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Abstract. This paper describes NETtalk, a class of massively-parallel 
network systems that learn to convert English text to speech. The 
memory representations for pronunciations are learned by practice 
and are shared among many processing units. The performance of 
NETtalk has some similarities with observed human performance. (i) 
The learning follows a power law. (;i) The more words the network 
learns, the better it is at generalizing and correctly pronouncing new 
words, (iii) The performance of the network degrades very slowly as 
connections in the network are damaged: no single link or processing 
unit is essential. (iv) Relearning after damage is much faster than 
learning during the original training. (v) Distributed or spaced prac- 
tice is more effective for long-term retention than massed practice. 

Network models can be constructed that have the same perfor- 
mance and learning characteristics on a particular task, but differ 
completely at  the levels of synaptic strengths and single-unit responses. 
However, hierarchical clustering techniques applied to NETtalk re- 
veal that these different networks have similar internal representations 
of letter-to-sound correspondences within groups of processing units. 
This suggests that invariant internal representations may be found in 
assemblies of neurons intermediate in size between highly localized 
and completely distributed representations. 

1. Introduction 

Expert performance is characterized by speed and effortlessness, but this 
fluency requires long hours of effortful practice. We are all experts at 
reading and communicating with language. We forget how long it took to 
acquire these skills because we are now so good at  them and we continue 
to practice every day. As performance on a difficult task becomes more 
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automatic, it also becomes more inaccessible to conscious scrutiny. The 
acquisition of skilled performance by practice is more difficult to study and 
is not as well understood as memory for specific facts [4,55,78]. 

The problem of pronouncing written English text illustrates many of 
the features of skill acquisition and expert performance. In reading aloud, 
letters and words are first recognized by the visual system from images on 
the retina. Several words can be processed in one fixation suggesting that a 
significant amount of parallel processing is involved. At some point in the 
central nervous system the information encoded visually is transformed into 
articulatory information about how to produce the correct speech sounds. 
Finally, intricate patterns of activity occur in the motoneurons which inner- 
vate muscles in the larynx and mouth, and sounds are produced. The key 
step that we are concerned with in this paper is the transformation from 
the highest sensory representations of the letters to the earliest articulatory 
representations of the phonemes. 

English pronunciation has been extensively studied by linguists and 
much is known about the correspondences between letters and the ele- 
mentary speech sounds of English, called phonemes (831. English is a par- 
ticularly difficult language to master because of its irregular spelling. For 
example, the “a” in almost all words ending in “ave”, such as “brave” and 
“gave”, is a long vowel, but not in “have” , and there are some words such 
as “read” that can vary in pronunciation with their grammatical role. The 
problem of reconciling rules and exceptions in converting text to speech 
shares some characteristics with difficult problems in artificial intelligence 
that have traditionally been approached with rule-based knowledge repre- 
sentations, such as natural language translation (271. 

Another approach to knowledge representation which has recently be- 
come popular uses patterns of activity in a large network of simple pro- 
cessing units [22,30,56,42,70,35,36,12,51,19,46,5,82,41,7,85,13,67,50]. This 
“connectionist” approach emphasizes the importance of the connections 
between the processing units in solving problems rather than the complex- 
ity of processing at the nodes. 

The network level of analysis is intermediate between the cognitive and 
neural levels [ll]. Network models are constrained by the general style 
of processing found in the nervous system [71]. The processing units in 
a network model share some of the properties of real neurons, but they 
need not be identified with processing at the level of single neurons. For 
example, a processing unit might be identified with a group of neurons, 
such as a column of neurons [14,54,37]. Also, those aspects of performance 
that depend on the details of input and output data representations in the 
nervous system may not be captured with the present generation of network 
models. 

A connectionist network is “programmed” by specifying the architec- 
tural arrangement of connections between the processing units and the 
strength of each connection. Recent advances in learning procedures for 
such networks have been applied to small abstract problems [73,66] and 
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Figure 1: Schematic drawing of the NETtalk network architecture. A 
window of letters in an English text is fed to an array of 203 input 
units. Information from these units is transformed by an intermediate 
layer of 80 “hidden” units to produce patterns of activity in 26 output 
units. The connections in the network are specified by a total of 18629 
weight parameters (including a variable threshold for each unit). 

more difficult problems such as forming the past tense of English verbs 

In this paper we describe a network that learns to pronounce English 
text. The system, which we call NETtalk, demonstrates that even a small 
network can capture a significant fraction of the regularities in English 
pronunciation as well as absorb many of the irregularities. In commercial 
text-to-speech systems, such as DECtalk [15], a look-up table (of about 
a million bits) is used to store the phonetic transcription of common and 
irregular words, and phonological rules are applied to words that are not 
in this table [3,40]. The result is a string of phonemes that can then be 
converted to sounds with digital speech synthesis. NETtalk is designed to  
perform the task of converting strings of letters to strings of phonemes. 
Earlier work on NETtalk was described in [74]. 

1681. 

2. Network Architecture 

Figure 1 shows the schematic arrangement of the NETtalk system. Three 
layers of processing units are used. Text is fed to units in the input layer. 
Each of these input units has connections with various strengths to units in 
an intermediate “hidden” layer. The units in the hidden layer are in turn 
connected to units in an output layer, whose values determine the output 
phoneme. 

The processing units in sucessive layers of the network are connected by 
weighted arcs. The output of each processing unit is a nonlinear function 
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Figure 2: (a) Schematic form of a processing unit receiving inputs 
from other processing units. (b) The output P ( E )  of a processing 
unit as a function of the sum E of its inputs. 

of the sum of its inputs, as shown in Figure 2. The output function has 
a sigmoid shape: it is zero if the input is very negative, then increases 
monotonically, approaching the value one for large positive inputs. This 
form roughly approximates the firing rate of a neuron as a function of its 
integrated input: if the input is below threshold there is no output; the 
firing rate increases with input, and saturates at a maximum firing rate. 
The behavior of the network does not depend critically on the details of 
the sigmoid function, but the explicit one used here is given by 

where si is the output of the ith unit. Ei is the total input 

Ei = C W i j S j  

i 

where wij is the weight from the j t h  to the ith unit. The weights can have 
positive or negative real values, representing an excitatory or inhibitory 
influence. 

In addition to the weights connecting them, each unit also has a thresh- 
old which can also vary. To make the notation uniform, the threshold was 
implemented as an ordinary weight from a special unit, called the true unit, 
that always had an output value of 1. This fixed bias acts like a threshold 
whose value is the negative of the weight. 

Learning algorithm. Learning algorithms are automated procedures 
that allow networks to improve their performance through practice [63,87,2,75]. 
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Supervised learning algorithms for networks with "hidden units" between 
the input and output layers have been introduced for Boltzmann machines 
[31,1,73,59,76], and for feed-forward networks [66,44,57]. These algorithms 
require a "local teacher" to provide feedback information about the perfor- 
mance of the network. For each input, the teacher must provide the network 
with the correct value of each unit on the output layer. Human learning 
is often imitative rather than instructive, so the teacher can be an internal 
model of the desired behavior rather than an external source of correction. 
Evidence has been found for error-correction in animal learning and human 
category learning [60,79,25,80,?]. Changes in the strengths of synapses have 
been experimentally observed in the mammalian nervous system that could 
support error-correction learning [28,49,61,39]. The network model studied 
here should be considered only a small part of a larger system that makes 
decisions based on the output of the network and compares its performance 
with a desired goal. 

We have applied both the Boltzmann and the back-propagation learn- 
ing algorithms to the problem of converting text to speech, but only results 
using back-propagation will be presented here. The back-propagation learn- 
ing algorithm [%] is an error-correcting learning procedure that generalizes 
the Widrow-Hoff algorithm [87] to multilayered feedforward networks [23]. 
A superscript will be used to denote the layer for each unit, so that sp' is 
the i th  unit on the nth layer. The h a l ,  output layer is designated the Nth 
layer. 

The first step is to compute the output of the network for a given 
input. All the units on successive layers are updated. There may be direct 
connections between the input layer and the output layer as well as through 
the hidden units. The goal of the learning procedure is to minimize the 
average squared error between the values of the output units and the correct 
pattern, s:, provided by a teacher: 

i= 1 

where J is the number of units in the output layer. This is accomplished 
by first computing the error gradient on the output layer: 

and then propagating it backwards through the network, layer by layer: 

where I"(&) is the first derivative of the function P(&) in Figure 2(b). 
These gradients are the directions that each weights should be altered 

to reduce the error for a particular item. To reduce the average error for all 
the input patterns, these gradients must be averaged over all the training 
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patterns before updating the weights. In practice, it is sufficient to average 
over several inputs before updating the weights. Another method is to 
compute a running average of the gradient with an exponentially decaying 
filter: 

where cy is a smoothing parameter (typically 0.9) and u is the number of 
input patterns presented. The smoothed weight gradients Aw/T) (u) can 
then be used to update the weights: 

where the t is the number of weight updates and E is the learning rate (typ- 
ically 1.0). The error signal was back-propagated only when the difference 
between the actual and desired values of the outputs were greater than a 
margin of 0.1. This ensured that the network did not overlearn on inputs 
that it was already getting correct. This learning algorithm can be gener- 
alized to networks with feedback connections and multiplicative connect ion 
[66], but these extension were were not used in this study. 

The definitions of the learning parameters here are somewhat different 
from those in [MI. In the original algorithm E is used rather than (1 - a) 
in Equation 6. Our parameter Q is used to smooth the gradient in a way 
that is independent of the learning rate, E, which only appears in the weight 
update Equation 7. Our averaging procedure also makes it unnecessary to 
scale the learning rate by the number of presentations per weight update. 

The back-propagation learning algorithm has been applied to several 
problems, including knowledge representation in semantic networks [29,65], 
bandwidth compression by dimensionality reduction [69,89], speech recog- 
nition [17,86], computing the shape of an object from its shaded image [45] 
and backgammon [81]. In the next section a detailed description will be 
given of how back-propagation was applied to the problem of converting 
English text to speech. 

Representations of letters and phonemes. The standard network 
had seven groups of units in the input layer, and one group of units in each 
of the other two layers. Each input group encoded one letter of the input 
text, so that strings of seven letters are presented to the input units at 
any one time. The desired output of the network is the correct phoneme, 
associated with the center, or fourth, letter of this seven letter “window”. 
The other six letters (three on either side of the center letter) provided a 
partial context for this decision. The text was stepped through the window 
letter-by-letter. At each step, the network computed a phoneme, and after 
each word the weights were adjusted according to how closely the computed 
pronunciation matched the correct one. 

We chose a window with seven letters for two reasons. First, [48] have 
shown that a significant amount of the information needed to correctly 
pronounce a letter is contributed by the nearby letters (Figure 3). Secondly, 
we were limited by our computational resources to exploring small networks 



Parallel Networks that Learn to  Pronounce 

Information Gain at Several Letter Positions 

* . w  .I 

151 

4 -2 0 2 4 

bner Position 

Figure 3: Mutual information provided by neighboring letters and 
the correct pronunciation of the center letter as a function of distance 
from the center letter. (Data from [48]). 

and it proved possible to train a network with a seven letter window in a 
few days. The limited size of the window also meant that some important 
nonlocal information about pronunciation and stress could not be properly 
taken into account by our model [lo]. The main goal of our model was to 
explore the basic principles of distributed information coding in a real-world 
domain rather than achieve perfect performance. 

The letters and phonemes were represented in different ways. The let- 
ters were represented locally within each group by 29 dedicated units, one 
for each letter of the alphabet, plus an additional 3 units to encode punctu- 
ation and word boundaries. Only one unit in each input group was active 
for a given input. The phonemes, in contrast, were represented in terms of 
21 articulatory features, such as point of articulation, voicing, vowel height, 
and so on, as summarized in the Appendix. Five additional units encoded 
stress and syllable boundaries, making a total of 26 output units. This 
was a distributed representation since each output unit participates in the 
encoding of several phonemes [29]. 

The hidden units neither received direct input nor had direct output, 
but were used by the network to form internal representations that were 
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appropriate for solving the mapping problem of letters to phonemes. The 
goal of the learning algorithm was to search effectively the space of all 
possible weights for a network that performed the mapping. 

Learning. Two texts were used to train the network: phonetic tran- 
scriptions from informal, continuous speech of a child [9] and Miriam Web- 
ster’s Pocket Dictionary. The corresponding letters and phonemes were 
aligned and a special symbol for continuation, “-”, was inserted whenever 
a letter was silent or part of a graphemic letter combination, as in the con- 
version from the string of letters “phone” to the string of phonemes /f-on-/ 
(see Appendix). Two procedures were used to move the text through the 
window of 7 input groups. For the corpus of informal, continuous speech 
the text was moved through in order with word boundary symbols between 
the words. Several words or word fragments could be within the window at 
the same time. For the dictionary, the words were placed in random order 
and were moved through the window individually. 

The weights were incrementally adjusted during the training according 
to the discrepancy between the desired and actual values of the output 
units. For each phoneme, this error was “back-propagated” from the output 
to the input layer using the learning algorithm introduced by [66] and 
described above. Each weight in the network was adjusted after every 
word to minimize its contribution to the total mean squared error between 
the desired and actual outputs. The weights in the network were always 
initialized to small random values uniformly distributed between -0.3 and 
0.3; this was necessary to differentiate the hidden units. 

A simulator was written in the C programming language for configuring 
a network with arbitrary connectivity, training it on a corpus and collecting 
statistics on its performance. A network of 10,000 weights had a through- 
put during learning of about 2 letters/sec on a VAX 11/780 FPA. After 
every presentation of an input, the inner product of the output vector was 
computed with the codes for each of the phonemes. The phoneme that 
made the smallest angle with the output was chosen as the “best guess”. 
Slightly better performance was achieved by choosing the phoneme whose 
representation had the smallest Euclidean distance from the output vec- 
tor, but these results are not reported here. All performance figures in 
this section refer to the percentage of correct phonemes chosen by the net- 
work. The performance was also assayed by “playing” the output string of 
phonemes and stresses through DECtalk, bypassing the part of the machine 
that converts letters to phonemes. 

3. Performance 

Continuous informal speech. [9] provide phonetic transcriptions of chil- 
dren and adults that were tape recorded during informal sessions. This was 
a particularly difficult training corpus because the same word was often pro- 
nounced several different ways; phonemes were commonly elided or modi- 
fied at word boundaries, and adults were about as inconsistent as children. 
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Figure 4: Learning curves for phonemes and stresses during training 
on the 1024 word corpus of continuous informal speech. The percent- 
age of correct phonemes and stresses are shown as functions of the 
number of training words. 

We used the first two pages of transcriptions, which contained 1024 words 
from a child in firstgrade. The stresses were assigned to the transcriptions 
so that the training text sounded natural when played through DECtalk. 
The learning curve for 1024 words from the informal speech corpus is shown 
in Figure 4. The percentage of correct phonemes rose rapidly at first and 
continued to rise at slower rate throughout the learning, reaching 95% after 
50 passes through the corpus. Primary and secondary stresses and sylla- 
ble boundaries were learned very quickly for all words and achieved nearly 
perfect performance by 5 passes (Figure 4). When the learning curves were 
plotted as error rates on double logarithmic scales they were approximately 
straight lines, so that the learning follows a power law, which is character- 
istic of human skill learning [64]. 

The distinction between vowels and consonants was made early; how- 
ever, the network predicted the same vowel for all vowels and the same 
consonant for all consonants, which resulted in a babbling sound. A second 
stage occurred when word boundaries are recognized, and the output then 
resembled pseudowords. After just a few passes through the network many 
of the words were intelligible, and by 10 passes the text was understandable. 

When the network made an error it often substituted phonemes that 
sounded similar to each other. For example, a common confusion was 
between the “th” sounds in “thesis” and “these” which differ only in voicing. 
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Figure 5: (a) Performance of a network as a function of the amount 
of damage to the weights. (b) Retraining of a damaged network corn- 
pared with the original learning curve starting from the same level of 
performance. The network was damaged by adding a random corn- 
ponent to all the .weights uniformly distributed on the interval [-1.2, 
1.21. 

Few errors in a well-trained network were confusions between vowels and 
consonants. Some errors were actually corrections to inconsistencies in the 
original training corpus. Overall, the intelligibility of the speech was quite 
good. 

Did the network memorize the training words or did it capture the regu- 
lar features of pronunciation? As a test of generalization, a network trained 
on the 1024 word corpus of informal speech was tested without training on 
a 439 word continuation from the same speaker. The performance was 78%, 
which indicates that much of the learning was transferred to novel words 
even after a small sample of English words. 

Is the network resistant to damage? We examined performance of a 
highly-trained network after making random changes of varying size to the 
weights. As shown in Figure 5(a), random perturbations of the weights 
uniformly distributed on the interval [-0.5, 0.51 had little effect on the 
performance of the network, and degradation was ‘gradual with increas- 
ing damage. This damage caused the magnitude of each weight to change 
on average by 0.25; this is the roundoff error that can be tolerated before 
the performance of the network begins to deteriorate and it can be used 
to estimate the accuracy with which each weight must be specified. The 
weights had an average magnitude of 0.8 and almost all had a magnitude of 
less than 2. With 4 binary bits it is possible to specify 16 possible values, 
or -2 to +2 in steps of 0.25. Hence, the minimum information needed to 
specify each weight in the network is only about 4 bits. 

If the damage is not too severe, relearning was much faster than the 
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Figure 6: (a) Learning curves for training on a corpus of the 1000 most 
common words in English using different numbers of hidden units, as 
indicated beside each curve. (b) Performance during learning of two 
representative phonological rules, the hard and soft pronunciation of 
the letter ‘c”. 

original learning starting from the same level of performance, as shown in 
Figure 5(b). Similar fault tolerance and fast recovery from damage has 
also been observed in networks constructed using the Boltzmann learning 
algorithm [32]. 

Dictionary. The Miriam Webster’s Pocket Dictionary that we used 
had 20,012 words. A subset of the 1000 most commonly occurring words 
was selected from this dictionary based on frequency counts in the Brown 
corpus [43]. The most common English words are also amongst the most 
irregular, so this was also a test of the capacity of the network to absorb 
exceptions. We were particularly interested in exploring how the perfor- 
mance of the network and learning rate scaled with the number of hidden 
units. With no hidden units, only direct connections from the input units 
to the output units, the performance rose quickly and saturated at 82% as 
shown in Figure 6(a). This represents the part of the mapping that can 
be accomplished by linearly separable partitioning of the input space [53]. 
Hidden units allow more contextual influence by recognizing higher-order 
features amongst combinations of input units. 

The rate of learning and asymptotic performance increased with the 
number of hidden units, as shown in Figure 6(a). The best performance 
achieved with 120 hidden units was 98% on the 1000 word corpus, sig- 
nificantly better than the performance achieved with continuous informal 
speech, which was more difficult because of the variability in real-world 
speech. Different letter-to-sound correspondences were learned at different 
rates and two examples are shown in Figure 6(b): the soft “c” takes longer 
to learn, but eventually achieves perfect accuracy. The hard “c” occurs 
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about twice as often as the soft “c” in the training corpus. Children shown 
a similar difficulty with learning to read words with the soft ‘c” [84]. 

The ability of a network to  generalize was tested on a large dictionary. 
Using weights from a network with 120 hidden units trained on the 1000 
words, the average performance of the network on the dictionary of 20,012 
words was 77%. With continued leaning, the performance reached 85% 
at the end of the first pass through the dictionary, indicating a significant 
improvement in generalization. Following five training passes through the 
dictionary, the performance increased to 90%. 

The number of input groups was varied from three to eleven. Both the 
speed of learning and the asymptotic level of performance improved with 
the size of the window. The performance with 11 input groups and 80 
hidden units was about 7% higher than a network with 7 input groups and 
80 hidden units up to about 25 passes through the corpus, and reached 
97.5% after 55 passes compared with 95% for the network with 7 input 
groups. 

Adding an extra layer of hidden units also improved the performance 
somewhat. A network with 7 input groups and two layers of 80 hidden 
units each was trained first on the 1000 word dictionary. Its performance 
after 55 passes was 97% and its generalization was 80% on the 20,012 word 
dictionary without additional training, and 87% after the first pass through 
the dictionary with training. The asymptotic performance after 11 passes 
through the the dictionary was 91%. Compared to the network with 120 
hidden units, which had about the same number of weights, the network 
with two layers of hidden units was better at generalization but about the 
same in absolute performance. 

4. 

There are not enough hidden units in even the largest network that we 
studied to memorize all of the words in the dictionary. The standard net- 
work with 80 hidden units had a total of 18,629 weights, including variable 
thresholds. If we allow 4 bits of accuracy for each weight, as indicated by 
the damage experiments, the total storage needed to define the network 
is about 80,000 bits. In comparison, the 20,012 word dictionary, includ- 
ing stress &formation, required nearly 2,000,000 bits of storage. This data 
compression is possible because of the redundancy in English pronuncia- 
tion. By studying the patterns of activation amongst the hidden units, we 
were able to understand some of the coding methods that the network had 
discovered. 

The standard network used for analysis had 7 input groups and 80 
hidden units and had been trained to 95% correct on the 1000 dictionary 
words. The levels of activation of the hidden units were examined for each 
letter of each word using the graphical representation shown in Figure 7. 
On average, about 20% of the hidden units were highly activated for any 
given input, and most of the remaining hidden units had little or no ac- 

Analysis of the Hidden Units 
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Figure 7: Levels of activation in the layer of hidden units for a variety 
of words, all of which produce the same phoneme, /E/, on the output. 
The input string is shown at the left with the center letter emphasized. 
The level of activity of each hidden unit is shown to the right, in two 
rows of 40 units each. The area of the white square is proportional to 
the activity level. 

tivation. Thus, the coding scheme could be described neither as a local 
representation, which would have activated only a few units [6,20,8], or a 
Uholographic" representation [88,?] , in which all of the hidden units would 
have participated to some extent. It was apparent, even without using sta- 
tistical techniques, that many hidden units were highly activated only for 
certain letters, or sounds, or letter-to-sound correspondences. A few of the 
hidden units could be assigned unequivocal characterizations, such as one 
unit that responded only to vowels, but most of the units participated in 
more than one regularity. 

To test the hypothesis that letter-to-sound correspondences were the 
primary organizing variable, we computed the average activation level of 
each hidden unit for each letter-to-sound correspondence in the training 
corpus. The result was 79 vectors with 80 components each, one vector for 
each letter-to-sound correspondence. A hierarchical clustering technique 
was used to arrange the letter-to-sound vectors in groups based on a Eu- 
clidean metric in the 80-dimensional space of hidden units. The overall 
pattern, as shown in Figure 8, was striking: the most important distinction 
was the complete separation of consonants and vowels. However, within 
these two groups the clustering had a different pattern. For the vowels, 
the next most important variable was the letter, whereas consonants were 
clustered according to a mixed strategy that was based more on the similar- 
ity of their sounds. The same clustering procedure was repeated for three 
networks starting from different random starting states. The patterns of 
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Figure 8: Hierarchical clustering of hidden units for letter-to-sound 
correspondences. The vectors of average hidden unit activity for each 
correspondance, shown at the bottom of the binary tree (1-ip for let- 
ter ‘1’ and phoneme ‘p,), were successively grouped according to an 
agglomerative method using complete linkage ([ 181). 

weights were completely different but the clustering analysis revealed the 
same hierarchies, with some differences in the details, for all three networks. 

5. Conclusions 

NETtalk is an illustration in miniature of many aspects of learning. First, 
the network starts out without considerable “innate” knowledge in the form 
of input and output representations that were chosen by the experimenters, 
but with no knowledge specific for English - the network could have been 
trained on any language with the same set of letters and phonemes. Second, 
the network acquired its competence through practice, went through several 
distinct stages, and reached a significant level of performance. Finally, 
the information was distributed in the network such that no single unit 
or link was essential. As a consequence, the network was fault tolerant 
and degraded gracefully with increasing damage. Moreover, the network 
recovered from damage much more quickly than it took to learn initially. 

Despite these similarities with human learning and memory, NETtalk 
is too simple to serve as a good model for the acquisition of reading skills 
in humans. The network attempts to accomplish in one stage what occurs 
in two stages of human development. Children learn to talk first, and only 
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after representations for words and their meanings are well developed do 
they learn to read. It is also very likely that we have access to articulatory 
representations for whole words, in addition to the our ability to use letter- 
to-sound correspondences, but there are no word level representations in the 
network. It is perhaps surprising that the network was capable of reaching a 
significant level of performance using a window of only seven letters. This 
approach would have to be generalized to account for prosodic features 
in continuous text and a human level of performance would require the 
integration of information from several words at once. 

NETtalk can be used as a research tool to explore many aspects of 
network coding, scaling, and training in a domain that is far from triv- 
ial. Those aspect of the network’s performance that are similar to human 
performance are good candidates for general properties of network models; 
more progress may be made by studying these aspects in the small test 
laboratory that NETtalk affords. For example, we have shown elsewhere 
[62] that the optimal training schedule for teaching NETtalk new words 
is to alternate training of the new words with old words, a general phe- 
nomenon of human memory that was first demonstrated by Ebbinghaus 
[16] and has since been replicated with a wide range of stimulus materi- 
als and tasks [33,34,58,38,77,24]. Our explanation of this spacing effect in 
NETtalk [62] may generalize to more complex memory systems that use 
distributed representations to store information. 

After training many networks, we concluded that many different sets of 
weights give about equally good performance. Although it was possible to 
understand the function of some hidden units, it was not possible to identify 
units in different networks that had the same function. However, the ac- 
tivity patterns in the hidden units were interpretable in an interesting way. 
Patterns of activity in groups of hidden units could be identified in different 
networks that served the same function, such as distinguishing vowels and 
consonants. This suggests that the detailed synaptic connectivity between 
neurons in cerebral cortex may not be helpful in revealing the functional 
properties of a neural network. It is not at the level of the synapse or the 
neuron that one should expect to find invariant properties of a network, but 
at the level of functional groupings of cells. We are continuing to analyze 
the hidden units and have found statistical patterns that are even more de- 
tailed than those reported here. Techniques that are developed to uncover 
these groupings in model neural networks could be of value in uncovering 
similar cell assemblies in real neural networks. 
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Appendix A. Representat ion of Phonemes and Punctuations 

Phoneme 
/a/ 
/b/ 
/C / 
/d/ 
/e/ 
/f/ 
/g/ 
/h/ 
/i/ 
/k/ 
/1/ 
/m/ 
/n/ 
/ 0 /  

/PI 
/r/ 
/ 8 /  

/t/ 
/U/ 

/V/ 
/W/ 

/X/ 

/Y/ 
/z/ 
/A/ 
/C/ 
/D/ 
/E/ 
/ G /  
/I/ 
/ J/ 
/K/ 
/L/ 
/M/ 
/N/ 
/ O /  
/Q/ 
/R/ 

Sound 
father 

bet 
bought 

deb 
bake 
fin 

guess 
bead 
Pete 
Ken 
bt 

met 
net 
boat 
pet 
red 
sit 
test 
lute 
vest 
wet 

about 
Yet 

bite 
cbin 
this 
bet 
sing 
bit 
gin 

sexual 
bottle 
absym 
button 

boy 
quest 
bird 

zoo 

Articulatory Features 
Low, Tensed, Central2 
Voiced, Labial, Stop 
Medium, Velar 
Voiced, Alveolar, Stop 
Medium, Tensed, Front2 
Unvoiced, Labial, Fricative 
Voiced, Velar, Stop 
Unvoiced, Glottal, Glide 
High, Tensed, Front1 
Unvoiced, Velar, Stop 
Voiced, Dental, Liquid 
Voiced, Labial, Nasal 
Voiced, Alveolar, Nasal 
Medium, Tensed, Back2 
Unvoiced, Labial, Stop 
Voiced, Palatal, Liquid 
Unvoiced, Alveolar, Fricative 
Unvoiced, Alveolar, Stop 
High, Tensed, Back2 
Voiced, Labial, Fricative 
Voiced, Labial, Glide 
Medium, Central2 
Voiced, Palatal, Glide 
Voiced, Alveolar, Fricative 
Medium, Tensed, Front2 + Centrall 
Unvoiced, Palatal, Affricative 
Voiced, Dental, Fricative 
Medium, Frontl + Front2 
Voiced, Velar, Nasal 
High, Frontl 
Voiced, Velar, Nasal 
Unvoiced, Palatal, Fricative + Velar, Affricative 
Voiced, Alveolar, Liquid 
Voiced, Dental, Nasal 
Voiced, Palatal, Nasal 
Medium, Tensed, Centrall + Central2 
Voiced, Labial + Velar, Affricative, Stop 
Voiced, Velar, Liquid 
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Phoneme 
/S/ 
/T/ 
/U/ 
/w/ 
/X/ 
/Y / 
/Z/ 
/@/ 
/! / 
/#/ 
/*/ 
/ I /  
/-/ 
/-/ 
1-1 
/./ 

Sound 
shin 
thin 
book 
bout 

excess 
cute 

leisure 
bat 
Nazi 

e d n e  
one 
logic 
but 

Continuation 
Word Boundary 

Period 
Syllable Boundary 
Syllable Boundary 

Primary Stress 
Secondary Stress 
Tertiary Stress 
Word Boundary 

Articulatory Features 
Unvoiced, Palatal, Fricative 
Unvoiced, Dental, Fricative 
High, Backl 
High + Medium, Tensed, Central2 + Backl 
Unvoiced, Affricative, Front2 + Centrall 
High, Tensed, Frontl + Front2 + Centrall 
Voiced, Palatal, Fricative 
Low, Front2 
Unvoiced, Labial + Dental, Affricative 
Voiced, Palatal + Velar, Affricative 
Voiced, Glide, Front1 + Low, Centrall 
High, Frontl + Front2 
Low, Centrall 
Silent, Elide 
Pause, Elide 
Pause. Full StoD 
right 
left 
strong, weak 
strong 
weak 
right, left, boundary 

Output representations for phonemes, punctuations, and stresses on the 26 
output units. The symbols for phonemes in the first column are a superset of 
ARPAbet and are associated with the sound of the italicized part of the adjacent 
word. Compound phonemes were introduced when a single letter was associated 
with more than one primary phoneme. Two or more of the following 21 articulatory 
feature units were used to represent each phoneme and punctuation: Position 
in mouth: Labial = Frontl, Dental = Front2, Alveolar = Centrall, Palatal = 
Central2, Velar = Backl, Glottal = Back2; Pboneme Type: Stop, Nasal, Fricative, 
Affricative, Glide, Liquid, Voiced, Tensed; Vowel Height: High, Medium, Low; 
Punctuation: Silent, Elide, Pause, Full Stop. The continuation symbol was used 
when a letter was silent. Stress and syllable boundaries were represented with 
combinations of 5 additional units, as shown at the end of the table. Stress was 
associated with vowels, and arrows were associated with the other letters. The 
arrows point toward the stress and change direction at syllable boundaries. Thus, 
the stress assignments for ‘ atmosphere ’ ’ are ’ ‘ 100>>>2<< ’ ’ . The phoneme 
and stress assignments were chosen independently 
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