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INFERENCE

e Inference means computing P(h;|v), where h are the hidden
variables v are the visible variables.

e For discrete (eg binary) hidden nodes, exact inference takes O(2%)
time, where w is the induced width of the graph.

e For continuous hidden nodes, exact (closed-form) inference is only
possible in rare circumstances eg. jointly Gaussian models (Kalman
filters, etc.).

e We will first consider various approximations for approximate
inference for discrete variables.

e For continuous or mixed discrete/cts variables

— Extend ADF/ PF from online inference in chains to offline

inference in general graphs: (ADF — EP, PF — NBP)
— Or use MCMC (eg Gibbs)



VARIATIONAL INFERENCE

e Let us try to find an approximation (Q(h) which is as close as

possible to P(h|v).

e We usually measure closeness using Kullback Leibler divergence:

def Q(h) Q(H)
D(Q,P) = /hQ(h) log P[] Epglog P(H|v)
e This is different than minimizing D(P, Q) = Ey.p 10%%

which is mtractable
P(@. p) D(p, )

NN Lo

e We will endow () with free (variational) parameters, and minimize

ming D(Q(h.€)., P(hlo))




VARIATIONAL FREE ENERGY

e Minimizing D(Q, P) i [, Q(Rh)log P%(j‘g) is hard, since P(hl|v) is
intractable. But for a Bayes net, P(h,v) is easy (product of CPDs).

e So we minimize the free energy:

def (Q P — log P(v

/Q log h] /Q )log P(v /Q log h)

e Since D(Q, P) > 0, we have F(Q, P) > —log P(v

minimizing F' is maximizing an upper bound on the Iog ||ke||hood

e Alternative derivation: use Jensen's inequality:

log P(v log/ (h,v) log/@

/@ )log '“’)— F(Q, P)




EXACT INFERENCE

o Let us minimize F(Q, P) subject only to the constraint that

>nQUH) =
J =2 Q(h)logQ(h Z Q(R)log P(hv) + A(>_ Q(h) —

h h
e Derivative:

0.J Q(h)
5Q(h’) Q1)

e Solving 5@(71’) = ( yields Q(h) = P(hl|v).

—log Q(R)) + — log P(K'|v) + A



PAIRWISE M RF'S

e For ease of explanation, | will often assume the model can be
written as an MRF with pairwise potentials (one per edge):

P(xly) = H %] Ly L g me ;)
<2]>

e Any Bayes net/ Markov net/ factor graph can be converted into
this form, by creating extra “meganodes’”.



VITERBI APPROXIMATION

e The Viterbi approximation is to assume that all the posterior
probability mass is assigned to a single (MAP) assignment h:

Q(h) = 8(h, ).
@ i.e., we associate every hidden variable with a single value.

e For GMs with low treewidth, we can find £ efficiently.

e In general, we can use iterative techniques.



ITERATIVE CONDITIONAL MODES (ICM)

e ICM assigns each variable to its MAP estimate, holding all the
others constant:

h; := argmax P(h;|h \ h;,v) = argmaxwm H V;i(hi, hj)
hy 1€N;
where the hj's are in 7's Markov blanket.

e K-means clustering is an example of ICM, where h are the
assignment variables for each data point to a cluster, and the value
of the cluster centers (means).

e ICM is very greedy and often gets stuck in local optima.



(FIBBS SAMPLING

e Gibbs sampling is a stochastic version of ICM, where instead of
picking the best state, we sample a state:

hiN ( ’h\hlvv)

where

= vii(hi) T wij(hi, )

JEN;

e This is less greedy than ICM, but can be much slower.



MEAN FIELD METHOD

e The mean field method is like a deterministic version of Gibbs
sampling, where we replace samples with expected values.

e We make a fully factorized approximation: Q(x) = ][, b;(x;). So
the mean field free energy is

Fyr({0i}) = Y Yb ()b :E] 1Og¢m<xux3)

<1)> Ty, T

+ Z Z bi(x;)log b;(x;) — logw;(x;)]

e We want to minimize FMF(b ) subject to » . bj(x;) = 1.

e Hence we iteratively update

bi(w;) o Yys(zi)exp | Y Y bi(w;)log iz, )

JEN; Zj




MEAN FIELD BOLTZMANN MACHINES

e The Boltzmann machine (stochastic Hopfield network) is a pairwise

MRF where nodes are binary (either S; € {0,1} or
h; € {—1,4+1}), and potentials have the restricted form
V;i(S;,S;) = exp6;;S;S; and ¢4;(S;) = exp 0;05;:

1
P(s) = - exp Z (97;]'3@'3]' + Z 0,05
1< 1
e The mean field approximation is Q(h|v) = |]; ,ufi(l — ),
where 1; = E(S;) = P(S; = 1|v).

e Minimizing D(P, () yields the mean field update equations:

pi =0 (> O + i)

]



STRUCTURED VARIATIONAL APPROXIMATIONS

e Meanfield assumes () is fully factorized.
e \We can model correlations by exploiting tractable substructure.

e c.g., decompose factorial HMM into product of chains
QX H Q(X1.y)
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LOOPY BELIEF PROPAGATION

e Structured variational approximations remove some edges from the
graph and replace their effect with variational parameters.

e An alternative is to leave all the original edges intact, but only
capture their effect locally.

e Recall that the free energy is

F=) Qh)logQh)—) > Qhc,)logvy(hcy,vey)
h

k he,

e The second term is the expected value of a local factor, and is easy
to compute for any Q(h).

e But the entropy term is intractable for general Q(h).

e We will show how loopy belief propagation can minimize an
approximation to this.



BETHE FREE ENERGY

e [ he Bethe approximation is
[1<ijs bij(hs, hy)

QAh) ~ [T; bi(hi)di—1

where d; is the degree of h; (ie., number of factors it appears in).

e So the Bethe free energy is
Eyrr({0i,bi}) = — > >J ij(@i, xj)log bjj(z, ) — log @i

<1)> Xj, Ly

_ Z<d@ —1) Z bi(x;)log bi(x;) — log ;(x;))

where ¢;;(x;, xj) = (@i, 2T (x5).
e Loopy belief propagation is a way to minimize this subject to the
constraints » . b;;(xj, ;) = bj(z;) and > bi(z;) = 1.




LOOPY BELIEF PROPAGATION MINIMIZES BETHE FREE
ENERGY

e In LBP, we iteratively update our beliefs by message passing

Mg 37] X wa .CEZ,CI?] i) H myi(Z;)
keN;\Jj
bi(w;) o %(l’z‘) 1 mui(zi)
keN;
e The messages m;; are exp(A;;), where \;; is the Lagrange

multiplier enforcing the marginalization constraint while minimizing

Frethe-
e | BP sometimes called “sum-product algorithm” .



DISCRETE MESSAGE PASSING/ BELIEF PROPAGATION

e Consider an MRF with one potential per edge
H¢@&X'H@
<2]>

e \We can generalize the forwards-backwards algorithm as follows:

My 37] ZQbZ (2 %] xlax]) H m]@<xz)

bi(w;) o ¢z’(5€z’) 1] mji(xs)
JEN;
e If all potentials, messages and beliefs are discrete:

T
mij = Vi | [ mii bioc ¢iox [ myi
k

JEN;



COMPLEXITY OF DISCRETE BP

e If all potentials, messages and beliefs are discrete:
m;j = ¢£¢i' w | [, bioc gix [ mys
k JEN;
o I there are K states, each message takes O(K?) time to compute.
e For certain kinds of potentials (e.g., v;;(7,7) = exp(|lu; — ujH2)

where u;, u; € IR), the messages can be computed in O(K log K)
or even O(K) time.

e For general potentials, once can use multipole methods and fancy
data structures (like kd-trees) to do this in O(K) or O(K log K)
time. See Nando's NIPS workshop on “fast methods” .



LOOPY BELIEF PROPAGATION

e The BP equations are exact if the graph is a chain or a tree (assuming
we can implement sum and product operators analytically).

e What happens if BP is applied to graphs with loops?
e If may not convergence, and even if it does, it may be wrong.

e However, in practice, it often works well (e.g., error correcting codes).

Msg Type Algo  Correct if conv? Suff cond for conv?
Discrete > ][] No No
Discrete max ]| Strong local opt. No
Gaussian > ]| Means - yes, covs - no Yes

General Y [] 7 ?



SUMMARY SO FAR

e For discrete state spaces, we have the following ranking of algorithms
from best to worst (in terms of accuracy/ speed):

— Loopy belief propagation
— Mean field

— lterative conditional modes
— Gibbs sampling

e \What about continuous state spaces?



MESSAGE PASSING FOR GENERAL STATE SPACES

e Filtering on chains is equivalent to message passing in a left-to-right

fashion. .
E~)
O G e @

e Smoothing on chains involves a forward and a backwards pass.
e Inference on trees involves an upwards and a downwards pass.

e Inference on loopy graphs involves parallel message passing.
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(GAUSSIAN MESSAGE PASSING/ BELIEF PROPAGATION

e Consider an MRF with one potential per edge

H ¥ij(X;, X;) chz

<2]>

where 1;; = exp(X; Vi;X;) and ¢; = explo-(X; — 117)?).

e The BP equations are as before:

My, 37] Z?bz Lq %] xuxj) H mﬂ(xz)
keN\{Jj}
bi(x;) o< di(xy) || myils)
JEN;
e Since a Gaussian times a Gaussian is a Gaussian, and the marginal of

a Gaussian is another Gaussian, we can implement these equations
in closed form (generalization of the Kalman filter).



GENERAL MESSAGE PASSING/ BELIEF PROPAGATION

e In general, how can we implement these equations?

My, 37] Z?bz Lq %] xuxj) H mﬂ(xz)
ke N \{j}
bi(x;) o< di(ay) || myils)
JEN;
e This depends on the form of the potentials 1) and ¢, and the form

of the beliefs b (from which the form of the messages m can be
inferred), just as in filtering for state-space models.



EXPECTATION PROPAGATION (EP)

e Cross between ADF (assumed density filtering) and BP.

e Suppose potentials/ beliefs are mixtures of K Gaussians. Number
of mixture components of posterior belief is K% for a node with d
neighbors; need to project back to K Gaussians (moment matching).

e The tractable messages are inferred by dividing the new belief by the
old belief.

e EP is iterated ADF.

e Advantages of iterating:

— Errors made earlier in the sequence can be recovered from.

— Less dependence on the order in which data arrives.

e Multiple forward-backwards passes are necessary, even for chains/
trees, because the message computations are not exact.



NON-PARAMETRIC BELIEF PROPAGATION (NPBP)

e Cross between particle filtering and BP.



EM

e If all the hidden variables are discrete, and all the parameters are
continuous, we can use the approximation Q(h, 8) = Q(h)d(6, 6),
where Q)(h) is a general posterior on h and a delta function on the
parameters.

e The EM algorithm consists of minimizing F'(Q), Py) using
coordinate ascent.

o E-step: minimize wrt Q(h) = computing P(h|v,0).
e M-step: minimize wrt 6(6, 0).
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EM VARIANTS

e Standard EM: Q(h, ) = P(h|v,0)5(0,0).

e Variational EM: use a variational approximation (eg mean field) in
the E-step.

e Stochastic EM: use Monte Carlo in the E-step.

e Incremental EM: update parameters after each training case
(online) instead of after all data (batch).

e “Generalized EM": do a partial M-step (eg. gradient step).

e Variational Bayes EM (ensemble learning): replace point estimates
of parameters with distributions in the M-step.

e CG-EM: alternate between conjugate gradient and EM.



COMPARISON OF METHODS

e “A comparison of algorithms for inference and learning in PGMs",
Frey and Jojic, PAMI 2004 to appear

B3




LAYERED MODEL OF FOREGROUND + BACKGROUND
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MULTIPLE LAYERS PLUS CONTINUOUS DEFORMATIONS

Learned means of appearance and mask images
e
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COMPARISON OF EM: EXACT, MEAN FIELD, ICM, BP

Class

=]

13

14

V¢
K

020

.19

0.17

019

i

Exact EM

.07

00T

.07

0.0A

010

0.02

010

004

Lo

Variational EM

Belief propagation




COMPARISON OF EM: EXACT, MEAN FIELD, ICM, BP
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