
Lecture 17:

Linear Gaussian Models

Kevin Murphy
17 November 2004

Bayes nets with tabular CPDs

We have mostly focused on graphs where all latent nodes are discrete,
and all CPDs/potentials are full tables.

0

1

0 1

2x

4x

0

1
x 1

0

1

0 1

x 1

2x

0

1

0 1

3x

x 1

5x
0

1

0 1

3x

0

1

0 1

0
1

6x

2x

5x

1X

2X

3X

X 4

X 5

X6

Mixtures of Gaussians

•We have also considered discrete latent variables with continuous
observed variables.

• e.g., in a mixture of Gaussians:

P (Z = i) = θi

p(X = x|Z = i) = N (x; µi, Σi)

• This can be used for classifica-
tion (supervised) and clustering/ vector quantization (unsupervised).

X

Z

X

Z

Linear Gaussian model

•We now consider the case where all CPDs are linear-Gaussian:

p(Z = z) = N (z; µz, Σz)

p(X = x|Z = z) = N (x; µx + Λz, Σ)

• i.e., child = linear function of parent plus gaussian noise

X = ΛZ + noise, noise ∼ N (µx, Σx)

• For the supervised case, this is just linear regression:

X

Z

X

Z

Factor analysis (Jordan ch 14)

• Unsupervised linear regression is called factor analysis.

p(x) = N (x; 0, I)

p(y|x) = N (y; µ + Λx, Ψ)

where Λ is the factor loading matrix and Ψ is diagonal.

X

Z

X

Z

λ
1

λ2µ

y1

y2

y3

• To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.

Review: Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x − m)(x − m)>] =

∫

x
(x − m)(x − m)>p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x − mx)(y − my)>] = C

=

∫

xy
(x − mx)(y − my)>p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Marginal Data Distribution

• Since a marginal Gaussian times a conditional Gaussian is a joint
Gaussian, we can compute the marginal density p(y|θ) by
integrating out x.

p(y|θ) =

∫

x
p(x)p(y|x, θ)dx = N (y|µ , ΛΛ>+Ψ)

which can be done by completing the square in the exponent.

• However, since the marginal is Gaussian, we can also just compute
its mean and covariance. (Assume noise uncorrelated with data.)

E[y] = E[µ + Λx + noise] = µ + ΛE[x] + E[noise]

= µ + Λ · 0 + 0 = µ

Cov[y] = E[(y − µ)(y − µ)>]

= E[(µ + Λx + noise − µ)(µ + Λx + noise − µ)>]

= E[(Λx + n)(Λx + n)>] = ΛE(xx>)Λ> + E(nn>)

= ΛΛ> + Ψ

FA = Constrained Covariance Gaussian

•Marginal density for factor analysis (y is p-dim, x is k-dim):

p(y|θ) = N (y|µ , ΛΛ>+Ψ)

• So the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

ΛT

Λ ΨCov[y]

• In other words, factor analysis is just a constrained Gaussian model.
(If Ψ were not diagonal then we could model any Gaussian and it
would be pointless.)

Probabilistic Principal Component Analysis (PPCA)

• In Factor Analysis, we can write the marginal density explicitly:

p(y|θ) =

∫

x
p(x)p(y|x, θ)dx = N (y|µ , ΛΛ>+Ψ)

• Noise Ψ mut be restricted for model to be interesting. (Why?)

• In Factor Analysis the restriction is that Ψ is diagonal (axis-aligned).

•What if we further restrict Ψ = σ2I (ie spherical)?

•We get the Probabilistic Principal Component Analysis (PPCA)
model: ywhere µ is the mean vector,
columns of Λ are the principal components (usually orthogonal),
and σ2 is the global sensor noise.

PCA: Zero Noise Limit

• The traditional PCA model is actually a limit as σ2 → 0.

• Actually PCA is the limit as the ratio of the noise variance on the
output to the prior variance on the latent variables goes to zero.
We can either achieve this with zero noise or with infinite variance
priors.

• (P)PCA is very useful for dimensionality reduction, e.g., for
visualizing high-dimensional data.

Difference between FA and PPCA

• Recall the intuition that Gaussians are hyperellipsoids, where Mean
= centre of football, Eigenvectors of covariance matrix = axes of
football, Eigenvalues = lengths of axes

PCA

εΙ

FA

Ψ

• In FA our football is an axis aligned cigar.
In PPCA our football is a sphere of radius σ2.

• In FA, the variance of the noise is independent for each dimension;
in PPCA, the noise is assumed to be the same.

• PCA looks for directions of large variance,

• Conversely, FA looks for directions of large correlation.

Model Invariance and Identfiability

• There is degeneracy in the FA model.

• Since Λ only appears as outer product ΛΛ>, the model is invariant
to rotation and axis flips of the latent space.

•We can replace Λ with ΛQ for any unitary matrix Q and the model
remains the same: (ΛQ)(ΛQ)> = Λ(QQ>)Λ> = ΛΛ>.

• This means that there is no “one best” setting of the parameters.
An infinite number of parameters all give the ML score!

• Such models are called un-identifiable since two people both fitting
ML params to the identical data will not be guaranteed to identify
the same parameters.

Latent Covariance in Factor Analysis and PCA

•What if we allow the latent variable x to have a covariance matrix
of its own: p(x) = N (x|0,P)?

•We can still compute the marginal probability:

p(y|θ) =

∫

x
p(x)p(y|x, θ)dx = N (y|µ , ΛPΛ>+Ψ)

•We can always absorb P into the loading matrix Λ by diagonalizing
it: P = EDE> and setting Λ = ΛED1/2.

• Thus, there is another degeneracy in FA, between P and Λ:
we can set P to be the identity, to be diagonal, whatever we want.

• Traditionally we break this degeneracy by either:

– set the covariance P of the latent variable to be I (FA) or

– force the columns of Λ to be orthonormal (PCA)

FA joint distribution

•Model

p(x) = N (x|0, I)

p(y|x, θ) = N (y|µ + Λx, Ψ)

• Hence the joint distribtion of x and y:

p(

[

x

y

]

) = N (

[

x

y

]

|

[

0
µ

]

,

[

I Λ>

Λ ΛΛ> + Ψ

]

)

where the corner elements Λ>, Λ come from Cov[x,y]:

Cov[x,y] = E[(x − 0)(y − µ)>] = E[x(µ + Λx + noise − µ)>]

= E[x(Λx + noise)>] = Λ>

• Assume noise is uncorrelated with data or latent variables.

Review: Gaussian Conditioning (Jordan ch 13)

• Remember the formulas for conditional Gaussian distributions:

p(

[

x1
x2

]

) = N (

[

x1
x2

]

|

[

µ1
µ2

]

,

[

Σ11 Σ12
Σ21 Σ22

]

)

p(x1|x2) = N (x1|m1|2,V1|2)

m1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

V1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Inference in Factor Analysis

• Apply the Gaussian conditioning formulas to the joint distribution
we derived above, where

Σ11 = I

Σ12 = ΛT

Σ−1
22 = (ΛΛT + Ψ)−1

gives

V1|2 = Σ11 − Σ12Σ
−1
22 Σ21

= I − Λ>(ΛΛ> + Ψ)−1Λ

m1|2 = m1 + Σ12Σ
−1
22 (x2 − m2)

= Λ>(ΛΛ> + Ψ)−1(y − µ)

Inference in Factor Analysis

• The previous formula requires inverting a matrix of size |y| × |y|.

p(x|y) = N (x|m,V)

V = I − Λ>(ΛΛ> + Ψ)−1Λ

m = Λ>(ΛΛ> + Ψ)−1(y − µ)

•We now use a good trick for inverting matrices when they can be
decomposed into the sum of an easily inverted matrix (D) and a
low rank outer product. It is called the matrix inversion lemma.

(D − AB−1A>)−1 = D−1 + D−1A(B − A>D−1A)−1A>D−1

• Apply the matrix inversion lemma we get:

p(x|y) = N (x|m,V)

V = (I + Λ>Ψ−1Λ)−1

m = VΛ>Ψ−1(y − µ)

which inverts a matrix of size |x| × |x|.

Inference is Linear projection

• The posterior is

p(x|y) = N (x|m,V)

V = I − Λ>(ΛΛ> + Ψ)−1Λ = (I + Λ>Ψ−1Λ)−1

m = Λ>(ΛΛ> + Ψ)−1(y − µ) = VΛ>Ψ−1(y − µ)

• Posterior covariance does not depend on observed data y! (Can be
precomputed.)

• Also, computing the posterior mean is just a linear operation:
m = β(y − µ) where β (hat matrix) can be precomputed.

µ

y1

y2

y3

y

Incomplete data log likelihood Function

• Using the marginal density of p(y):

`(θ;D) = −
N

2
log |ΛΛ> + Ψ| −

1

2

∑

n

(yn − µ)>(ΛΛ> + Ψ)−1(yn − µ)

= −
N

2
log |V| −

1

2
trace

[

V−1
∑

n

(yn − µ)(yn − µ)>

]

= −
N

2
log |V| −

1

2
trace

[

V−1S
]

V is model covariance; S is sample data covariance.

• In other words, we are trying to make the constrained model
covariance as close as possible to the observed covariance, where
“close” means the trace of the ratio.

• Thus, the sufficient statistics are the same as for the Gaussian:
mean

∑

n yn and covariance
∑

n(yn − µ)(yn − µ)>.

EM for Factor Analysis

• Parameters are coupled nonlinearly in log-likelihood:

`(θ;D) = −
N

2
log |ΛΛ> + Ψ| −

1

2
trace

[

(ΛΛ> + Ψ)−1S
]

•We could use conjugate gradient methods.

• But EM is simpler.

• For E-step we do inference (linear projection)
For M-step we do linear regression on the expected values.
More precisely, we maximize the expected complete log likelihood.

E − step : qt+1
n = p(xn|yn, θt) = N (xn|mn,Vn)

M − step : Λt+1 = argmaxΛ

∑

n

〈`c(x
n,yn)〉

qt+1
n

Ψt+1 = argmaxΨ

∑

n

〈`c(x
n,yn)〉

qt+1
n

Complete Data Likelihood

•We know the optimal µ is the data mean.
Assume the mean has been subtracted off y from now on.

• The complete likelihood (ignoring mean):

`c(Λ, Ψ) =
∑

n

log p(xn,yn)

=
∑

n

log p(xn) + log p(yn|xn)

= −
N

2
log |Ψ| −

1

2

∑

n

x>x −
1

2

∑

n

(yn − Λxn)>Ψ−1(yn − Λxn)

= −
N

2
log |Ψ| −

N

2
trace[SΨ−1]

S =
1

N

∑

n

(yn − Λxn)(yn − Λxn)>

M-step: Optimize Parameters (Jordan ch 13)

• Take the derivates of the complete log likelihood wrt. parameters.

•We will need thse identities.
∂

∂A
log |A| = (A−1)>

∂

∂A
trace[B>A] = B

∂

∂A
trace[BA>CA] = 2CAB

• Hence

∂`c(Λ, Ψ)/∂Λ = −Ψ−1
∑

n

ynx
>
n + Ψ−1Λ

∑

n

xnx
>
n

∂`c(Λ, Ψ)/∂Ψ−1 = +(N/2)Ψ − (N/2)S

M-step: Optimize Parameters

•Derivatives from previous slide:

∂`c(Λ, Ψ)/∂Λ = −Ψ−1
∑

n

ynx
>
n + Ψ−1Λ

∑

n

xnx
>
n

∂`c(Λ, Ψ)/∂Ψ−1 = +(N/2)Ψ − (N/2)S

• Take the expectation of gradient with respect to qt from E-step:

< `′Λ > = −Ψ−1
∑

n

ynm
>
n + Ψ−1Λ

∑

n

Vn

< `′
Ψ−1 > = +(N/2)Ψ − (N/2) < S >

where

mn = E[Xn|yn]

Vn = V ar(Xn|yn) + E(Xn|yn)E(Xn|yn)>

< S > =
1

N

∑

n

yny>n − ynm>
nΛ> − Λmny>n + ΛVnΛ>

M-step: Optimize Parameters

• Take the expectation of gradient with respect to qt from E-step:

< `′Λ > = −Ψ−1
∑

n

ynm
>
n + Ψ−1Λ

∑

n

Vn

< `′
Ψ−1 > = +(N/2)Ψ − (N/2) < S >

• Finally, set the derivatives to zero to solve for optimal parameters:

Λt+1 =

(

∑

n

ynmn
>

)(

∑

n

Vn

)−1

Ψt+1 =
1

N
diag

[

∑

n

ynyn
> − Λt+1

∑

n

mnyn
>

]

Final Algorithm: EM for Factor Analysis

• First, set µ equal to the sample mean (1/N)
∑

n yn, and subtract
this mean from all the data.

• Now run the following iterations:

E − step : qt+1 = p(x|y, θt) = N (xn|mn,Vn)

Vn = (I + Λ>Ψ−1Λ)−1

mn = VnΛ>Ψ−1(y − µ)

M − step : Λt+1 =

(

∑

n

ynmn>

)(

∑

n

Vn

)−1

Ψt+1 =
1

N
diag

[

∑

n

ynyn> − Λt+1
∑

n

mnyn>

]

Learning for PPCA

• For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.

• But for (P)PCA, the ML params can be solved for directly:
The kth column of Λ is the kth largest eigenvalue of the sample
covariance S times the associated eigenvector.

• The global sensor noise σ2 is the sum of all the eigenvalues smaller
than the kth one.

• This technique is good for initializing FA also.

• Note: EM can be used as a fast way to compute eigenvectors!

Independent Components Analysis (ICA)

• ICA is similar to FA, except it assumes the latent source has
non-Gaussian density.

• Hence ICA can extract higher order moments
(not just second order).

• It is commonly used to solve blind source separation
(cocktail party problem).

• Independent Factor Analysis (IFA) is an approximation to ICA
where we model the source using a mixture of Gaussians.

FA FA Mixture of FA IFA

Hidden Markov Models

• You can think of an HMM as:
A Markov chain with stochastic measurements.

x1

y1

x2

y2

x3

y3

xT

yT

or a mixture of Gaussians, with latent variables changing over time
(lily pad model)

x1

y1

x2

y2

x3

y3

xT

yT

State space models (SSMs)

• An SSM is like an HMM, except the hidden state is continuous val-
ued.

• In general, we can write

xt = f (xt−1) + wt

yt = g(xt) + vt

where f is the dynamical (process) model, g is the observation model.

•wt is the process noise, embedded inside P (Xt|Xt−1).

• vt is the observation noise embedded inside P (Yt|Xt).

• For a controlled Markov chain, we condition all quantities on the
observed input signals ut.

Linear dynamic systems (LDS) (Jordan ch 15)

• An LDS is a special case of a SSM where f and g are linear functions
and the noise terms are Gaussian.

xt = Axt−1 + wt

yt = Bxt + vt

wt ∼ N (0, Q)

vt ∼ N (0, R)

• An LDS is like factor analysis through time.

Kalman filtering and smoothing

• The Kalman filter is a way to perform exact online inference (sequen-
tial Bayesian updating) in an LDS. It is the Gaussian analog of the
forwards algorithm for HMMs:

P (Xt = i|y1:t) = αt(i) ∝ p(yt|Xt = i)
∑

j

P (Xt = i|Xt−1 = j)αt−1(j)

• The Rauch-Tung-Strievel smoother is a way to perform exact of-
fline inference in an LDS. It is the Gaussian analog of the forwards-
backwards algorithm:

P (Xt = i|y1:T) ∝ αt(i)βt(i)

Online vs offline inference

LDS for 2D tracking

•Dynamics: new position = old position + ∆ * velocity + noise
(constant velocity model, Gaussian acceleration)











x1
t

x2
t

ẋ1
t

ẋ2
t











= ∆









1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 1



















x1
t−1

x2
t−2

ẋ1
t−3

ẋ2
t−4











+ noise

•Observation: project out first two components
(we observe Cartesian position of object - linear!)

(

y1
t

y2
t

)

=

(

1 0 0 0
0 1 0 0

)











x1
t

x2
t

ẋ1
t

ẋ2
t











+ noise

2D tracking

8 10 12 14 16 18 20 22 24 26

6

7

8

9

10

11

12

X

Y

2D filtering

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed

true
observed
smoothed

(a) (b)

Kalman filtering in the brain?

Model
Parameters

The World The Estimator

Hidden State
("Internal" to
 the World)

Hidden State
("Internal" to
 the Estimator)

(mapping
 function)

(inverse
 mapping)

Visible State
("External")

-

U V

(b)

(a)

r(t)

The Estimator
(Internal Model of the World)

r(t)

n

I(t) I(t) r(t-1)

Temporal Dynamics
of Hidden State ‘r’

Conversion to

(Image ‘I’) of Hidden State ‘r’
Visible State Estimated DynamicsVisible State

Predicted

(Image ‘I’)

r(t-1)

The World

V U

m

Kalman Filter

Kalman filtering derivation

• Since all CPDs are linear Gaussian, the system defines a large multi-
variate Gaussian.

• Hence all marginals are Gaussian.

• Hence we can represent the belief state P (Xt|y1:t) as a Gaussian
with mean x̂t|t and covariance Pt|t.

• It is common to work with the inverse covariance (precision) matrix
P−1

t|t
; this is called information form.

• Kalman filtering is a recursive procedure to update the belief state:

– Predict step: compute P (Xt+1|y1:t) from prior belief P (Xt|y1:t)
and dynamical model P (Xt+1|Xt).

– Update step: compute new belief P (Xt+1|y1:t+1) from prediction
P (Xt+1|y1:t), observation yt+1 and observation model P (yt|Xt).

Predict step

•Dynamical Model: xt+1 = Axt + Gwt, wt ∼ N (0, Q).

•One step ahead prediction of state:

x̂t+1|t = E[Xt+1|y1:t] = Ax̂t|t

Pt+1|t = E[(Xt+1 − x̂t+1|t)(Xt+1 − x̂t+1|t)
T |y1:t]

= APt|tA
T + GQGT

•Observation Model: yt = Cyt + vt, vt ∼ N (0, R).

•One step ahead prediction of observation:

E[Yt+1|y1:t] = E[CXt+1 + vt+1|y1:t] = Cx̂t+1|t

E[(Yt+1 − ŷt+1|t)(Yt+1 − ŷt+1|t)
T |y1:t] = CPt+1|tC

T + R

E[(Yt+1 − ŷt+1|t)(Xt+1 − x̂t+1|t)
T |y1:t] = CPt+1|t

Update step

• Summarizing results from previous slide, we have P (Xt+1, Yt+1|y1:t) ∼
N (mt+1, Vt+1), where

mt+1 =

(

x̂t+1|t
Cx̂t+1|t

)

, Vt+1 =

(

Pt+1|t Pt+1|tC
T

CPt+1|t CPt+1|tC
T + R

)

• Remember the formulas for conditional Gaussian distributions:

p(

[

x1
x2

]

) = N (

[

x1
x2

]

|

[

µ1
µ2

]

,

[

Σ11 Σ12
Σ21 Σ22

]

)

p(x1|x2) = N (x1|m1|2,V1|2)

m1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

V1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Kalman filter equations

• Using the conditioning formulas, we get:

x̂t+1|t = Ax̂t|t

Pt+1|t = APt|tA
T + GQGT

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 − Cx̂t+1|t)

Pt+1|t+1 = Pt+1|t − Kt+1CPt+1|t

where Kt+1 is the Kalman gain matrix

Kt+1 = Pt+1|tC
T (CPt+1|tC

T + R)−1

•Kt can be precomputed (since it is independent of the data). This
rapidly converges to a constant matrix (Ricatti equation).

Example of KF in 1D (Russell & Norvig 2e p554)

• Consider noisy observations of a 1D particle doing a random walk:
xt = xt−1 + N (0, σx), yt = xt + N (0, σy)

• Hence

Pt+1|t = APt|tA
T + GQGT = σt + σx

Kt+1 = Pt+1|tC
T (CPt+1|tC

T + R)−1 = (σt + σx)(σt + σx + σz)
−1

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 − Cx̂t+1|t) =
(σt + σx)zt + σzµt

σt + σx + σz

Pt+1|t+1 = Pt+1|t − Kt+1CPt+1|t =
(σt + σx)σz

σt + σx + σz

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-10 -5 0 5 10

P
(x

)

x position

P(x0)

P(x1)

P(x1 | z1 = 2.5)

*z1

KF: intuition

• The KF update of the mean is

x̂t+1|t+1 = Ax̂t|t + Kt+1(yt+1 − CAx̂t|t) =
(σt + σx)zt + σzµt

σt + σx + σz

• The term (yt+1 − Cx̂t+1|t) is called the innovation.

• New belief is convex combination of updates from prior and obser-
vation, weighted by Kalman Gain matrix:

Kt+1 = Pt+1|tC
T (CPt+1|tC

T + R)−1

• If the observation is unreliable, σz is large so Kt+1 is small, so we
pay more attention to the prediction.

• If the old prior is unreliable (large σt) or the process is very unpre-
dictable (large σx), we pay more attention to the observation.

KF, RLS and LMS

• The KF update of the mean is

x̂t+1|t+1 = Ax̂t|t + Kt+1(yt+1 − CAx̂t|t)

• Consider the special case where the hidden state is a constant, xt =
θ, but the “observation matrix” C is a time-varying vector, C = xT

t .

• Hence yt = xT
t θ + vt as in linear regression.

•We can estimate θ recursively using the Kalman filter:

θ̂t+1 = θ̂t + Pt+1R
−1(yt+1 − xT

t θ̂t)xt

This is called the recursive least squares (RLS) algorithm.

•We can approximate Pt+1R
−1 ≈ ηt+1 by a scalar constant. This is

called the least mean squares (LMS) algorithm.

•We can adapt ηt online using stochastic approximation theory.

