Types of probabilistic inference

- There are several kinds of queries we can make.
- Suppose the joint is $P(Y, E, W) = P(Y, W) \times P(E|Y, W)$.
- Conditional probability queries (sum-product):
 $$P(Y|E = e) \propto \sum_w P(Y, W) \times P(e|Y, W)$$
- Most probable explanation (MPE) queries (max-product, MAP):
 $$(y, w)^* = \arg \max_y \max_w P(Y, W) \times P(e|Y, W)$$
- Maximum A Posteriori (MAP) queries (max-sum-product, marginal MAP)
 $$y^* = \arg \max_y \sum_w P(Y, W) \times P(e|Y, W)$$

Inference in Hidden Markov Models (HMM)

- Conditional probability queries, e.g. estimate current state given past evidence (online filtering)
 $$P(X_t|e_{1:t}) = \sum_{x_{1:t-1}} P(x_{1:t-1}, X_t|e_{1:t})$$
- Most probable explanation (MPE) queries, e.g., most probable sequence of states (Viterbi decoding)
 $$x_{1:t}^* = \arg \max_{x_{1:t}} P(x_{1:t}|e_{1:t})$$
Word-error rate vs bit error rate

- **Note:** Most probable sequence of states not necessarily equal to sequence of most probable states.
- **e.g.,** \(X_1 \rightarrow X_2\)
 \[P(X_1) \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}, P(X_2|X_1) \begin{pmatrix} 0.1 & 0.9 \\ 0.5 & 0.5 \end{pmatrix}, P(X_1, X_2) \begin{pmatrix} 0.04 & 0.36 \\ 0.3 & 0.3 \end{pmatrix} \]
 \[\arg\max_{x_1} P(X_1) = 1, \arg\max_{x_1, x_2} P(X_1, X_2) = (0, 1) \]
- Viterbi decoding minimizes word error rate
 \[x_{1:t}^* = \arg\max_{x_{1:t}} P(x_{1:t}|e_{1:t}) \]
- To minimize bit error rate, use most marginally likely state
 \[P(X_t|y_{1:t}) = \sum_{x_{1:t-1}} P(x_{1:t-1}, X_t|e_{1:t}) \]
 \[x_t^* = \max_x P(X_t = x|e_{1:t}) \]

Complexity of exact inference

- Determining if \(P_B(X = x) > 0\) for some (discrete) variable \(X\) and some Bayes net \(B\) is NP-complete.
- What does this mean?
- Roughly: The best algorithm for exact inference (in discrete-state models) probably takes exponential time, in the worst case.
- More formally: we need a review of basic computational complexity theory.

MAP vs Marginal MAP

- Consider a Dynamic Bayes Net (DBN) for speech recognition, where \(W = \text{word} \) and \(Q = \text{phoneme} \).
- Most likely sequence of states (Viterbi/ MAP, max-product):
 \[\arg\max_{q_{1:t}, w_{1:t}} P(q_{1:t}, w_{1:t}|e_{1:t}) \]
- Most likely sequence of words (Marginal MAP, max-sum-product):
 \[\arg\max_{w_{1:t}} \sum_{q_{1:t}} P(w_{1:t}, q_{1:t}|e_{1:t}) \]
- Max-product often used as computationally simpler approximation to max-sum-product (or can use \(A^*\) decoding).

Decision problems

- **Defn:** a decision problem is a task of the form: does there exist a solution which satisfies these conditions?
- **Example:** boolean satisfiability:
 \[(q_1 \lor \neg q_2 \lor q_3) \land (\neg q_4 \lor q_2 \lor \neg q_3) \]
 is satisfiable \((q_1 = q_2 = q_3 = \text{true})\)
- **3-SAT** is boolean satisfiability where \(\phi = C_1 \land C_2 \ldots \land C_n\), and every clause \(C_i\) has 3 literals.
P vs NP

- Defn: A decision problem \(\Pi \) is in \(P \) if it can be solved in polynomial time.
- Defn: \(\Pi \) is in \(NP \) if it can be solved in polynomial time using a non-deterministic oracle (i.e., you can verify its guesses in polytime).
- Defn: \(\Pi \) is \(NP\text{-hard} \) if \(\forall \Pi' \in NP. \exists T \in P. \Pi' \xrightarrow{T} \Pi \).
- Defn: \(\Pi \) is \(NP\text{-complete} \) if it is \(NP\text{-hard} \) and in \(NP \).
- Conjecture: \(P \neq NP \)

Proving \(NP\text{-completeness} \)

- Thm: 3-SAT is \(NP\text{-complete} \).
- To show \(\Pi \) is \(NP\text{-hard} \), it suffices to find a transformation \(T \in P \) from another \(NP\text{-hard} \) problem \(\Pi' \) (e.g., 3-SAT) since
 \[
 NP \xrightarrow{T'} \Pi' \xrightarrow{T} \Pi
 \]
- To show \(\Pi \) is \(NP\text{-complete} \), show it is \(NP\text{-hard} \) and that you can check (oracular) guesses in poly-time.

Exact inference in discrete Bayes nets is \(NP\text{-complete} \)

- Thm: the decision problem “Is \(P_B(X_i = x) > 0? \)” is \(NP\text{-complete} \).
- Proof. To show in \(NP \): Given an assignment \(X_{1:n} \), we can check if \(X_i = x \) and then check if \(P(X_{1:n}) > 0 \) in poly-time. To show \(NP\text{-hard} \): we can encode any 3SAT problem as a polynomially sized Bayes net, as shown below.

- \(P(X = 1|q_{1:n}) > 0 \) iff \(q_{1:n} \) is a satisfying assignment.

Complexity of approximate inference

- Defn: An estimate \(\rho \) has absolute error \(\epsilon \) for \(P(y|e) \) if
 \[|P(y|e) - \rho| \leq \epsilon. \]
- Defn: An estimate \(\rho \) has relative error \(\epsilon \) for \(P(y|e) \) if
 \[\frac{\rho}{1+\epsilon} \leq P(y|e) \leq \rho(1 + \epsilon). \]
- Thm: Computing \(P(X_i = x) \) with relative error \(\rho \) is \(NP\text{-hard} \).
- Thm: Computing \(P(X_i|e) \) with absolute error for any \(\epsilon \in (0,0.5) \) is \(NP\text{-hard} \).
- But: special cases may have error bounds.
- And: heuristics often work well.
Exact inference in Gaussian models takes $O(N^3)$ time

- For Gaussian graphical models, exact inference is $O(N^3)$ no matter what the graph structure is!
- c.f., linear programming easier than integer programming.
- Lecture 3: Any undirected graphical model in which potentials have the form
 \[
 \psi_{ij} = \exp(X_i - \mu_i)\Sigma_{ij}^{-1}(X_j - \mu_j)
 \]
can be converted to a joint Gaussian distribution.
- Book chap 4: any directed graphical model in which CPDs have the form
 \[
 p(X_i | X_{\pi_i}) = \mathcal{N}(X_i; WX_{\pi_i} + \mu_i, \Sigma_i)
 \]
can be converted to a joint Gaussian distribution.
- Exact inference in a Gaussian graphical model = matrix inversion.

Variable elimination algorithm

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.

\[
P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)
\]

- For Gaussian graphical models, exact inference can always be done in time $O(N v^W)$, where W_G is the tree-width of the graph (to be defined later) and $v = \max_i |X_i|$ is the max number of values (states) each node can take.
- The NP-hardness proof shows that, in the worst case, we have $W_G \sim N$.
- But for many models used in practice, we have $W_G \sim$ constant.
- Also, for Gaussian graphical models, exact inference is $O(N^3)$ no matter what the graph structure is!
\[P(J) = \sum_D \sum_C \phi_D(D,C) \sum_{I} \sum_{L} \sum_{S} \phi_I(J,L,S) \sum_{I} \phi_I(I) \phi_S(S,I) \sum_G \phi_C(G,I,D) \phi_L(L,) \phi_H(H,G,J) \]
\[= \sum_D \sum_C \phi_D(D,C) \sum_{I} \sum_{L} \sum_{S} \phi_I(J,L,S) \sum_{I} \phi_I(I) \phi_S(S,I) \tau(D, D, L, L, H, J) \]
\[= \sum_D \sum_C \phi_D(D,C) \sum_{I} \sum_{L} \sum_{S} \phi_I(J,L,S) \tau(D, D, L, L, S, J, H) \]
\[= \sum_D \sum_C \phi_D(D,C) \sum_{I} \tau(D, D, L, J, H) \]
\[= \sum_D \sum_C \phi_D(D,C) \tau(D, D, J) \]
\[= \sum_D \tau(D, D) \]

Dealing with evidence: method 2

- We can associate a local evidence potential with every node, and set \(\phi_i(X_i) = \delta(X_i, x_i^*) \) if \(X_i \) is observed to have value \(x_i^* \), and \(\phi_i(X_i) = 1 \) otherwise:

\[P(X_{1:n}|ev) \propto P(X_{1:n}) \prod_i P(ev_i|X_i) \]

- e.g.,

\[P(J|I = 1, H = 0) \propto \sum_{C,D,I,G,S,L,J,H} P(C, D, I, G, S, L, J, H) \delta_I(I, 1) \delta_H(H, 0) \]

Dealing with evidence: method 1

- We can instantiate observed variables to their observed value:

\[P(J|I = 1, H = 0) = \frac{P(J, I = 1, H = 0)}{P(I = 1, H = 0)} \propto P(J, I = 1, H = 0) \]

\[= \sum_{C,D,I,G,S,L,J,H} P(C, D, I = 1, G, S, L, J, H = 0) \]

- The denominator is \(P(e) = P(I = 1, H = 0) \).
- For Markov networks, the denominator is \(P(e) \times Z \).