Lecture 16:
Structure learning

Wed 10 Nov 2004

Maximizing the score (K&F 14.4.3)

- Consider the family of DAGs G_d with maximum fan-in (number of parents) equal to d.
- Theorem 14.4.3: It is NP-hard to find
 \[G^* = \arg \max_{G \in G_d} \text{score}(G, D) \]
 for any $d \geq 2$.
- For $d \leq 1$ (i.e., trees), we can solve the problem in $O(n^2)$ time using max spanning tree.
- In general, we need to use heuristic local search.

Directed Tree Graphical Models (K&F 14.4.1)

- Directed trees are DAGMs in which each variable x_i has exactly one other variable as its parent x_{π_i} except the “root” x_{root} which has no parents. Thus, the probability of a variable taking on a certain value depends only on the value of its parent:
 \[p(x) = p(x_{\text{root}}) \prod_{i \neq \text{root}} p(x_i | x_{\pi_i}) \]
- Trees are the next step up from assuming independence. Instead of considering variables in isolation, consider them in pairs.

Undirected Tree Graphical Models

- Undirected trees are connected, acyclic graphs with exactly $(D-1)$ edges if there are D nodes (variables).
- For undirected trees, the cliques are all pairs of connected nodes.
 \[p(x) = \frac{1}{Z} \prod_i \psi_i(x_i, x_{\pi_i}) \]
 where we can make $Z = 1$ with the choice $\psi_i = p(x_i | x_{\pi_i})$ except for one clique involving the root: $\psi_j = p(x_r)p(x_j | x_{\pi_j})$
- Trees have no “explaining-away” (converging arrows). Therefore, d-separation and regular separation are equivalent.
- Directed and undirected trees are equivalent and the choice of root is arbitrary (for fully observed models).
- Another characterization of trees: there is exactly one path between any pair of nodes (without doubling back).

NB: each node (except root) has exactly one parent, but nodes may have more than one child.
Likelihood function

- Notation:
 \(y_i \equiv \) a node \(x_i \) and its single parent \(x_{\pi_i} \).
 \(V_i \equiv \) set of joint configurations of node \(i \) and its parent \(x_{\pi_i} \).
 \((y_{\text{root}} \equiv x_{\text{root}} \text{ and } V_{\text{root}} \equiv v_{\text{root}}) \)

- Directed model likelihood:
 \[
 \ell(\theta; D) = \sum_n \log p(x^n) = \sum_n \left[\log p_r(x^n) + \sum_{i \neq r} \log p(x_i^n | x_{\pi_i}^n) \right]
 = \sum_n \sum_i \sum_v [y_i^n = v] \log p_i(v) \quad \text{indicator trick}
 = \sum_i \sum_v N_i(v) \log p_i(v)
 \]
 where \(N_i(v) = \sum_n [y_i^n = v] \) and \(p_i(v) = p(x_i | x_{\pi_i}) \).

More on the Likelihood function

- Undirected model likelihood:
 \[
 \ell(\theta; D) = \sum_n \log \prod_i \psi_i(y_i^n)
 = \sum_n \sum_i \sum_v [y_i^n = v] \log \psi_i(v)
 = \sum_i \sum_v N_i(v) \log \psi_i(v)
 \]
 where \(N_i(y) = \sum_n [y_i^n = y] \) and \(\psi_i(y_i) = p(x_i | x_{\pi_i}) \).
 (Except for one clique involving the root: \(\psi_j = p(x_r) p(x_j | x_{\pi_j}) \))

- Directed and undirected likelihoods are the same!

- Trees are in the exponential family with \(y_i \) as sufficient statistics.

Maximum Likelihood Parameters Given Structure

- Trees are just a special case of fully observed graphical models.
- For discrete data \(x_i \) with values \(v_i \), each node stores a conditional probability table (CPT) over its values given its parent’s value.
 The ML parameter estimates are just the empirical histograms of each node’s values given its parent:
 \[
 p^*(x_i = v_i | x_{\pi_i} = v_j) = \frac{N(x_i = v_i, x_{\pi_i} = v_j)}{\sum_{v_i} N(x_i = v_i, x_{\pi_i} = v_j)} = \frac{N_i(y_i)}{N_{\pi_i}(v_j)}
 \]
 except for the root which uses marginal counts \(N_r(v_r) / N \).
- For continuous data, the most common model is a two-dimensional Gaussian at each node. The ML parameters are just to set the mean of \(p_i(y_i) \) to be the sample mean of \([x_i; x_{\pi_i}] \) and the covariance matrix to the sample covariance.
- In practice we should use some kind of smoothing/regularization.

Structure Learning

- What about the tree structure (links)?
 How do we know which nodes to make parents of which?

 - Bold idea: how can we also learn the optimal structure?
 In principle, we could search all combinatorial structures, for each compute the ML parameters, and take the best one.

 - But is there a better way? Yes. It turns out that structure learning in tree models can be converted to a good old computer science problem: maximum weight spanning tree.
Optimal Structure

- Let us rewrite the likelihood function:
 \[\ell(\theta; D) = \sum_{x \in V} N(x) \log p(x) \]
 \[= \sum_{x} N(x) \left(\log p(x_r) + \sum_{i \neq r} \log p(x_i | x_{\pi_i}) \right) \]
- ML parameters, are equal to the observed frequency counts \(q(\cdot) \):
 \[\ell^* = \sum_{x \in V} q(x) \left(\log q(x_r) + \sum_{i \neq r} \log q(x_i | x_{\pi_i}) \right) \]
 \[= \sum_{x} q(x) \left(\log q(x_r) + \sum_{i \neq r} \log \frac{q(x_i, x_{\pi_i})}{q(x_i)q(x_{\pi_i})} \right) \]
 \[= \sum_{x} q(x) \sum_{i \neq r} \log \frac{q(x_i, x_{\pi_i})}{q(x_i)q(x_{\pi_i})} + \sum_{x} q(x) \sum_{i} \log q(x_i) \]
- NB: second term does not depend on structure.

Edge Weights

- Each term in sum \(i \neq r \) corresponds to an edge from \(i \) to its parent.
 \[\frac{\ell^*}{N} = \sum_{x} q(x) \frac{\sum_{i \neq r} \log \frac{q(x_i, x_{\pi_i})}{q(x_i)q(x_{\pi_i})}}{N} + C \]
 \[= \sum_{i \neq r} q(x_i, x_{\pi_i}) \log \frac{q(x_i, x_{\pi_i})}{q(x_i)q(x_{\pi_i})} + C \]
 \[= \sum_{i \neq r} q(y_i) \log \frac{q(y_i)}{q(x_i)q(x_{\pi_i})} + C \]
 \[= \sum_{i \neq r} W(i; \pi_i) + C \]
 where the edge weights \(W \) are defined by mutual information:
 \[W(i; j) = \sum_{x_i, x_j} q(x_i, x_j) \log \frac{q(x_i, x_j)}{q(x_i)q(x_j)} \]

Kruskal’s algorithm (Greedy Search)

- To find the maximum weight spanning tree \(A \) on a graph with nodes \(U \) and weighted edges \(E \):
 1. \(A \leftarrow \emptyset \)
 2. Sort edges \(E \) by nonincreasing weight: \(e_1, e_2, \ldots, e_K \).
 3. for \(k = 1 \) to \(K \) { \(A += e_k \) unless doing so creates a cycle}

Maximum Likelihood Trees

We can now completely solve the tree learning problem:
1. Compute the marginal counts \(q(x_i) \) for each node and pairwise counts \(q(x_i, x_j) \) for all pairs of nodes.
2. Set the weights to the mutual informations:
 \[W(i; j) = \sum_{x_i, x_j} q(x_i, x_j) \log \frac{q(x_i, x_j)}{q(x_i)q(x_j)} \]
3. Find the maximum weight spanning tree \(A = \text{MWST}(W) \).
4. Using the undirected tree \(A \) chosen by MWST, pick a root arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:
\[p(x_i | x_{\pi_i}) = \frac{q(x_i, x_{\pi_i})}{\sum_{x_i} q(x_i, x_{\pi_i})} = \frac{q(x_i, x_{\pi_i})}{q(x_{\pi_i})} \]
• **Notes**

- Any directed tree consistent with the undirected tree found by the algorithm above will assign the same likelihood to any dataset.
- Amazingly, as far as likelihood goes, the root is arbitrary. We can just pick one node and orient the edges away from it. Or we can work with undirected models.
- For continuous nodes (e.g. Gaussian), the situation is similar, except that computing the mutual information requires an integral.
- Mutual information is the *Kullback-Leibler* divergence (cross-entropy) between a distribution and the product of its marginals. Measures how far from independent the joint distribution is.

\[
W(i; j) = I[x_i; x_j] = \text{KL}[q(x_i, x_j) \parallel q(x_i)q(x_j)]
\]

Beyond trees

- Mixtures of trees - add hidden variables
- General graphs - local search

Bayesian model averaging (K&F 14.5)

- So far, we have just tried to find the mode of \(P(G|D)\), i.e., the best scoring network.
- But the mode may be untypical of the distribution: most of the mass may be elsewhere.
- Suppose we are trying to determine if there is an edge \(X \rightarrow Y\) in the “true” model.
- We can compute features like this using

\[
P(f|D) = \sum_G f(G)P(G|D)
\]

where \(P(G|D) \propto P(D|G)P(G) \propto \prod_i \exp \text{FamScore}(D(X_i, \Pi_i))\).

- The main problem is that there are \(2^{\Theta(n^2)}\) DAGs on \(n\) nodes.
- Even if we restrict indegree to \(\leq d\), there are still \(2^{\Theta(dn \log n)}\) DAGs.

MCMC for feature probability

- Suppose we can find a set \(G'\) of high-scoring networks. Then

\[
P(f|D) \approx \frac{\sum_{G \in G'} P(G|D)f(G)}{\sum_{G \in G'} P(G|D)}
\]

- If we can uniformly sample graphs from \(P(G|D)\), we can approximate this using

\[
P(f|D) \approx \frac{1}{T}f(G_k)
\]

where \(G_k\) is the \(k\)'th sample.
- Markov chain Monte Carlo (MCMC) provides a way of sampling from complex distributions such as this.
MCMC

- We define a Markov chain on graph structures (in this case) with transition probability given by the Metropolis-Hastings rule

$$P(G' \mid G) = \min \left(1, \frac{P(G' \mid D)Q(G' \mid G)}{P(G \mid D)Q(G \mid G')} \right)$$

where $Q(G' \mid G)$ is the proposal probability and the ratio is the acceptance probability.

- The proposal Q has to be such that the Markov chain is ergodic, i.e., we can get to any state from any other state.

- We start the chain off in some initial state and then perform a random walk according to the above dynamics.

- Theory shows the stationary distribution of such a Markov chain is $P(G \mid D)$.

MCMC convergence

- The mixing time is how long it takes the chain to converge from a random starting point.

- Once the chain has converged (after the burnin), we can draw (correlated) samples from $P(G \mid D)$.

- We can diagnose convergence by running the chain from multiple starting points and comparing the results. (Diagnosing convergence is an open problem.)

MCMC for DAG structure

- Suppose the proposal Q picks randomly from the following operators (where legal): add an edge, delete an edge, reverse an edge.

- The MH acceptance probability requires computing the Bayes factor $P(G' \mid D) / P(G \mid D)$, which is efficient for decomposable scores.

- However, small changes to the graph can result in large changes to the score, resulting in a jagged landscape.

- So the chain does not mix rapidly (it gets stuck in local optima).

Rao-Blackwellised MCMC

- An alternative idea is to do MCMC sampling in the space of node orderings \prec, which “only” has size $n!$.

- Given an ordering, we can sum over all graphs efficiently (see below). Hence

$$P(f \mid D) \approx \frac{1}{T} P(f \mid D, \prec_i)$$

- This combination of sampling and exact integration/marginalization is called Rao-Blackwellised sampling.

- This is named after the Rao-Blackwell theorem, which says (roughly) that variance is reduced if you sample in a smaller space:

$$\text{Var} E[f(G) \mid \prec] \leq \text{Var} E[f(G)]$$
MCMC over orderings

- We use Metropolis-Hastings as before.
- One proposal is to flip 2 variables in the order, leaving the rest unchanged:

\[(X_{i_1}, \ldots, X_{i_j}, \ldots, X_{i_k}, \ldots, X_{i_n}) \rightarrow (X_{i_1}, \ldots, X_{i_k}, \ldots, X_{i_j}, \ldots, X_{i_n})\]

- Using score decomposability, only family scores for nodes inside the bold range need to be recomputed.
- This is much more expensive than MCMC in DAG space, but each move is much more powerful, and the space is much smaller.

Marginal likelihood given known node ordering

- If we know the ordering (eg. temporal), we have

\[P(D | \prec) = \sum_{G \in G_{d, \prec}} P(G | \prec) P(D | G)\]

- Given \(\prec\), we can pick the parents for each node independently. Let \(U_{i, \prec} = \{U : U \prec X_i, |U| \leq d\}\). Assuming \(P(G | \prec)\) is uniform for legal graphs,

\[P(D | \prec) = \sum_{G \in G_{d, \prec}} \prod_i \exp\text{FamScore}(D(X_i, \pi_i))\]

\[= \prod_i \sum_{U_i \in U_{i, \prec}} \exp\text{FamScore}(D(X_i, \pi_i))\]

- We marginalize out parameters \(\theta\) and graph structures \(G\).
- This is what we need to evaluate the MH acceptance probability.

Prob. feature given known node ordering

- Given a sampled ordering, we can compute the probability of a parent set

\[P(\pi_i^G = U | D, \prec) = \frac{\exp\text{FamScore}(D(X_i, U))}{\sum_{U' \in U_{i, \prec}} \exp\text{FamScore}(D(X_i, U'))}\]

- From this, we can sample parents and hence graphs compatible with \(\prec\).
- From this, we can compute probability of features such as “There is a directed path from \(X_i\) to \(X_j\)”.
- Useful for determining features of biological networks from small sets of data.

Learning gene regulatory pathways

(Slide from Nir Friedman)
Hidden variables (K&F 15.7)

• So far, we have assumed all variables have been observed.
• In this case, we can compute the Bayesian score (evidence) exactly.
• But hidden variables can simplify a model a lot, e.g., mixture models, HMMs.

Detecting presence of hidden variables

• One idea is to look for dense semi-cliques.

• Then insert a hidden variable “in the middle”, and let the search algorithm figure out the detailed “wiring”.
• Unfortunately, many scoring criteria (e.g., BIC) produce very sparse graphs, which makes such semi-cliques rare.
• Constraint-based methods sometimes can be used to detect confounding.
• In general, this is an open problem.

Structural EM algorithm (K&F 15.6)

• Assume the number of hidden variables is given. Let y be the observed nodes, s be hidden, and $z = (x, y)$ be all nodes.
• We can compute the BIC score for each candidate structure G' by applying EM to each one:

$$score_{BIC}(G'|y) = \log P(y|G', \hat{\theta}) - \frac{d(G)}{2} \log N$$

• But this is very expensive.
• Idea of structural EM: use current model (G, θ) to compute the expected sufficient statistics (ESS) needed to evaluate each neighbor G', i.e., compute the expected BIC score.
• This requires computing ESS for nodes and potentially new parents; such sets may not reside inside a clique of the jtree for G.
• Application: phylogenetic trees.

Approximating the evidence in latent variable models

• When there are hidden variables, the parameter posterior has an exponential number of modes.
• Hence computing the marginal likelihood is intractable.
• There are various possible approximations:
 – Laplace
 – BIC
 – Cheeseman-Stutz (CS) lower bound
 – Variational Bayes EM lower bound
 – Sampling
Expectation-Maximization (EM) Algorithm

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
 - No need to choose step size.
 - Enforces constraints automatically.
 - Calls inference and fully observed learning as subroutines.
- EM is an iterative algorithm with two linked steps:
 - E-step: fill-in hidden values using inference, $p(z|x, \theta_t)$.
 - M-step: update parameters θ^{t+1} using standard MLE/MAP method applied to completed data.
- We will prove that this procedure monotonically improves ℓ (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Complete & Incomplete Log Likelihoods

- Observed variables x, latent variables z, parameters θ:
 $$\ell_c(\theta; x, z) = \log p(x, z|\theta)$$
 is the complete log likelihood.
- Usually optimizing $\ell_c(\theta)$ given both z and x is straightforward. (e.g. class conditional Gaussian fitting, linear regression)
- With z unobserved, we need the log of a marginal probability:
 $$\ell(\theta; x) = \log p(x|\theta) = \log \sum_z p(x, z|\theta)$$
 which is the incomplete log likelihood.

Expected Complete Log Likelihood

- For any distribution $q(z)$ define expected complete log likelihood:
 $$\ell_q(\theta; x) = \langle \ell_c(\theta; x, z) \rangle_q \equiv \sum_z q(z|x) \log p(x, z|\theta)$$
- Amazing fact: $\ell(\theta) \geq \ell_q(\theta) + \mathcal{H}(q)$ because of concavity of log:
 $$\ell(\theta; x) = \log p(x|\theta) = \log \sum_z p(x, z|\theta)$$
 $$= \log \sum_z q(z|x) \frac{p(x, z|\theta)}{q(z|x)}$$
 $$\geq \sum_z q(z|x) \log \frac{p(x, z|\theta)}{q(z|x)}$$
- Where the inequality is called Jensen’s inequality.
 (It is only true for distributions: $\sum q(z) = 1; q(z) > 0$.)

Lower Bounds and Free Energy

- For fixed data x, define a functional called the free energy:
 $$F(q, \theta) \equiv \sum_z q(z|x) \log \frac{p(x, z|\theta)}{q(z|x)} \leq \ell(\theta)$$
- The EM algorithm is coordinate-ascent on F:
 - E-step: $q^{t+1} = \arg\max_q F(q, \theta^t)$
 - M-step: $\theta^{t+1} = \arg\max_{\theta} F(q^{t+1}, \theta^t)$
M-step: maximization of expected ℓ_c

- Note that the free energy breaks into two terms:

$$F(q, \theta) = \sum_z q(z|x) \log \frac{p(x, z|\theta)}{q(z|x)}$$

$$= \sum_z q(z|x) \log p(x, z|\theta) - \sum_z q(z|x) \log q(z|x)$$

$$= \ell_q(\theta; x) + \mathcal{H}(q)$$

(this is where its name comes from)

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.

- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg\max_\theta \ell_q(\theta; x) = \arg\max_\theta \sum_z q(z|x) \log p(x, z|\theta)$$

E-step: inferring latent posterior

- Claim: the optimim setting of q in the E-step is:

$$q^{t+1} = p(z|x, \theta^t)$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).

- Proof (easy): this setting saturates the bound

$$\ell(\theta; x) \geq F(q, \theta)$$

$$F(p(z|x, \theta^t), \theta^t) = \sum_z p(z|x, \theta^t) \log \frac{p(z|x, \theta^t)p(x|\theta^t)}{p(z|x, \theta^t)}$$

$$= \sum_z p(z|x, \theta^t) \log p(x|\theta^t)$$

$$= \log p(x|\theta^t) \sum_z p(z|x, \theta^t)$$

$$= \ell(\theta; x) \cdot 1$$

- Can also show this result using variational calculus or the fact that

$$\ell(\theta) - F(q, \theta) = \text{KL}[q||p(z|x, \theta)]$$

EM Constructs Sequential Convex Lower Bounds

- Consider the likelihood function and the function $F(q^{t+1}, \cdot)$.

Recap: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds ML parameters when the original (hard) problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using our best guess (posterior) and updating the parameters based on this guess:

 E-step: $q^{t+1} = p(z|x, \theta^t)$
 M-step: $\theta^{t+1} = \arg\max_\theta \sum_z q(z|x) \log p(x, z|\theta)$

- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.
Variational Bayes EM (VBEM) algorithm

- Latent variables are now x and parameters θ, observations are y.
- Goal: Maximize lower bound on marginal likelihood $P(y)$.
- Key assumption: assume a factorized posterior $q(x, \theta) \approx q_x(x)q_\theta(\theta)$:
 \[\log p(y) \geq \int q_x(x)q_\theta(\theta) \log \frac{p(y, x, \theta)}{q_x(x)q_\theta(\theta)} \, dx \, d\theta \]
- Replaces stochastic dependence between x and θ with deterministic constraints on moments.
- VB E step:
 \[q^{t+1}_x(x) \propto \exp \left[\int \log p(x, y|\theta)q_\theta(\theta) \, d\theta \right] \]
- VB M step:
 \[q^{t+1}_\theta(\theta) \propto p(\theta) \exp \left[\int \log p(x, y|\theta)q^{t+1}_x(x) \, dx \right] \]

VBEM in practice

- E-step: Do inference as usual, but use parameters $\tilde{\theta}$ s.t. $\phi(\tilde{\theta}) = \bar{\phi}$ (expected natural parameters)
- The normalizing constant of inference is a lower bound on $p(y)$.
- Examples: HMMs, factor analysis (PCA), linear dynamical systems
- Variational message passing (VMP) is a way of implementing VBEM for any conjugate-exponential model, but makes the additional mean-field approximation that $q(x) = \prod_k q(x_k)$.

Conjugate exponential models

- Assumption 1: the complete-data log-likelihood is that of an exponential family:
 \[p(x, y|\theta) = f(x, y)g(\theta)\exp(\phi(\theta)^T u(x, u)) \]
- Assumption 2: the parameter prior is conjugate to the likelihood:
 \[p(\theta|\eta, \nu) = h(\eta, \nu)g(\theta)^\eta \exp(\phi(\theta)^T \nu) \]
- Thm: at every step of VBEM, the parameter posterior is $q(\theta|n, \nu + \sum_i \bar{u}(y_i))$, where $\bar{u}(y_i) = E_{q_{x_i}} u(x_i, y_i)$ and the latent variable posterior is $q(x) = \prod_i q_{x_i}(x_i)$ where $q_{x_i}(x_i) = p(x_i|y, \bar{\phi}) \propto f(x_i, y_i) \exp[\bar{\phi}^T u(x_i, y_i)]$ where $\bar{\phi} = E_{q_\theta}\phi(\theta)$.

VBEM for model selection