidence $I = 1, H = 0$:

$$P(J, I = 1, H = 0) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \phi_H(H = 0, G, J) \phi_S(S, I = 1) \phi_I(I = 1) \sum_D \phi(G, I = 1, D) \sum_C \phi_C(C) \phi_D(D, C)$$

- Method 2: we multiply in local evidence factors $\phi_i(X_i)$ for each node. If X_i is observed to have value x_i^*, we set $\phi_i(X_i) = \delta(X_i, x_i^*)$.

$$P(J, I = 1, H = 0) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \phi_H(H, G, J) \delta(H, 0) \sum_I \phi_S(S, I) \phi_I(I) \delta(I, 1) \sum_D \phi(G, I, D) \sum_C \phi_C(C) \phi_D(D, C)$$
Dealing with evidence

- Once we instantiate evidence, the final factor is

\[F'(Q, e) = P'(Q, e) \]

- Hence

\[P(Q|e) = \frac{P(Q, e)}{P(e)} = \frac{P(Q, e)}{\sum_{q'} P(q', e)} = \frac{(1/Z)P'(Q, e)}{(1/Z) \sum_{q'} P'(q', e)} = \frac{F(Q, e)}{\sum_{q'} F(q', e)} \]

- and

\[P(e) = \sum_{q'} P(q', e) = (1/Z) \sum_{q'} F(q', e) \]
\[P(J) = \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \phi(G, I, D) \sum_C \phi_C(C) \phi_D(D, C') \]

\[= \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \sum_D \phi(G, I, D) \tau_1(D) \]

\[= \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \sum_I \phi_S(S, I) \phi_I(I) \tau_2(G, I) \]

\[= \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \sum_H \phi_H(H, G, J) \tau_3(G, S) \]

\[= \sum_L \sum_S \phi_J(J, L, S) \sum_G \phi_L(L, G) \tau_4(G, J) \tau_3(G, S) \]

\[= \sum_L \sum_S \phi_J(J, L, S) \tau_5(J, L, S) \]

\[= \sum_L \tau_6(J, L) \]

\[= \sum_L \tau_7(J) \]
Different Ordering

\[P(J) = \sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{I} \phi_{I}(I) \phi_{S}(S, I) \sum_{G} \phi_{G}(G, I, D) \phi_{L}(L) \phi_{H}(H, G, J) \]

\[\tau_{1}(I, D, L, J, H) \]

\[= \sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{I} \phi_{I}(I) \phi_{S}(S, I) \tau_{1}(I, D, L, J, H) \]

\[\tau_{2}(D, L, S, J, H) \]

\[= \sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \tau_{2}(D, L, S, J, H) \]

\[\tau_{3}(D, L, J, H) \]

\[= \sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \tau_{3}(D, L, J, H) \]

\[\tau_{4}(D, J) \]

\[= \sum_{D} \sum_{C} \phi_{D}(D, C) \tau_{4}(D, J) \]

\[\tau_{5}(D, J) \]

\[= \sum_{D} \sum_{C} \phi_{D}(D, C) \tau_{5}(D, J) \]

\[\tau_{6}(D, J) \]

\[= \sum_{D} \tau_{6}(D, J) \]

\[\tau_{7}(J) \]
Elimination as graph transformation

- Start by moralizing the graph (if necessary), so all terms in each factor form a (sub)clique.
- When we eliminate a variable X_i, we connect it to all variables that share a factor with X_i (to reflect new factor τ_i). Such edges are called “fill-in edges” (e.g., \sum_I induces $G - S$).
Let $I_{G, \prec}$ be the (undirected) graph induced by applying variable elimination to G using ordering \prec.

- Thm 7.3.4: Every factor generating by VE is a subclique of $I_{G, \prec}$.
- Thm 7.3.4: Every maximal clique of $I_{G, \prec}$ corresponds to an intermediate term created by VE.
- e.g., $\prec = (C, D, I, H, G, S, L)$, max cliques =
 \[\{C, D\}, \{D, I, G\}, \{G, L, S, J\}, \{G, J, H\}, \{G, I, S\} \]
COMPLEXITY OF VARIABLE ELIMINATION

• Consider an ordering \(\prec \).
• Define the induced width of the graph as the size of the largest factor (induced clique) minus 1:
 \[W_{G, \prec} = \max_i |\psi_i| - 1 \]
• Define the width of the graph as the minimal induced width:
 \[W_G = \min_{\prec} W_{G, \prec} \]
• e.g., width of an undirected tree is 1 (cliques = edges).
• Thm: the complexity of VarElim is \(O(NV^{W_G+1}) \).
Chordal (triangulated) graphs

- An undirected graph is chordal if every loop
 \(X_1 - X_2 - \cdots - X_k - X_1 \) for \(k \geq 4 \) has a chord, i.e., an edge
 \(X_i - X_j \) for non-adjacent \(i, j \).
- Thm 7.3.6: every induced graph is chordal.
- The left graph is not chordal, because the cycle \(2 - 6 - 8 - 4 - 2 \) does not have any of the chords \(2 - 8 \) or \(6 - 4 \).
- The right graph is chordal; the max cliques are
 \[\{1, 2, 4\}, \{2, 3, 6\}, \{4, 7, 8\}, \{6, 8, 9\}, \{2, 4, 5, 6\}, \{4, 5, 6, 8\} \]
Max cardinality search

- Thm 7.3.9: $X - Y$ is a fill-in edge iff there is a path $X - Z_1 - \cdots Z_k - Y$ s.t. $Z_i \prec X$ and $Z_i \prec Y$ for all $i = 1, \ldots, k$.
- Hence should try to find nodes X where many of their neighbors Z are already ordered, so $X \prec Z$

function $\pi = \text{max-cardinality-search}(H)$
mark all nodes as unmarked
for $i = N$ downto 1
 $X = \text{the unmarked variable with the largest number of marked neighbors}$
 $\pi(X) = i$
 mark X
end

- Thm 7.3.10: if G is chordal, and $\prec = \text{max cardinality ordering}$, then $I_{G, \prec}$ has no fill-in edges.
Triangulation

- Thm 7.3.8: finding the ordering \prec which minimizes the max induced clique size, W_G, \prec, is NP-hard.
- Max cardinality ordering is only optimal if G is already triangulated.
- In practice, people use greedy (one-step-lookahead) algorithms:

 function $\pi = \text{find-elim-order-greedy}(H, \text{score-fn})$
 for $i=1:N$
 $X = \text{the node that minimizes score-fn}(H, X)$
 $\pi(X) = i$
 Add edges between all neighbors of X
 Remove X from H
 end
Triangulation: heuristic cost functions $\text{score}(H, X)$

- **Min-fill (min discrepancy):** minimize number of fill-ins.
- **Min-size:** minimize size of induced clique, $|C_t|$.
- **Min-weight:** minimize number of states of induced clique, $\prod_{j \in C_t} |v_j|$.
- **Min-weight works best in practice:** a 3-clique of binary nodes is better than a 2-clique of ternary nodes, since $2^3 < 3^2$.
We can instantiate some hidden variables, perform VarElim on the rest, and then repeat for each possible value, e.g.,

\[P(J) = \sum_i P(J|I = i)P(I = i) \]

If the resulting subgraph is a tree, this is called cutset conditioning.
Inefficiencies of cutset conditioning

If we condition on \(U \), we repeatedly call VarElim once for each value of \(|U| \).

This may involved redundant work.

- Left: if we condition on \(A_k \), we repeatedly eliminate \(A_1 \rightarrow \cdots \rightarrow A_{k-1} \).

- Right: if we condition on \(A_2, A_4, \ldots, A_k \), we break all the loops, but the cutset has size \(V^{k/2} \), whereas VarElim would take \(O(kV^3) \).
Conditioning vs VarElim is space-time tradeoff

- Thm 7.5.6: Conditioning on L takes the same amount of time as it would to do VarElim on a modified graph, in which we connect L to all other nodes (i.e., add L to every factor).

 ![Graph Diagram](image)

- Thm 7.5.7: The space required is that needed to store the induced cliques in the subgraph created by removing all links from L (i.e., remove L from every factor).

- Hence conditioning takes less space but more time.
Exploiting local structure

- VarElim exploits the factorization properties implied by the graph to push sums inside products.
- Hence VarElim works for any kind of factor.
- However, some factors have local structure which can be exploited to further speed up inference.
- Two main methods:
 1. Make local structure graphically explicit (by adding extra nodes), then run stand VarElim on expanded graph; or
 2. Implement the \sum and \times operators for structured factors in a special way.
- We will focus on the first method, since it can be used to speed up any graph-based inference engine.
- David Poole has focused on the second method (structured VarElim).
Independence of causal influence (ICI)

- In general, a node with k parents creates a factor of size V^{k+1} to represent its CPD $P(Y|X_{1:k})$.
- Hence it takes $O(V^{k+1})$ time to eliminate this clique, and there are $O(V^{k+1})$ parameters to learn.
- If the parents X_i do not interact with each other (only with the child), the family can be eliminated in $O(k)$ time, and there are only $O(k)$ parameters to learn.
- e.g., noisy-or, generalized linear model

\[
P(Y = 0|X_{1:4}) = q_0 \prod_{i=1}^{4} q_{i}^{X_i}
\]
Exploiting Independence of Causal Influence (ICI)

- Assumes deterministic function can be represented by $f(x_1:k) = x_1 \oplus x_2 \oplus \cdots \oplus x_k$ where \oplus is commutative and associative.
- State-space of tree is $O(|Z|^3)$, chain $O(|Z|^2|X|)$.
Exploiting Context specific independence (CSI)

- Suppose $P(Y|A, X_{1:4})$ is represented as a decision tree. Then we can make the structure explicit using multiplexer nodes.

- If $Y \perp X_3, X_4|A = 1$ and $Y \perp X_1, X_2|A = 0$, then
(Recursive) conditioning provides a simpler method of exploiting CSI.

- Project idea: implement both methods and compare.
If you construct a graphical model given a grammar and a sentence of length N, the treewidth is $O(N)$, suggesting inference takes $O(2^N)$.

However, we can do exact inference using the inside-outside algorithm in $O(N^3)$ time.

The reason is that there is a lot of CSI.
Stochastic context free grammars (SCFGs)

- Represent production rule $X \rightarrow YZ$ by a binary variable R_1, and $X \rightarrow Y'Z'$ by R_2. If $R_1 = 1$, the structure of the graph is different than if $R_2 = 1$.

- Project idea: implement this algorithm and compare to inside-outside algorithm.