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Prior p(h)

• X={60,80,10,30}

• Why prefer “multiples of 10” over “even 
numbers”?
– Size principle (likelihood)

• Why prefer “multiples of 10” over
“multiples of 10 except 50 and 20”?
– Prior 

• Cannot learn efficiently if we have a uniform prior 
over all 2100 logically possible hypotheses



Need for prior (inductive bias)
• Consider all 22

2
= 16 possible

binary functions on 2 binary inputs

• If we observe (x1=0, x2=1, y=0), this 
removes h5, h6, h7, h8, h13, h14, h15, h16

• Still leaves exponentially many hypotheses!

• Cannot learn efficiently without 
assumptions (no free lunch theorem)



Hierarchical prior



Computing the posterior

• In this talk, we will not worry about 
computational issues (we will perform brute 
force enumeration or derive analytical 
expressions).
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Prior Likelihoods Posteriors



Generalizing to new objects

Given p(h|X), how do we compute      , 
the probability that C applies to some new 
stimulus y? 
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Posterior predictive distribution

Compute the probability that C applies to some new 
object y by averaging the predictions of all 
hypotheses h, weighted by p(h|X)
(Bayesian model averaging):
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Examples: 
16



Examples: 
16
8
2
64



Examples: 
16
23
19
20



+ Examples Human generalization

60

60  80  10  30

60  52  57  55

Bayesian Model 

16

16  8  2  64

16  23  19  20



Rules and exemplars in the
number game

• Hyp. space is a mixture of sparse 
(mathematical concepts) and dense 
(intervals) hypotheses.

• If data supports mathematical rule (eg
X={16,8,2,64}), we rapidly learn a rule 
(“aha!” moment), otherwise (eg
X={6,23,19,20}) we learn by similarity, and 
need many examples to get sharp boundary.



Summary of the Bayesian approach

1. Constrained hypothesis space H
2. Prior p(h)
3. Likelihood p(X|h) 
4. Hypothesis (model) averaging:  



MAP (maximum a posterior) learning
• Instead of Bayes model averaging, we can find the 

mode of the posterior, and use it as a plug-in.

• As N →∞, the posterior peaks around the mode, 

so MAP and BMA  converge

• Cannot explain transition from similarity-based 
(broad posterior) to rule-based (narrow posterior)



Relation between MAP and MDL

• MAP (penalized likelihood) estimation:

• Minimum description length (MDL):
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Model selection using MDL



Bayesian Occam’s Razor

• Which hypothesis is better supported by the 
examples {54, 6, 22}?
– “even numbers”

– “numbers between 6 and 54”

• Intuition: simpler hypotheses come from smaller 
(more constrained) hypothesis spaces.
– “Entities should not be multiplied without necessity”

– Prefer models with fewer free parameters.

• Both prior and likelihood contribute to this, since 
p(h|X) ∝ p(h) p(X|h) 



Maximum likelihood

• ML = no prior, no averaging.

• Plugs-in the MLE for prediction:

• X={16} ->   h= "powers of 4" 
X={16,8,2,64} -> h= "powers of 2".

• So predictive distribution gets broader as 
we get more data, in contrast to Bayes.

• ML is initially very conservative.



Large sample size behavior
• As the amount of data goes to ∞, ML, 

MAP and BMA all converge to the same 
solution, since the likelihood overwhelms 
the prior, since p(X|h) grows with N, but 
p(h) is constant.

• If truth is in the hypothesis class, all 
methods will find it; thus they are consistent 
estimators.


