Review: Probabilistic inference (state estimation)

- Inference is about estimating hidden (query) variables H from observed (visible) measurements v, which we can do as follows:
 \[P(h|v) = \frac{P(v, h)}{\sum_{h'} P(v, h')} \]

- Examples:
 - Medical diagnosis: H diseases, $v =$ findings/ symptoms,
 - Speech recognition: $H =$ spoken words, $v =$ acoustic waveform
 - Genetic pedigree analysis: $H =$ genotype, $v =$ phenotype

Naive inference

- We observe the grass is wet and want to know how likely it was that the sprinkler caused this event.
 \[P(s = 1|w = 1) = \frac{P(s = 1, w = 1)}{P(w = 1)} \]
 \[= \frac{\sum_{c=0}^{1} \sum_{r=0}^{1} P(s = 1, w = 1, R = r, C = c)}{\sum_{c,r,s} P(S = s, w = 1, R = r, C = c)} \]

- Query/hidden vars = \{S\}, visible vars = \{W\},
 nuisance vars = \{C, R\}.
Naive inference

- It is easy to marginalize a joint probability distribution when it is represented as a table
- e.g., \(P(X, Y) = \sum_z P(X, Y, Z) \)

Graphical models

- Problems with representing joint as a big table
 - Representation: big table of numbers is hard to understand.
 - Inference: computing a marginal \(P(X_i) \) takes \(O(2^N) \) time.
 - Learning: there are \(O(2^N) \) free parameters to estimate.
- Graphical models solve all 3 problems by providing a structured representation for joint probability distributions.
- Graphs encode conditional independence properties and represent families of probability distributions that satisfy these properties.
- Today we will study the relationship between graphs and independence properties.

Independence properties of distributions

- Defn: let \(I(P) \) be the set of independence properties of the form \(X \perp Y \mid Z \) that hold in distribution \(P \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P(X, Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.48</td>
</tr>
</tbody>
</table>

\[
P(X = 1) = 0.48 + 0.12 = 0.6
\]

\[
P(Y = 1) = 0.32 + 0.48 = 0.8
\]

\[
P(X = 1, Y = 1) = 0.48 = 0.6 \times 0.8
\]

\[
P(X = x, Y = y) = P(X = x)P(Y = y) \forall x, y
\]

\[
\Rightarrow (X \perp Y) \in I(P)
\]

Local independence properties of DAGs

- Defn: let \(I_l(G) \) be the set of local independence properties encoded by DAG \(G \), namely:

\[
\{ X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i) \}
\]

- i.e., a node is conditionally independent of its non-descendants given its parents.
- Ancestors(\(X_i \)) \(\subseteq \) NonDescendants(\(X_i \))
Example of $I_l(G)$

![Diagram](image)

$I_l(G_0) = \{(X \perp Y)\}$

$I_l(G_{X\rightarrow Y}) = \emptyset$

$I_l(G_{Y\rightarrow X}) = \emptyset$

I-maps

- **Defn:** A DAG G is an I-map (independence-map) of P if $I_l(G) \subseteq I(P)$.

- From previous example,

 $I_l(G_0) = \{(X \perp Y)\}$

 $I_l(G_{X\rightarrow Y}) = \emptyset$

 $I_l(G_{Y\rightarrow X}) = \emptyset$

 $I(P) = \{(X \perp Y)\}$

- Hence all three graphs are I-maps of P.

From I-map to factorization

- **Defn:** P factorizes according to G if P can be written as

 $P(X_1, \ldots, X_N) = \prod_i P(X_i | Pa_G(X_i))$

- **Thm 3.2.6:** If G is an I-map of P, then P factorizes according to G.

 Proof:

 $P(X_1: N) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2) \ldots$ chain rule

 $= \prod_{i=1}^{N} P(X_i | X_{1:i-1})$

 $= \prod_{i=1}^{N} P(X_i | Pa(X_i), \text{Ancestors}(X_i) \setminus \text{Pa}(X_i))$

 $= \prod_{i=1}^{N} P(X_i | \text{Pa}(X_i))$ since G is I-map of P

Bayes nets provide compact representation of joint probability distributions

- **Thm:** If G is an I-map of P, then P factorizes according to G.

- **Corollary:** If G is an I-map of P, then we can represent P using G and a set of conditional probability distributions (CPDs),

 $P(X_i | \text{Pa}(X_i))$, one per node.

- **Defn:** A Bayesian network (aka belief network) representing distribution P is an I-map of P and a set of CPDs.

- For binary random variables, the Bayes net takes $O(N2^K)$ parameters ($K =$ max. num. parents), whereas full joint takes $O(2^N)$ parameters.

- Factored representation is easier to understand, easier to learn and supports more efficient inference (see later lectures).
\[P(X_1:N) = \prod_{i=1}^{N} P(X_i | \text{Pa}(X_i)) \]

\[P(C, S, R, W) = P(C)P(S | C)P(R | C)P(W | S, R) \]

Minimal I-maps

- Let \(G \) be a fully connected DAG. Then \(I_l(G) = \emptyset \subseteq I(P) \) for any \(P \).
- Hence the complete graph is an I-map for any distribution.
- Defn: A DAG \(G \) is a minimal I-map for \(P \) if it is an I-map for \(P \), and if the removal of even a single edge from \(G \) renders it not an I-map.
- Construction: pick a node ordering, then let the parents of node \(X_i \) be the minimal subset of \(U \subseteq \{X_1, \ldots, X_{i-1}\} \) s.t. \(X_i \perp \{X_1, \ldots, X_{i-1}\} \setminus U | U \).
- Defn (revised): A Bayesian network (aka belief network) representing distribution \(P \) is a minimal I-map of \(P \) and a set of CPDs.

From factorization to I-map

- Thm 3.2.8: If \(P \) factorizes according to \(G \), then \(G \) is an I-map of \(P \).
- Proof: we must show \(X \perp W | U \)

\[
P(X, W | U) = \frac{P(X, W, U)}{P(U)} = \frac{\sum_Y P(X, W, U, Y)}{P(U)}
\]

\[
= \frac{P(W)P(U | W)P(X | U) \sum_Y P(Y | X, W)}{P(U)}
\]

\[
= \frac{P(W, U)}{P(U)}P(X | U) \sum_Y P(Y | X, W)
\]

\[
= P(W | U)P(X | U)
\]

Global Markov properties of DAGs

- By chaining together local independencies, we can infer more global independencies.
- Defn: \(X \) is d-separated (directed-separated) from \(Y \) given \(Z \) if along every undirected path between \(X \) and \(Y \) there is a node \(w \) s.t. either
 - \(W \) has converging arrows (\(\rightarrow w \leftarrow \)) and neither \(W \) nor its descendants are in \(z \); or
 - \(W \) does not have converging arrows and \(W \in Z \).
- Defn: \(I(G) = \) all independence properties that correspond to d-separation:

\[
I(G) = \{(X \perp Y | Z) : d-sep_G(X; Y | Z)\}
\]
Bayes-Ball Rules

A is d-separated from B given C if we cannot send a ball from any node in A to any node in B according to the rules below, where shaded nodes are in C.

![Bayes-Ball Diagrams](image)

Soundness of d-separation

- Thm 3.3.3 (Soundness): If P factorizes according to G, then $I(G) \subseteq I(P)$.
- i.e., any independence claim made by the graph is satisfied by all distributions P that factorize according to G (no false claims of independence).
- Pf: see later (when we discuss undirected graphs).

Completeness of d-separation - v1

- Defn (Completeness) v1: For any distribution P that factorizes over G, if $(X \perp Y | Z) \in I(P)$, then $dsep_G(X; Y | Z)$.
- Contrapositive rule: $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$.
- Defn (Completeness, contrapositive form) v1. If X and Y are not d-separated given Z, then X and Y are dependent in all distributions P that factorize over G.
- This definition of completeness is too strong since P may have conditional independencies that are not evident from the graph.
- eg. Let G be the graph $X \rightarrow Y$, where $P(Y|X)$ is

<table>
<thead>
<tr>
<th>A</th>
<th>B = 0</th>
<th>B = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- G is I-map of P since $I(G) = \emptyset \subseteq I(P) = \{(X \perp Y)\}$.
- But the CPD encodes $X \perp Y$ which is not evident in the graph.

Completeness of d-separation - v2

- Defn (Completeness) v2: If $(X \perp Y | Z)$ in all distributions P that factorize over G, then $dsep_G(X; Y | Z)$.
- Defn (Completeness, contrapositive form) v2: If X and Y are not d-separated given Z, then X and Y are dependent in some distribution P that factorizes over G.
- Thm 3.3.5: d-separation is complete.
- Proof: See Koller & Friedman p90.
- Hence d-separation captures as many of the independencies as possible (without reference to the particular CPDs) for all distributions that factorize over some DAG.
P-maps

- Can we find a graph that captures all the independencies in an arbitrary distribution (and no more)?
- Defn: A DAG G is a perfect map (P-map) for a distribution P if $I(P) = I(G)$.
- Thm: not every distribution has a perfect map.
- Pf by counterexample. Suppose we have a model where $A \perp C \mid \{B, D\}$, and $B \perp D \mid \{A, C\}$. This cannot be represented by any Bayes net.
- e.g., BN1 wrongly says $B \perp D \mid A$, BN2 wrongly says $B \perp D$.

Undirected Graphical Models

- Graphs with one node per random variable and edges that connect pairs of nodes, but now the edges are undirected.
- Defn: Let H be an undirected graph. Then $sep_H(A; C|B)$ iff all paths between A and C go through some nodes in B (simple graph separation).

- Defn: the global Markov properties of a UG H are

 $I(H) = \{(X \perp Y|Z) : sep_H(X; Y|Z)\}$

- UGs can model symmetric (non-causal) interactions that directed models cannot.
- aka Markov Random Fields, Markov Networks.

Expressive Power

- Can we always convert directed \leftrightarrow undirected?
- No.

- No directed model can represent these and only these independencies.

 $x \perp y \mid \{w, z\}$

 $w \perp z \mid \{x, y\}$

- No undirected model can represent these and only these independencies.

 $x \perp y$

Conditional Parameterization?

- In directed models, we started with $p(X) = \prod_i p(x_i|x_{\pi_i})$ and we derived the d-separation semantics from that.
- Undirected models: have the semantics, need parametrization.
- What about this “conditional parameterization”?

 $p(X) = \prod_i p(x_i|x_{\text{neighbours}(i)})$

- Good: product of local functions.

 Good: each one has a simple conditional interpretation.

 Bad: local functions cannot be arbitrary, but must agree properly in order to define a valid distribution.
Marginal Parameterization?

- OK, what about this “marginal parameterization”?
 \[p(X) = \prod_i p(x_i; x_{\text{neighbours}(i)}) \]

- Good: product of local functions.
 - Good: each one has a simple marginal interpretation.
 - Bad: only very few pathological marginals on overlapping nodes can be multiplied to give a valid joint.

Clique Potentials

- Whatever factorization we pick, we know that only connected nodes can be arguments of a single local function.
- A clique is a fully connected subset of nodes.
- Thus, consider using a product of clique potentials:
 \[P(X) = \frac{1}{Z} \prod_{\text{cliques } c} \psi_c(x_c) \quad Z = \sum_X \prod_{\text{cliques } c} \psi_c(x_c) \]
- Each clique potential \(\psi_c(x_c) > 0 \) is an arbitrary positive function of its arguments.
- The normalization term \(Z \) is called the partition function (a function of the parameters \(\psi \)) and ensures \(\sum_X P(x) = 1 \).
- Without loss of generality we can restrict ourselves to maximal cliques. (Why?)
- A distribution \(P \) that is representable by a UG \(H \) in this way is called a Gibbs distribution over \(H \).

Examples of Clique Potentials

Interpretation of Clique Potentials

- The model implies \(X \perp Z \mid Y \)
 \[p(x, y, z) = p(y)p(x|y)p(z|y) \]

- We can write this as:
 \[p(x, y, z) = p(x, y)p(z|y) = \psi_{xy}(x, y)p_{yz}(y, z) \]
 \[p(x, y, z) = p(x|y)p(z, y) = \psi_{xy}(x, y)p_{yz}(y, z) \]

 cannot have all potentials be marginals
 cannot have all potentials be conditionals

- The positive clique potentials can only be thought of as general “compatibility”, “goodness” or “happiness” functions over their variables, but not as probability distributions.