
CS532c Fall 2004: Homework 5
Out Fri Oct 22, Due Mon Nov 1

1 Viterbi algorithm

[40 points]
Implement the viterbi algorithm for HMMs for finding the mostprobable path. (If you do not understand this

sentence, you should read the tutorial on HMMs by Rabiner on the course web page.) The algorithm should have the
following interface:

function path = viterbi(prior, transmat, obsmat, data)

where prior(i) =P (X1 = i) is the initial state probability distribution, transmat(i,j) = P (Xt = j|Xt−1 = i) is the state
transition matrix, obsmat(i,o) =P (Yt = o|Xt = i) is the observation matrix, and data (a vector) is the observation
sequence. (Assume that data(t) is a symbol numbered1, 2, . . . , O, whereO is the size of the alphabet). The output
should be a vector where path(t) is the most probable state attime t.

We will now test your algorithm by applying it to the problem of segmenting a sentence which is a mixture of
German and Spanish. Load the file ’segment.mat’ as follows:

data = load(’segment.mat’);

This has two fields:data.gerspa is a vector of integers representing letters. To view this, type

stream2text(data.gerspa)

The second field isdata.gerspa-lang , which is a vector of 1s and 2s, representing the true segmentation (2 =
german, 1 = spanish). Load a pre-trained HMM:

load(’hmm.mat’);

This has fieldshmm.prior, hmm.transmat andhmm.obsmat. Apply this HMM and your Viterbi algorithm to
data.gerspa and plot the estimated segmentation versus the true segmentation. How many classification errors do
you make?

2 Max likelihood estimation for 1D Gaussians

[4 points per question except Q6 which gets 9 points, so totalis 45.]
Recall that a univariate Gaussian (or normal) random variable, with meanµ and varianceσ2, is given by the

following probability density function:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

1. Write down the likelihoodL(x1, . . . , xn; µ, σ) of a sample drawn independently from a normal distribution with
(unknown) mean and variance.
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The maximum likelihood estimator̂µ(x1, . . . , xn), is the value ofµ that maximizes the likelihood L:

µ̂(x1, . . . , xn) = arg max
µ

max
σ

L(x1, . . . , xn; µ, σ)

Instead of searching for the maximum ofL, we will search for the maximum of logL. This is fine since the
logarithm is a monotonically increasing function. To find the maximum, we would like to solve the equation:

∂logL(x1, . . . , xn; µ, σ)

∂µ
= 0

2. Calculate∂logL(x1,...,xn;µ,σ)
∂µ

and solve the above equation, in order to find the maximum likelihood estimator̂µ.
Show that the solution does not depend onσ.

In general, we might have needed to find the values ofσ which maximizeL together withµ. This is luckily
unnecessary, since as you showed,arg maxµ L(µ, σ) is independent ofσ.

Note thatµ̂ is a function of the sampled values, and thusµ̂ can itself be viewed as a random variable. An
estimator such aŝµ is said to be unbiased if the expected value of this random variable is equal to the ”true”
value being estimated, that is ifEX1,...,Xn N(µ,σ)[µ̂(X1, . . . , Xn)] = µ for all µ, σ. The expectation here is over
the possible choices of the random samples assuming they came from a Gaussian with meanµ and varianceσ2.

3. CalculateEX1,...,Xn∼N(µ,σ)[µ̂(X1, . . . , Xn)]. Is µ̂ unbiased? Hint: the expectation of a sum is equal to the sum
of the expectations.

We now proceed to calculate the maximum likelihood estimator for σ:

σ̂(x1, . . . , xn) = arg max
σ

max
µ

L(x1, . . . , xn; µ, σ)

We do so in a similar way, by taking the derivative ofmaxµ log L(x1, . . . , xn; µ, σ), with respect toσ . Note
that in taking this derivative, we assume thatµ is set to its maximum likelihood value. However, we already
know the value ofµ that maximizesL(µ, σ) and so can just plug it in.

4. Does it matter if we take the derivative with respect to thevarianceσ2, or its square rootσ?

5. Calculatêσ(x1, . . . , xn) by maximizing the log-likelihood.

6. We would now like to show that̂σ2 is not an unbiased estimator ofσ2. CalculateEX1,...,Xn∼N (µ,σ)[σ̂
2(X1, . . . , Xn)

to do so. Hint: note thatX1, . . . , Xn are independent, and use the fact that the expectation of a product of in-
dependent random variables is the product of the expectations. Also, recall that for any random variableR we
havevar[R] = E[E2] − (E[R])2.

7. Suggest an unbiased estimatorσ̃2(x1, . . . , xn) for σ2, based on the the maximum likelihood estimator above,
and show that̃σ2 is in fact unbiased. Hint: scale the maximum likelihood estimator so that it will be unbiased.

8. Consider a samplex1, . . . , xn drawn from a Gaussian distributionN (µ, σ2), where the true meanµ is known,
but the variance is not. What is the maximum likelihood estimator for the variance in this case ? Is it unbiased ?

We now return to the case in which neither the mean nor the variance are known.
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9. An estimator being unbiased does not necessarily make it good. For example, consider the following estimator
for the mean of a Gaussian random variable:µ̆(x1, . . . , xn) = x1. Show that this is an unbiased estimator ofµ.

One reason that̆µ is not a very good estimator, is that no matter how many samples we have, it will not improve.
It will never converge to the true value ofµ. An estimator̂θ is (mean squared)consistent if it converges toθ in
the following sense:EX1,...,Xn∼N (µ,σ)[(θ̂(X1, . . . , Xn) − θ)2] → 0 asn → ∞. In other words, the more data

points we get, the less likely it is that the estimateθ̂(X1, . . . , Xn) deviates much fromθ.

10. Show that̂µ (the maximum likelihood estimate of the mean) is a consistent estimator ofµ.

11. (Optional - no points). Do you think̂σ2 is a consistent estimator ofσ2? What about̃σ2?

3 MAP estimation for 1D Gaussians

[5 points per question]
The maximum a-posteriori (MAP) estimator is defined as the value of the parametersθ that maximize

θ̂MAP = argmax
θ

p(θ|data) = argmax
θ

p(data|θ)p(θ)

Consider samplesx1, . . . , xn from a Gaussian random variable with known varianceσ2 and unknown meanµ. We
further assume a prior distribution (also Gaussian) over the mean,µ ∼ N (m, s2), with fixed meanm and variances2.

1. Calculate the MAP estimatêµMAP . Hint: as we did before, set the derivative of the logarithm to zero.

2. Show that as the number of samples increase, the prior knowledge becomes insignificant. That is, all MAP
estimates assuming as a prior onµ any Gaussian distribution with non-zero variance, will converge to each
other. What is the common estimator that all such MAP estimators converge to ? (Further note: This actually
holds with rather mild assumptions about the prior— it need not be Gaussian).

3. What does the MAP estimator converge to if we increase the prior variances2?
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