CS340

Bayesian concept learning cont'd

Kevin Murphy

Prior p(h)

- X={60,80,10,30}
- Why prefer "multiples of 10" over "even numbers"?
 - Size principle (likelihood)
- Why prefer "multiples of 10" over "multiples of 10 except 50 and 20"?
 - Prior
- Cannot learn efficiently if we have a uniform prior over all 2¹⁰⁰ logically possible hypotheses

Need for prior (inductive bias)

• Consider all $2^{2^2} = 16$ possible binary functions on 2 binary inputs

Boolean functions.

		1.	10	b	h.	h-	he	h-	ho	ha	h_{10}	h11	h_{12}	<i>h</i> ₁₃	h_{14}	h_{15}	h_{16}
x_1	\mathbf{x}_2	n_1	n_2	n 3	114	115	116	11/	10	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	L	1			1	1	1	1
0	1	0	0	0	0	1	X	X	X	0	0	0	0	1	T	1	1
1		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	0	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	0	1	0	1	0	1	0			1.1	15 33	11 10

- If we observe $(x_1=0, x_2=1, y=0)$, this removes h_5 , h_6 , h_7 , h_8 , h_{13} , h_{14} , h_{15} , h_{16}
- Still leaves exponentially many hypotheses!
- Cannot learn efficiently without assumptions (no free lunch theorem)

Computing the posterior

• In this talk, we will not worry about computational issues (we will perform brute force enumeration or derive analytical expressions).

$$p(h \mid X) = \frac{p(X \mid h) p(h)}{\sum_{h' \in H} p(X \mid h') p(h')}$$

Generalizing to new objects

Given p(h|X), how do we compute $p(y \in C \mid X)$, the probability that *C* applies to some new stimulus *y*?

Posterior predictive distribution

Compute the probability that *C* applies to some new object *y* by averaging the predictions of all hypotheses *h*, weighted by p(h|X) (**Bayesian model averaging**):

$$p(y \in C \mid X) = \sum_{h \in H} \underbrace{p(y \in C \mid h)}_{= \begin{bmatrix} 1 \text{ if } y \in h \\ 0 \text{ if } y \notin h \end{bmatrix}} p(h \mid X)$$

$$=\sum_{h\supset\{y,X\}} p(h \mid X)$$

Examples: 16

Rules and exemplars in the number game

- Hyp. space is a mixture of sparse (mathematical concepts) and dense (intervals) hypotheses.
- If data supports mathematical rule (eg X={16,8,2,64}), we rapidly learn a rule ("aha!" moment), otherwise (eg X={6,23,19,20}) we learn by similarity, and need many examples to get sharp boundary.

Summary of the Bayesian approach

- 1. Constrained hypothesis space H
- 2. Prior p(h)
- 3. Likelihood p(X|h)
- 4. Hypothesis (model) averaging:

$$p(y \in C | X) = \sum_{h} p(y \in C|h) p(h|X)$$

MAP (maximum a posterior) learning

• Instead of Bayes model averaging, we can find the mode of the posterior, and use it as a plug-in.

$$\hat{h} = \arg \max_{h} p(h|X) = \arg \max_{h} p(X|h)p(h)$$
$$p(y \in C|X) = p(y \in C|\hat{h})$$

• As $N \to \infty$, the posterior peaks around the mode, so MAP and BMA converge

$$p(y \in C|X) = \sum_{h} p(y \in C|h)p(h|X) \to \sum_{h} p(y \in C|h)\delta(h,\hat{h})) = p(y \in C|\hat{h})$$

• Cannot explain transition from similarity-based (broad posterior) to rule-based (narrow posterior)

Relation between MAP and MDL

- MAP (penalized likelihood) estimation: $P(h | X) \propto P(X | h) P(h)$
- Minimum description length (MDL):

 $-\log P(h \mid X) = -\log P(X \mid h) + -\log P(h) + \text{Const}$ $\uparrow \qquad \uparrow \qquad \uparrow$ $\text{Total encoding} \qquad \text{Cost to encode} \qquad \text{Cost to encode} \\ \text{the data given} \qquad \text{the hypothesis} \qquad \text{the hypothesis}$

Model selection using MDL

Bayesian Occam's Razor

- Which hypothesis is better supported by the examples {54, 6, 22}?
 - "even numbers"
 - "numbers between 6 and 54"
- Intuition: simpler hypotheses come from smaller (more constrained) hypothesis spaces.
 - "Entities should not be multiplied without necessity"
 - Prefer models with fewer free parameters.
- Both prior and likelihood contribute to this, since $p(h|X) \propto p(h) \: p(X|h)$

Maximum likelihood

- ML = no prior, no averaging.
- Plugs-in the MLE for prediction: $\hat{h} = \arg \max_{h} p(X|h)$ $p(y \in C|X) = p(y \in C|\hat{h})$
- X={16} -> h= "powers of 4" X={16,8,2,64} -> h= "powers of 2".
- So predictive distribution gets broader as we get more data, in contrast to Bayes.
- ML is initially very conservative.

Large sample size behavior

• As the amount of data goes to ∞ , ML,

MAP and BMA all converge to the same solution, since the likelihood overwhelms the prior, since p(X|h) grows with N, but p(h) is constant.

• If truth is in the hypothesis class, all methods will find it; thus they are consistent estimators.