CS532c Fall 2004: Homework 6
Out Nov 1, Due Nov 10

In this problem, we will use Markov and Hidden Markov modelsdentify the language of written sentences. For
simplicity our representation of text will include only 2yrsbols— the 26 letters of the Latin alphabet, and the space
symbol. Any accented letter is represented as a non-actksiter, none-Latin letters are converted to their closest
Latin letters, and punctuation is removed. This represiemtaaturally looses quite a bit of information compared
to the original ASCII text. This 'handicap’ is in part intéomal so that the classification task would be a bit more
challenging. Most of the MATLAB code you will need here wiklgiven. You will find the following routines useful
(here and perhaps in some of your projects as well):

readlines.m Reads a named text le, returning a cell array of the linesamethTo get line i of cell-array lines returned
from, e.g.l i nes = readlines(’cnn.eng’),uselinesfig{i}.

text2stream.m Converts a string (a line of text) into a row vector of numhershe range{1,...,27}, according
to the representation discussed above. So, for exampleher | i ne = text 2stream(li nesl) would
convert the first line of text from lines into a row vector ofmbers. The conversion of the full output of
readlines would have to be done line by line.

count.m Given text in a row vector representation and a width k, thecfion computes the count of all k-grams
in the array. In other words, the function returns a kdimenai array representing the number of times each
configuration of k successive letters occurs in the text.

totalcount.m This function allows you to compute the accumulated cowaimfeach of the lines of text returned by
readl i nes. Use this function to find the training counts for the difiertanguages.

The data is stored in HW6public/Data. You may find &étdlpat h command helpful.

1 Language identification using Markov models

[10 points per question, total = 70.]

Here we will construct a language classifier by using Mark@dels as class-conditional distributions. In other
words, we will separately train a Markov model to represemmheof the chosen languages: English, Spanish, Italian
and German. The training data is given in the fd@s. eng, cnn.spa, cnn.ita, cnn. ger,which contain
several news articles (same articles in different langsip@ae article per line. We will first try a simple indepenten
(zeroth-order Markov) model. Under this model, each swigessymbol in text is chosen independently of other
symbols. The language is in this case identified based onilig detter frequencies.

1. Write afunctiomai veLL( st r eam count 1) which takes a 1-count (frequency of letters returned by taun
and evaluates the log-likelihood of the text stream (rowtmeof numbers) under the independent (zeroth-order
Markov) model.

Extract the total 1-counts from the language training setscdbed above. Before proceeding, let's quickly
check your functiomai veLL. If you evaluate the log-likelihood of 'This is an examplentence’ using the
English 1-counts fronenn. eng, you'll get -76.5690, while the Spanish log-likelihood bEtsame sentence is
-77.2706.



2. Write a short functionai veCwhich takes a stream, and several 1-counts correspondihifigent languages,
and finds the maximum-likelihood language for the streanu &fmuld assume, e.g., that the 1-counts are stored
in an array, where each column corresponds to a specific éygguThe format of the labels should be in
correspondence with theest _| abel s described below.

The filessong. eng, song. spa, song.ita, song.ger contain additional textin the four languages.
We will use these as the test set:

test _sentences = [ readlines(’ song.eng’) ;
readl i nes(’ song. ger’) ;
readl i nes(’ song.spa’) ;
readl i nes(’song.ita') ] ;
test labels = [ ones(17,1) ; ones(17,1)*2 ; ones(17,1)*3 ; ones(17,1)*4 ]

In order to study the performance of the classifier as a fanati the length of test strings, we will classify
all prefixes of the lines in the test files. The provided roaitiest C. mcalculates the success probability of
the classification, for each prefix length, over all the stre@r strings in a given cell-array. You can call this
function, as follows

successprobs = testC(test_sentences, test | abels,’ naiveC ,countls);

wherecount 1s provides the array of training counts that your functiai veCshould accept as an input.

3. Plotthe success probability as a function of the length@string. What is the approximate number of symbols
that we need to correctly assign new piece of text to one dfithelanguages?

In order to incorporate second order statistics, we will moawve on to modeling the languages with first-order
Markov models.

4. Write a functionmar kovLL( st r eam count 2) which returns the log-likelihood of a stream under a first-
order Markov model of the language with the specifed 2-cobnt the initial state probabilities, you can use
1-counts calculated from the 2-counts.

Quick check: The English log-likelihood of 'This is an exaegentence’ is -63.0643, while its Spanish log-
likelihood is -65.4878. We are again assuming that you argyubke training sets described above to extract the
2-counts for the di erent languages.

Write a corresponding functiomar kov C. mthat classifies a stream based on Markov models for variaus la
guages, specifed by their 2-counts.

5. Try to classify the sentence 'Why is this an abnormal Eigientence’. What is its likelihood under a Markov
model for each of the languages ? Which language does it gsdified as ? Why does it not get classified as
English?

As we discussed in class, it is common to use a Dirichlet gdalegularize the counts. The resulting MAP
estimate is

- n; + oy
bi==m—————~ 1)
Zj:l (fj + )
which will be non-zero whenever; > 0 forall i = 1,...,m. Settinga; = 1/m would correspond to having a

single prior observation distributed uniformly among thesgible elementse {1, ..., m}. Settinga; = 1, on
the other hand, would mean that we hadrior observations, observing each elemiestactly once.



6. Add pseudocounts (one for each con guration) and refylabsi test sentence. What are the likelihoods now.
Which language does the sentence get classified as ?

7. Uset est C. mto test the performance of Markov-based classificatiorh(thie corrected counts) on the test set.
Plot the correct classification probability as a functiothaf text length. Compare the classification performance
to that ofnai veC. m (Turn in both plots).

2 Hidden Markov Models

(30 points) We will now turn to a slightly more interestingoptem of language segmentation: given a mixed-language
text, we would like to identify the segments written in diéat languages. For simplicity, we will consider a single
sentence composed of just 2 languages, Spanish and Gersnarh@mework 5).

1. (5 points) A simple approach would be to classify eachattar individually, based on its likelihood under each
class-conditional density (using naiveC). Why would weestghe resulting segmentation not to agree with the
true segmentation? What would the resulting segmentatiaklike? What is the critical piece of information
we are not using in this approach ?

2. (10 points) A better approach is to use an HMM, where theldrdstate represents which of the languages
we are currently in. The goal of this part is to train an HMMngEM applied to the gerspa sentence used in
homework 5 (contained imegnent . mat ). You can use the provided functidinnmem(d stands for discrete)
for this, as follows:

transmat 0 = xxx % your initial guess of the transition matrix
obsmat 0 = xxx % your initial guess of the observation matrix
priorO = [0;1]; %always start in state 2
maxlter = 30; % nmax num iterations you want to wait
[LLtrace, prior, transnat, obsmat] = dhnm en(dat a. ger spa,
prior0Q, transmatO, obsmatO,
"adj _prior’, 0, '"max_iter’, maxlter);

Here, transmat(i,j) #2(X; = j|X:—1 = i), and obsmat(i,0) (Y; = o|X; = i). We clamp the prior state
distribution toP(X; = 2) = 1.0, since we cannot learn this from only one training sequesaéte optional
argument 'adjust prior’ is set to 0). Since the sentencesstart with German, and we define the initial state to
be 2, we are effectively defining state 2 to be German (thuakimg the symmetry in the hidden label space).
The output of the function are the new parameters, and the tBlog-likelihood vs iteration.

Your goal is to choose a good set of initial parameters, tre@ and obsmat0, so that EM converges to a good
local optimum. You can determine the quality of your solatlny plugging the parameters into the Viterbi
algorithm, and using it to decode the sentence from homeworkou should be able to get as low as 64
classification errors. Hint: use your 1-counts from questfioto initialise obsmat, and use a self-transition
probability that reflects sentence length to initialisengr@at. (Do not cheat by using the parameters from
homework 5 as your initial guess! You must show your initiargmeter guesses, and justify why they are
sensible.)

3. (10 points). Use the provided functibmdback. mto calculate the per character posterior probabilities ove
the states. These are thg(i) = P(X: = i|y1.r) probabilities described in lectures dives the character
position in text and specifies the state). Plot these probabilities as a fundifidhe character position in the
text sequence and turn in the plot. You might want to re-sitedexis usingaxi s[0 3000 0 1.1].

4. (5 points). Find the sequence of most probable statesidreeach time point, find arg max; P(X; = i|y1.7).
Compare this sequence with the most probable sequencete$,st&a computed using t er bi Pat h. Are
they different? If so, in which positions?



