CS340 Machine learning
Midterm review
Topics

- Bayesian statistics
- Information theory
- Decision theory

kNN not on exam
Sampling distributions (confidence intervals etc) not on exam
Bayesian belief updating

Posterior probability

Likelihood

Prior probability

\[p(h \mid d) = \frac{p(d \mid h) p(h)}{\sum_{h' \in H} p(d \mid h') p(h')} \]

Bayesian inference = Inverse probability theory
Number game

- Data: \(x_i \in \{1, \ldots, 100 \} \).
- Hypothesis space: \(h \in \{1, \ldots, H\} \)

 (rules + intervals)
- Likelihood: strong sampling model
 \[
p(D|h) = \left[\frac{1}{|h|} \right]^n I(x_1, \ldots, x_n \in h)
\]
- Prior: piecewise uniform histogram
 \[
p(h) = \frac{\lambda I(h \in \text{rules}) + (1 - \lambda)I(h \in \text{intervals})}{H}
\]
Number game

• Posterior: histogram

\[p(h|\theta) \]

\[1 \ 2 \ \cdots \ H \]

• Posterior predictive: histogram

\[p(x|\theta) \]

\[1 \ 2 \ 100 \]
Coin tossing

- Data: $x_i \in \{0,1\}$
- Hypothesis space: θ in $[0,1]$
- Likelihood: Bernoulli
 \[
p(D|\theta) = \prod_{i=1}^{n} \theta^{I(x_i=1)} (1 - \theta)^{I(x_i=0)} = \theta^{N_1} (1 - \theta)^{N_0}
\]
- Prior: Beta
 \[
p(\theta) = Beta(\theta|a, b)
\]
 - $E[\theta] = \frac{a}{a+b}$
 - $a=b=0.1$
 - $a=b=1$
 - $a=b=5$
Coin tossing

- Posterior: beta

\[p(\theta|D) = \text{Beta}(\theta|a + N_1, b + N_0) \]

- Posterior predictive: two-element histogram

\[p(X = 1|D) = \int p(X = 1|\theta)p(\theta|D)d\theta \]
\[= \int \theta \text{Beta}(\theta|a', b')d\theta = \frac{a'}{a' + b'} \]
Dice rolling

- **Data**: $x_i \in \{1,\ldots,K\}$
- **Hypothesis space**: $(\theta_1, \ldots, \theta_K) \in [0,1]^K$ st $\sum_k \theta_k = 1$
 (probability simplex)
- **Likelihood**: Multinomial
 $$p(D|\theta) = \prod_k \theta_k^{N_k}$$
- **Prior**: Dirichlet
 $$p(\theta) = Dir(\theta|\alpha)$$

[(20,20,20) (2,2,2) (20,2,2)]
Dice rolling

- Posterior: Dirichlet

\[
p(\theta|D) = \text{Dir}(\theta|\alpha + N)
\]

- Posterior predictive: K-element histogram

\[
p(X = k|D) = E[\theta_k|D] = \frac{\alpha_k + N_k}{\sum_{k'} \alpha_{k'} + N_{k'}}
\]
Real values

- Data: \(x_i \in \mathbb{R} \)
- Hypothesis space: \(\mu \in \mathbb{R} \) (\(\lambda \) known)
- Likelihood: Gaussian

\[
p(D|\mu) = \frac{1}{(2\pi)^{n/2}} \lambda^{n/2} \exp\left(-\frac{\lambda}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)
\]

\[
= \frac{1}{(2\pi)^{n/2}} \lambda^{n/2} \exp\left(-\frac{\lambda}{2} \left[n(\mu - \bar{x})^2 + \sum_{i=1}^{n} (x_i - \bar{x})^2\right]\right)
\]

- Prior: Gaussian

\[
p(\mu) = \mathcal{N}(\mu|\mu_0, \lambda_0^{-1})
\]

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]
• Posterior: Gaussian

\[
p(\mu|D) = \mathcal{N}(\mu|\mu_n, \lambda_n^{-1})
\]

\[
\lambda_n = \lambda_0 + n\lambda \quad \text{Precisions add}
\]

\[
\mu_n = \frac{\bar{x}n\lambda + \mu_0\lambda_0}{\lambda_n} \quad \text{Convex combination}
\]

• Posterior predictive: Gaussian

\[
p(x|D) = \int p(x|\mu)p(\mu|D)d\mu
\]

\[
= \int \mathcal{N}(x|\mu, \sigma^2)\mathcal{N}(\mu|\mu_n, \sigma_n^2) d\mu
\]

\[
= \mathcal{N}(x|\mu_n, \sigma_n^2 + \sigma^2)
\]

Uncertainty about \(\mu\) noise
Real values

• Data: $x_i \in \mathbb{R}$
• Hypothesis space: $\mu \in \mathbb{R}, \lambda \in \mathbb{R}^+$
• Likelihood: Gaussian

$$p(D|\mu) = \frac{1}{(2\pi)^{n/2}} \lambda^{n/2} \exp \left(-\frac{\lambda}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \right)$$

$$= \frac{1}{(2\pi)^{n/2}} \lambda^{n/2} \exp \left(-\frac{\lambda}{2} \left[n(\mu - \bar{x})^2 + \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \right)$$
Real values

- Prior: Normal Gamma

\[\text{NG}(\mu, \lambda|\mu_0, \kappa_0, \alpha_0, \beta_0) \overset{\text{def}}{=} \mathcal{N}(\mu|\mu_0, (\kappa_0 \lambda)^{-1}) \mathcal{Ga}(\lambda|\alpha_0, \text{rate} = \beta_0) \]

\[\propto \frac{1}{2} \exp\left(\frac{-\kappa_0 \lambda}{\kappa_0 \lambda} (\mu - \mu_0)^2\right) \lambda^{\alpha_0 - 1} e^{-\lambda \beta_0} \]
Real values

- **Posterior: Normal Gamma**

\[
p(\mu, \lambda|D) = NG(\mu, \lambda|\mu_n, \kappa_n, \alpha_n, \beta_n)
\]

\[
\mu_n = \frac{\kappa_0 \mu_0 + n \bar{x}}{\kappa_0 + n}
\]

\[
\kappa_n = \kappa_0 + n
\]

\[
\alpha_n = \alpha_0 + n/2
\]

\[
\beta_n = \beta_0 + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{\kappa_0 n (\bar{x} - \mu_0)^2}{2(\kappa_0 + n)}
\]

- **Posterior predictive: student T** (long-tailed Gaussian)

\[
p(x|D) = t_{2\alpha_n}(x|\mu_n, \frac{\beta_n(\kappa_n + 1)}{\alpha_n \kappa_n})
\]
Posterior summaries

- Common to quote the posterior mean $E[\theta|D]$ as a point estimate
- 95% Credible interval $(\ell(D), u(D))$
 \[p(\ell \leq \theta \leq u|D) \geq 0.95 \]
- Can also summarize using samples from posterior
 \[\theta^s \sim p(\theta|D) \]
MAP estimation

- We will often use the posterior mode as an approximation to the full posterior.

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|D)
\]

\[
= \arg \max_{\theta} \log p(D|\theta) + \log p(\theta)
\]

\[
p(\theta|D) \approx \delta(\theta - \hat{\theta}_{MAP})
\]

- This ignores uncertainty in our estimate, and will result in overconfident predictions.

- However, it is often computationally much cheaper than a fully Bayesian solution.

- If \(p(\theta) \propto 1 \) (uninformative prior), then MAP = MLE.
Topics

• Bayesian statistics
• Information theory
• Decision theory
Information theory

- **Entropy** = min num bits to encode samples from $p(x)$ using optimal code (and knowledge of $p(x)$)

$$H(X) = - \sum_x p(x) \log_2 p(x)$$

- **KL divergence** = extra num bits to encode samples coming from $p(x)$ using code based on $q(x)$

$$KL(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)}$$

$$= - \sum_x p(x) \log q(x) - H(p)$$

Cross entropy from p to q
Mutual information

• $I(X,Y)$ is how much our uncertainty about Y decreases when we observe X

$$I(X,Y) \overset{\text{def}}{=} \sum_y \sum_x p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = KL(p(x,y)||p(x)p(y))$$

$$= -H(X,Y) + H(X) + H(Y)$$

$$= H(X) - H(X|Y) = H(Y) - H(Y|X)$$

• Hence

$$H(X,Y) = H(X|Y) + H(Y|X) + I(X,Y)$$
Topics

- Bayesian statistics
- Information theory
- Decision theory
Bayesian decision theory

- Pick action $\hat{\theta}(D)$ to minimize expected loss wrt current belief state $p(\theta|D)$
 \[\hat{\theta}(D) = \arg\min_{\hat{\theta}} EL(\theta, \hat{\theta}) = \arg\min_{\hat{\theta}} \int L(\theta, \hat{\theta}) p(\theta|D) d\theta \]

- Squared error (L2) loss
 \[L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 \]
 \[\frac{d}{d\hat{\theta}} EL(\theta, \hat{\theta}) = 0 \Rightarrow \hat{\theta}(D) = E[\theta|D] \]

- Zero-one loss
 \[L(\theta, \hat{\theta}) = \delta(\theta - \hat{\theta}) \]
 \[\frac{d}{d\theta} EL(\theta, \hat{\theta}) = 0 \Rightarrow \hat{\theta}(D) = \arg\max_{\theta} p(\theta|D) \]
Decision theory: classifiers

- Given belief state \(p(y|x) \), pick action \(\hat{y}(x) \) to minimize expected loss

\[
\hat{y}(x) = \arg \min_{\hat{y}} \mathbb{E}(L(y, \hat{y})) = \arg \min_{\hat{y}} \sum_{y} L(y, \hat{y}) p(y|x)
\]

<table>
<thead>
<tr>
<th>state</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>action (\hat{y})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>True positive (\lambda_{11} = 0)</td>
<td>False positive (\lambda_{12})</td>
</tr>
<tr>
<td>2</td>
<td>False negative (\lambda_{21})</td>
<td>True negative (\lambda_{22} = 0)</td>
</tr>
</tbody>
</table>

\[
\hat{y}(x) = 1 \text{ iff } \frac{p(Y = 1|x)}{p(Y = 2|x)} > \frac{\lambda_{12}}{\lambda_{21}}
\]
• Given belief state \(p(m|D) \), pick model \(\hat{m}(D) \) to minimize expected loss.

• For 0-1 loss, pick most probable model

\[
m^*(D) = \arg\max_m p(m|D)
\]

\[
p(m|D) = \frac{p(m)p(D|m)}{p(D)}
\]

\[
p(D) = \sum_{m \in M} p(m)p(D|m)
\]
Bayes factors

- To compare 2 models with equal priors, use the Bayes factor (c.f. likelihood ratio)

\[BF(i, j) = \frac{p(D|m_i)}{p(D|m_j)} \]

- The marginal likelihood \(p(D|m) \) is the probability that model \(m \) can generate \(D \) using parameters sampled from its prior

\[p(D|m) = \int p(D|\theta, m)p(\theta|m)d\theta \]

- This automatically penalizes complex models (Occam’s razor)
Predicting the future

- Consider predicting $y=x_{n+1}$ given $x_{1:n}$.
- Use a loss function that measures your surprise
 \[L(m, y) = - \log p(y|m) \]
- Pick m to minimize expected loss (risk)
 \[R(m) = \int p(y|x_{1:n}) L(m, y) dy \]
 \[= \int -p(y|x_{1:n}) \log p(y|x_{1:n}, m) = E_y f_m(y, x_{1:n}) \]
- To minimize this cross entropy, we should pick the model whose predictions $p(y|x_{1:n}, m)$ come closest to our predictions of the future, given by this Bayes model average
 \[p(y|x_{1:n}) = \sum_{m \in \mathcal{M}} p(y|m, x_{1:n}) p(m|x_{1:n}) \]
Cross validation

• If we don’t think the true model is in our model class \mathcal{M}, we can approximate $p(y|x_{1:n})$ empirically.

• Leave one out cross validation (LOOCV) uses x_i as test and x_{-i} as training, and averages over i

$$E_y f_m(y, x_{1:n}) \approx \frac{1}{n} \sum_{i=1}^{n} f_m(x_i, x_{-i})$$

• We then pick the model m with the minimal empirical cross entropy loss.

• We can reduce the variance of this estimate using larger splits, eg 10-fold cross validation.