Lecture 21 (last one!):

Review

Kevin Murphy
1 December 2004
<table>
<thead>
<tr>
<th>Chap.</th>
<th>Handout</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>y</td>
<td>Foundations (math review)</td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td>The BN representation (Bayes ball, I-maps)</td>
</tr>
<tr>
<td>4</td>
<td>y</td>
<td>Local probabilistic models (CPDs, CSI)</td>
</tr>
<tr>
<td>5</td>
<td>y</td>
<td>Undirected GMs (BN ↔ MN)</td>
</tr>
<tr>
<td>6</td>
<td>y</td>
<td>Inference with GMs (overview)</td>
</tr>
<tr>
<td>7</td>
<td>y</td>
<td>Variable elimination</td>
</tr>
<tr>
<td>8</td>
<td>y</td>
<td>Clique trees</td>
</tr>
<tr>
<td>9</td>
<td>y</td>
<td>Particle based approximations</td>
</tr>
<tr>
<td>10</td>
<td>n</td>
<td>Inference as optimization (unfinished)</td>
</tr>
<tr>
<td>11</td>
<td>n</td>
<td>Inference in hybrid networks</td>
</tr>
<tr>
<td>12</td>
<td>y</td>
<td>Learning: introduction</td>
</tr>
<tr>
<td>13</td>
<td>y</td>
<td>Parameter estimation (fully obs. BNs)</td>
</tr>
<tr>
<td>14</td>
<td>y</td>
<td>Structure learning in BNs</td>
</tr>
<tr>
<td>15</td>
<td>y</td>
<td>Partially observed data (EM for BNs)</td>
</tr>
</tbody>
</table>
Jordan Chapters

<table>
<thead>
<tr>
<th>Chap.</th>
<th>Handout</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>n</td>
<td>Cond. Indep and factorization</td>
</tr>
<tr>
<td>3</td>
<td>n</td>
<td>The elimination algorithm</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>Prob. propagation and factor graphs</td>
</tr>
<tr>
<td>5</td>
<td>y</td>
<td>Statistical concepts</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td>Linear regression and LMS</td>
</tr>
<tr>
<td>7</td>
<td>n</td>
<td>Linear classification</td>
</tr>
<tr>
<td>8</td>
<td>y</td>
<td>Exponential family and GLIMs</td>
</tr>
<tr>
<td>9</td>
<td>y</td>
<td>Completely observed GMs (IPF, etc)</td>
</tr>
<tr>
<td>10</td>
<td>y</td>
<td>Mixtures and conditional mixtures</td>
</tr>
<tr>
<td>11</td>
<td>y</td>
<td>The EM algorithm</td>
</tr>
<tr>
<td>12</td>
<td>y</td>
<td>HMMs</td>
</tr>
<tr>
<td>13</td>
<td>y</td>
<td>The multivariate Gaussian</td>
</tr>
<tr>
<td>14</td>
<td>y</td>
<td>Factor analysis</td>
</tr>
<tr>
<td>15</td>
<td>y</td>
<td>Kalman filtering and smoothing</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>Markov properties of graphs</td>
</tr>
<tr>
<td>Chap.</td>
<td>Handout</td>
<td>Title</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>n</td>
<td>The junction tree algorithm</td>
</tr>
<tr>
<td>18</td>
<td>n</td>
<td>HMM and state space models revisited</td>
</tr>
<tr>
<td>19</td>
<td>y</td>
<td>Features, maxent and duality</td>
</tr>
<tr>
<td>20</td>
<td>y</td>
<td>Iterative scaling algorithms</td>
</tr>
<tr>
<td>21</td>
<td>n</td>
<td>Sampling methods</td>
</tr>
<tr>
<td>22</td>
<td>n</td>
<td>Decision graphs</td>
</tr>
<tr>
<td>23</td>
<td>n</td>
<td>Bio-informatics</td>
</tr>
</tbody>
</table>
What we covered 1

• 1 node models
 – Coins/dice (Dirichlet priors), Gaussians, exponential family
 – Bayesian vs frequentist (ML/MAP) estimation
 – Bayesian model selection (Occam’s razor)

• 2 node BNs
 – Linear regression
 – Linear classification (logistic regression)
 – Generalized linear models (GLIMs)
 – Mixture models: MoG, K-means, EM
 – Latent variable models: PCA, FA

• 3 node BNs
 – Mixtures of FA
 – Mixtures of experts
What we covered 2

- Chains
 - HMMs, forwards-backwards algorithm, EM
 - LDS, Kalman filter, EM
 - EKF, UKF, particle filtering, RB PF
- Trees
 - Belief propagation
 - Structure learning (max spanning tree)
What we covered

- General graphs: representation
 - Independence properties (Bayes Ball, l-maps)
 - Directed vs undirected graphs, chordal graphs
- General graphs: exact inference
 - Variable elimination
 - Junction tree
- General graphs: parameter learning
 - Bayesian param. est. for fully observed BNs
 - ML for latent BNs (EM)
 - ML for fully observed UGs (IPF)
 - ML for fully observed CRFs (conjugate gradient)
What we covered

• General BNs: structure learning
 – Search and score
 – Partial observability (structural EM, variational Bayes EM)

• General GMs: stochastic approximations
 – Likelihood weighting, Gibbs sampling, Metropolis Hastings

• General GMs: variational approximations
 – Mean field, structured, loopy belief propagation

• Applications
 – SLAM, tracking, image labeling (CRFs), language modeling (HMMs)
Some things we didn’t cover

- Swendsen-Wang sampling, perfect sampling, details of MCMC
- Generalized BP, theory of BP, cluster variational methods
- Details of expectation propagation (EP)
- Forwards propagation/ backwards sampling
- Non-parametric Bayes (Dirichlet process, Gaussian process)
- Quickscore/ QMR-DT and other speedup tricks (e.g., lazy Jtree)
- Decision making (influence diagrams, LIMIDS, POMDPs etc)
- First order probabilistic inference (FOPI)
- Causality
- Frequentist hypothesis testing
- Conditional Gaussian models (mixed/ hybrid GMs)
- Applications to error correcting codes, biology, vision, speech
1 NODE MODELS

- Jordan ch 5, 8, 13; Mackay ch 3, 23, 37
- Coins/dice, Gaussians, exponential family
- Bayesian vs frequentist (ML/MAP) estimation
- Bayesian vs classical hypothesis testing
Coins (Bernoulli Trials)

- We observe M iid coin flips: $D=H, H, T, H, \ldots$
- Model: $p(H) = \theta \quad p(T) = (1 - \theta)$
- We want to estimate θ from D.
- Frequentist (maximum likelihood) approach (point estimate):
 \[
 \hat{\theta}_{ML} = \arg\max_\theta \ell(\theta; D)
 \]
 where
 \[
 \ell(\theta; D) = \log p(D|\theta) = \sum_m \log p(x^m|\theta)
 \]
- Bayesian approach
 \[
 p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}
 \]
 or
 \[
 \text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}
 \]
MLE for Bernoulli Trials (L10)

- Likelihood:
 \[
 \ell(\theta; D) = \log p(D|\theta) = \log \prod_{m} \theta^{x^m} (1 - \theta)^{1-x^m}
 \]
 \[
 = \log \theta \sum_{m} x^m + \log(1 - \theta) \sum_{m} (1 - x^m)
 \]
 \[
 = \log \theta N_H + \log(1 - \theta) N_T
 \]

- Take derivatives and set to zero:
 \[
 \frac{\partial \ell}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta}
 \]
 \[
 \Rightarrow \theta_{\text{ML}}^* = \frac{N_H}{N_H + N_T}
 \]

- The counts \(N_H = \sum_{m} x^m \) and \(N_T = \sum_{m} (1 - x^m) \) are sufficient statistics of the data \(D \).
Bayesian estimation for Bernoulli Trials (L11)

- Likelihood
 \[P(D|\theta) = \theta^{N_H}(1 - \theta)^{N_T} \]

- Conjugate Beta Prior
 \[P(\theta|\alpha) = \mathcal{B}(\theta; \alpha_h, \alpha_t) \overset{\text{def}}{=} \frac{1}{Z(\alpha_h, \alpha_t)} \theta^{\alpha_h-1}(1 - \theta)^{\alpha_t-1} \]

- Posterior
 \[
 P(\theta|D, \alpha) = \frac{P(\theta|\alpha)P(D|\theta)}{P(D|\alpha)} = \frac{1}{Z(\alpha_h, \alpha_t)P(D|\alpha)} \theta^{\alpha_h-1} \theta^{N_H}(1 - \theta)^{\alpha_t-1}(1 - \theta)^{N_T} = \mathcal{B}(\theta; \alpha_h + N_H, \alpha_t + N_T)
 \]

- Posterior mean
 \[E\theta = \frac{\alpha_h}{\alpha_h + \alpha_t} \]
When spun on edge $N = 250$ times, a Belgian one-euro coin came up heads $Y = 140$ times and tails 110.

We would like to distinguish two models, or hypotheses: H_0 means the coin is unbiased (so $p = 0.5$); H_1 means the coin is biased (has probability of heads $p \neq 0.5$).

p-value is “less than 7%”: $p = P(Y \geq 140) + P(Y \leq 110) = 0.066$:

$n=250; \ p = 0.5; \ y = 140; \\
p = (1-\text{binocdf}(y-1,n,p)) + \text{binocdf}(n-y,n,p)$

If $Y = 141$, we get $p = 0.0497$, so we can reject the null hypothesis at significance level 0.05.

But is the coin really biased?
Bayesian hypothesis testing

- We want to compute the posterior ratio of the 2 hypotheses:
 \[
 \frac{P(H_1|D)}{P(H_0|D)} = \frac{P(D|H_1)P(H_1)}{P(D|H_0)P(H_0)}
 \]

- Let us assume a uniform prior \(P(H_0) = P(H_1) = 0.5 \).

- Then we just focus on the ratio of the marginal likelihoods:
 \[
 P(D|H_1) = \int_0^1 \ d\theta \ P(D|\theta, H_1)P(\theta|H_1)
 \]

- For \(H_0 \), there is no free parameter, so
 \[
 P(D|H_0) = 0.5^N
 \]
 where \(N \) is the number of coin tosses in \(D \).
So, is the coin biased or not?

- We plot the Bayes factor vs hyperparameter α:

\[P(H_1|D) \]
\[P(H_0|D) \]

- For a uniform prior, \(\frac{P(H_1|D)}{P(H_0|D)} = 0.48 \), (weakly) favoring the fair coin hypothesis H_0!

- At best, for $\alpha = 50$, we can make the biased hypothesis twice as likely.

- Not as dramatic as saying “we reject the null hypothesis (fair coin) with significance 6.6%”.
From coins to dice

- Likelihood: binomial → multinomial
 \[P(D|\theta) = \prod_i \theta_i^{N_i} \]

- Prior: beta → Dirichlet
 \[P(\theta|\alpha) = \frac{1}{Z(\alpha)} \prod_i \theta_i^{\alpha_i-1} \]
 where
 \[Z(\alpha) = \frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)} \]

- Posterior: beta → Dirichlet
 \[P(\theta|D) = Dir(\alpha + \tilde{N}) \]

- Evidence (marginal likelihood)
 \[P(D|\alpha) = \frac{Z(\alpha + \tilde{N})}{Z(\alpha)} = \frac{\prod_i \Gamma(\alpha_i + N_i)}{\prod_i \Gamma(\alpha_i)} \frac{\Gamma(\sum_i \alpha_i)}{\Gamma(\sum_i \alpha_i + N_i)} \]
MLE for Univariate Normal (L10)

• We observe M iid real samples: $D = 1.18, -.25, .78, \ldots$

• Model: $p(x) = (2\pi \sigma^2)^{-1/2} \exp \{- (x - \mu)^2 / 2\sigma^2 \}$

• Log likelihood:

$$\ell(\theta; D) = \log p(D|\theta)$$

$$= - \frac{M}{2} \log(2\pi \sigma^2) - \frac{1}{2} \sum_m \frac{(x_m - \mu)^2}{\sigma^2}$$

• Take derivatives and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_m (x_m - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = - \frac{M}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_m (x_m - \mu)^2$$

$$\Rightarrow \mu_{ML} = \frac{1}{M} \sum_m x_m$$

$$\sigma^2_{ML} = \frac{1}{M} \sum_m (x_m - \mu_{ML})^2$$
Fun with Gaussians

- Bayesian estimation of 1D Gaussian (homework 5)
- MLE for multivariate Gaussian (Jordan ch 13)
- Bayesian estimation for multivariate Gaussian (Minka TR)
- Inference with multivariate Gaussians (Jordan ch 13)
- Moment vs canonical parameters (Jordan ch 13)
Exponential Family (L4, L10)

- For a numeric random variable x

$$p(x|\eta) = h(x) \exp\{\eta^\top T(x) - A(\eta)\}$$

$$= \frac{1}{Z(\eta)} h(x) \exp\{\eta^\top T(x)\}$$

is an exponential family distribution with

natural (canonical) parameter η.

- Function $T(x)$ is a sufficient statistic.

- Function $A(\eta) = \log Z(\eta)$ is the log normalizer.

- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

- A distribution $p(x)$ has finite sufficient statistics (independent of number of data cases) iff it is in the exponential family.

- See Jordan ch 8
2 node Bayes nets

- Linear regression (Jordan ch 6)
- Linear classification (logistic regression; Jordan ch 7)
- Generalized linear models (GLIMs; Jordan ch 8)
- Mixture models: MoG, K-means, EM (Jordan ch 10)
- Latent variable models: PCA, FA (Jordan ch 14)
MLE for Linear Regression

• For vector outputs,

\[A = S_{YX'} S_{XX'}^{-1} \]

where \(S_{YX'} = \sum_m y_m x_m^T \) and \(S_{XX'} = \sum_m x_m x_m^T \).

• In the special case of scalar outputs, let \(A = \theta^T \), and the design matrix \(X = [x_m^T] \) stacked as rows and \(Y = [y_m] \) a column vector. Then we get the normal equations

\[\theta = (X^T X)^{-1} X^T Y \]
Bayesian 1D Linear Regression

- For scalar (1D) output

\[p(y_n | x_n, \theta, \sigma^2)p(\theta | \mu, \tau^2)p(\sigma^2 | \alpha, \beta) \]

Gaussian × Gaussian × Gamma

- For vector output

\[p(y_n | x_n, A, \Sigma)p(A | \mu, \tau^2)p(\Sigma | \alpha, \beta) \]

Gaussian × matrix-Gaussian × Wishart

- See Tom Minka tutorial
Logistic regression (L4)

\[P(Y = 1|X_1, \ldots, X_n) = \sigma(w_0 + \sum_{i=1}^{n} w_i X_i) \]

\(P(Y = 1) \) vs number of \(X \)'s that are on vs \(w \)

- a: 1D sigmoid
- b: \(w_0 = 0 \)
- c: \(w_0 = -5 \)
- d: \(w \) and \(w_0 \) are multiplied by 10
Generalized Linear Models

Canonical CPDs for $X \rightarrow Y$ (L4)

| X | Y | $p(Y|X)$ |
|-------|-------|--|
| \mathbb{R}^n | \mathbb{R}^m | Gauss($Y; WX + \mu, \Sigma$) |
| \mathbb{R}^n | $\{0, 1\}$ | Bernoulli($Y; p = \frac{1}{1+e^{-\theta^T x}}$) |
| $\{0, 1\}^n$ | $\{0, 1\}$ | Bernoulli($Y; p = \frac{1}{1+e^{-\theta^T x}}$) |
| \mathbb{R}^n | $\{1, \ldots, K\}$ | Multinomial($Y; p_i = \text{softmax}(x, \theta)$) |

Learn using IRLS or conjugate gradient (L11)
Unsupervised linear regression is called factor analysis.

\[
p(x) = \mathcal{N}(x; 0, I)
\]

\[
p(y|x) = \mathcal{N}(y; \mu + \Lambda x, \Psi)
\]

where \(\Lambda \) is the factor loading matrix and \(\Psi \) is diagonal.

To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.

PCA (Karhunen-Loeve Transform) is zero noise limit of FA.
Mixtures of Gaussians (L12)

- Mixture of Gaussians:
 \[P(Z = i) = \theta_i \]
 \[p(X = x | Z = i) = \mathcal{N}(x; \mu_i, \Sigma_i) \]

- This can be used for classification (supervised) and clustering/vector quantization (unsupervised).

- We can find MLE/MAP estimates of the parameters using EM.
- K-means is a deterministic approximation (vector quantization).
• Mixtures of experts

• Mixtures of factor analysers
Chains

- HMMs (Jordan ch 12, Rabiner tutorial)
- LDS (Jordan ch 15, handouts on web)
- Nonlinear state space models (my DBN tutorial)
Forwards-backwards algorithm (L8)

\[\alpha_t(j) = \sum_i \alpha_{t-1}(i) A(i, j) B_t(j) \]
\[\alpha_t = (A^T \alpha_{t-1}) \cdot B_t \]
\[\beta_t(i) = \sum_j \beta_{t+1}(j) A(i, j) B_{t+1}(j) \]
\[\beta_t = A(\beta_{t+1} \cdot B_{t+1}) \]
\[\xi_t(i, j) = \alpha_t(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \]
\[\xi_t = \left(\alpha_t(\beta_{t+1} \cdot B_{t+1})^T \right) \cdot A \]
\[\gamma_t(i) \propto \alpha_t(i) \beta_t(j) \]
\[\gamma_t \propto \alpha_t \cdot \beta_t \]
• Consider a time-invariant hidden Markov model (HMM)
 – State transition matrix $A(i, j) \overset{\text{def}}{=} P(X_t = j | X_{t-1} = i)$,
 – Discrete observation matrix $B(i, j) \overset{\text{def}}{=} P(Y_t = j | X_t = i)$
 – State prior $\pi(i) \overset{\text{def}}{=} P(X_1 = i)$.
• If all nodes are observed, we can find the globally optimal MLE.
• Otherwise using EM (aka Baum Welch).
Kalman filter (L17, L18)

- LDS model:
 \[x_t = Ax_{t-1} + v_t, \quad y_t = Cx_t + w_t \]

- Time update (prediction step):
 \[x_{t|t-1} = Ax_{t-1|t-1}, \quad P_{t|t-1} = AP_{t-1|t-1}A^T + Q, \quad y_{t|t-1} = Cx_{t|t-1} \]

- Measurement update (correction step):
 \[\tilde{y}_t = y_t - \hat{y}_{t|t-1} \text{ (error/ innovation)} \]
 \[P_{\tilde{y}_t} = CP_{t|t-1}C^T + R \text{ (covariance of error)} \]
 \[P_{xty_t} = P_{t|t-1}C^T \text{ (cross covariance)} \]
 \[K_t = P_{xty_t}P_{\tilde{y}_t}^{-1} \text{ (Kalman gain matrix)} \]
 \[x_{t|t} = x_{t|t-1} + K_t(y_t - y_{t|t-1}) \]
 \[P_{t|t} = P_{t|t-1} - K_tP_{xty_t} \]
KF FOR 2D TRACKING (L17)

(a) 2D filtering
(b) 2D smoothing
KF for SLAM (L18)

- State is location of robot and landmarks \(X_t = (R_t, L_t^{1:N}) \)
- Measure location of subset of landmarks at each time step.
- Assume everything is linear Gaussian.
- Use Kalman filter to solve optimally.
Approximate deterministic filtering (L18)

- Extended Kalman filter (EKF)
- Unscented Kalman filter (UKF)
- Assumed density filter (ADF)

\[
\begin{align*}
\tilde{\alpha}_t & \quad \hat{\alpha}_t \\
\tilde{\alpha}_{t-1} & \quad \hat{\alpha}_t \\
\tilde{\alpha}_t & \quad \hat{\alpha}_{t+1}
\end{align*}
\]

Exact

Approx
Particle filtering (sequential Monte Carlo) (L19)

- PF is sequential importance sampling with resampling (SISR).
- Goal is to estimate $P(x_{1:t}|y_{1:t})$ recursively (online) for a state-space model for which Kalman filter/ HMM filter is inapplicable.
Trees

- Inference (belief propagation): L9, Yedidia tutorial
- Structure learning (max weight spanning tree): L16
- Application: KF trees for multiscale image analysis (skipped)
General graphs

- Representation: Markov properties, CPDs, log linear models
- Exact inference: var elim, Jtree
- Fully observed param learning
- Fully observed structure learning
- Partially observed param learning
- Approximate inference
Example BN: Water sprinkler (L1)

\[
P(X_{1:N}) = \prod_{i=1}^{N} P(X_i | Pa(X_i))
\]

\[
P(C, S, R, W) = P(C)P(S | C)P(R | C)P(W | S, R)
\]
Bayes net for genetic pedigree analysis (L1)

• $G_i \in \{a, b, o\} \times \{a, b, o\} =$ genotype (allele) of person i
• $B_i \in \{a, b, o, ab\} =$ phenotype (blood type) of person i
Global Markov properties for DGs: Bayes-Ball (L2)

A is d-separated from B given C if we cannot send a ball from any node in A to any node in B according to the rules below, where shaded nodes are in C.
Markov properties for UGs (L3)

- Defn: the global Markov properties of a UG H are
 \[I(H) = \{ (X \perp Y | Z) : \text{sep}_H(X; Y | Z) \} \]

- Defn: The local markov independencies are
 \[I_l(H) = \{ (X \perp V \setminus \{X\} \setminus N_H(X)|N_H(X)) : X \in V \} \]
 where $N_H(X)$ are the neighbors (Markov blanket).
Defn: A Markov net H is an I-map for a Bayes net G if $I(H) \subseteq I(G)$.

We can construct a minimal I-map for a BN by finding the minimal Markov blanket for each node.

We need to block all active paths coming into node X, from parents, children, and co-parents; so connect them all to X.

\[\begin{align*}
&U_1 & & & &U_m \\
&Z_{ij} & & & &Z_{nj} \\
\vdots & & & & & \vdots \\
&Y_1 & & & &Y_n \\
\end{align*} \]
Chordal graphs (L4)

- Chordal graphs encode independencies that can be exactly represented by either directed or undirected graphs.
- Chain graphs combine directed and undirected graphs and represent a larger set of distributions.
Variable elimination algorithm (L7)

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.

\[P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H) \]

\[= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C)P(D|C)P(I)P(G|I, D)P(S|I)P(L|G)P(J|L, S)P(H|G, J) \]

\[= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_C(C)\phi_D(D, C)\phi_I(I)\phi_G(G, I, D)\phi_S(S, I)\phi_L(L, G)\phi_J(J, L, S)\phi_H(H, G, J) \]

\[= \sum_{L} \sum_{S} \phi_J(J, L, S) \sum_{G} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_S(S, I)\phi_I(I) \sum_{D} \phi(G, I, D) \sum_{C} \phi_C(C)\phi_D(D, C) \]
From Bayes net to Jtree (L8)

BN	Moralize	Triangulate

Coherence → Difficulty → Intelligence → Grade → Letter → SAT → Job → Coherence

BN: C,D
Moralize: G,I,D, G,S,I
Triangulate: G,S,L, L,S,J

Jgraph: G,H
MESSAGE PASSING ON JTREES (L8, L9)

- Hugin vs Shafer Shenoy

```
               ABC
              /   /
             C   CDE
            /     /
           E   DE
```

```
        DEF
        |
        E
```

```
A ---- B
    |
    C
    |
    D
```

```
    |
    F
```
MLE for fully observed BNs (L10)

- If we assume the parameters for each CPD are globally independent, then the log-likelihood function decomposes into a sum of local terms, one per node:

\[
\log p(\mathcal{D}|\theta) = \log \prod_m \prod_i p(x_i^m|x_{\pi_i}, \theta_i) = \sum_i \sum_m \log p(x_i^m|x_{\pi_i}, \theta_i)
\]
MLE for fully observed UGM (L13)

- Is the graph *decomposable* (triangulated)?
- Are all the clique potentials defined on maximal cliques (not sub-cliques)? e.g., ψ_{123}, ψ_{234} not $\psi_{12}, \psi_{23}, \ldots$
- Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g., $\psi_c(x_c) = \exp(\sum_k w_k f_k(x_c))$?

<table>
<thead>
<tr>
<th>Decomposable?</th>
<th>Max. Cliques</th>
<th>Tabular</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Direct</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>IPF</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Gradient ascent</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Iterative scaling</td>
</tr>
</tbody>
</table>
• Conditional random fields are discriminative models.
• Assuming fully observed training data, learning can be done using conjugate gradient descent, just as in a regular MRF with non-maximal cliques.
• Gradient requires computing the partition function, which is (in general) only tractable for low treewidth models (e.g., chains).
MLE for partially observed BNs (L12)

- Use (conjugate) gradient or EM
- M-step is what we did for the 1 node/2 node BNs
Learning structure of fully observed BNs (L15, L16)

- Search + score (local search + Occam’s razor)
Learning structure of partially observed BNs (L16)

- Search = local search
- Score = expected BIC (structural EM)
- Score = variational Bayes (VB-EM)
Monte Carlo methods (L19)

- Importance sampling
- Particle filtering
- RBPF
- MCMC: Gibbs sampling and Metropolis Hastings
Variational methods (L20)

- Iterative Conditional Modes (ICM)
- Mean field
- Structured variational methods
- Loopy belief propagation

\[D(q, p) \]

\[D(p, q) \]
A Generative Model for Generative Models

- SBN, Boltzmann Machines
- Cooperative Vector Quantization
 - Mixture of Gaussians (VQ)
 - Gaussian
 - Factor Analysis (PCA)
 - ICA
- Factorial HMM
- Mixture of HMMs
- Mixture of Factor Analyzers
- Linear Dynamical Systems (SSMs)
- Nonlinear Dynamical Systems
- Nonlinear Gaussian Belief Nets
- Switching State-space Models
- Mixture of LDSs

mix : mixture
red-dim : reduced dimension
dyn : dynamics
distrib : distributed representation
hier : hierarchical
nonlin : nonlinear
switch : switching