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“Concept learning” (binary 
classification) from positive and 

negative examples



Concept learning from positive 
only examples

How far out should
the rectangle go?
No negative examples
to act as an upper bound.



Human learning vs
machine learning/ statistics

• Most ML methods for learning "concepts" 
such as "dog" require a large number of 
positive and negative examples

• But people can learn from small numbers of 
positive only examples (look at the doggy!) 

• This is called "one shot learning"



Everyday inductive leaps

How can we learn so much about . . . 
– Meanings of words

– Properties of natural kinds

– Future outcomes of a dynamic process

– Hidden causal properties of an object

– Causes of a person’s action (beliefs, goals)

– Causal laws governing a domain

. . . from such limited data?



The Challenge

• How do we generalize successfully from very 
limited data?
– Just one or a few examples

– Often only positive examples

• Philosophy: 
– Induction called a “problem”, a “riddle”, a 

“paradox”, a “scandal”, or a “myth”. 

• Machine learning and statistics:
– Focus on generalization from many examples, 

both positive and negative. 



The solution: Bayesian inference

• Bayes’ rule:

• Various compelling (theoretical and 
experimental) arguments that one should 
represent one’s beliefs using probability and 
update them using Bayes rule
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Bayesian belief updating
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Bayesian inference = Inverse probability theory



Derivation of Bayes rule

• By the defn of conditional prob

• By chain rule

• By rule of total probability

• Hence we get Bayes’ rule

p(A = a|B = b) =
p(A = a,B = b)

p(B = b)
if p(B = b) > 0

p(A = a,B = b) = p(B = b|A = a)p(A = a)

p(B = b) =
∑

a′

p(B = b, A = a′)

p(A = a|B = b) =
p(B = b|A = a)p(A = a)∑
a′
p(B = b|A = a)p(A = a)



Bayesian inference: key ingredients

• Hypothesis space H

• Prior p(h)

• Likelihood p(D|h)

• Algorithm for computing posterior p(h|D)

∑
∈′

′′
=

Hh

hphdp

hphdp
dhp

)()|(

)()|(
)|(



Two examples

• The “number game” – inferring abstract 
patterns from sequences of integers

• The “healthy levels game” – inferring 
rectangles from points in R2



The number game

• Learning task:
– Observe one or more examples (numbers)

– Judge whether other numbers are “yes” or “no” .



The number game

Examples of
“yes” numbers Hypotheses

60

multiples of 10
even numbers

60  80  10  30

multiples of 10
even numbers
? ? ?

60  63  56  59 numbers “near” 60



60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance



Some phenomena to explain:
– People can generalize from just positive examples. 

– Generalization can appear either graded 
(uncertain) or all-or-none (confident).

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance



• H: Hypothesis space of possible concepts:

• X = {x1, . . . , xn}:  n examples of a concept C. 

• Evaluate hypotheses given data using Bayes’ rule:

– p(h) [“prior”]: domain knowledge, pre-existing biases 

– p(X|h) [“likelihood”]: statistical information in examples.

– p(h|X) [“posterior”]: degree of belief that h is the true extension of C.
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Bayesian model



Hypothesis space
• Mathematical properties (~50): 

– odd, even, square, cube, prime, …

– multiples of small integers

– powers of small integers

– same first (or last) digit

• Magnitude intervals (~5000): 
– all intervals of integers with endpoints between 

1 and 100

• Hypothesis can be defined by its extension
h = {x : h(x) = 1, x = 1, 2, . . . , 100}



Likelihood p(X|h)
• Size principle: Smaller hypotheses receive greater 

likelihood, and exponentially more so as n increases.

• Follows from assumption of randomly sampled examples
(strong sampling).

• Captures the intuition of a representative sample. 
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Example of likelihood

• X={20,40,60}

• H1 = multiples of 10 = {10,20,…,100}

• H2 = even numbers = {2,4,…,100}

• H3 = odd numbers = {1,3,…,99}

• P(X|H1) = 1/10 * 1/10 * 1/10

• p(X|H2) = 1/50 * 1/50 * 1/50

• P(X|H3)   = 0





Likelihood function

• Since         is a distribution over vectors of 
length n, we require that, for all h,

• It is easy to see this is true,
e.g., for h=even numbers, n=2

• If x is fixed, we do not require
• Hence we are free to multiply the likelihood 

by any constant independent of h

p(�x|h) ∑

�x

p(x|h) = 1

100∑

x1=1

100∑

x2=1

p(x1, x2|h) =

100∑

x1=1

100∑

x2=1

p(x1|h)p(x2|h) =
∑

x1∈even

∑

x2∈even

1

50

1

50
= 1

∑

h

p(X |h) = 1



2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

Illustrating the size principle

h1 h2
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Data slightly more of a coincidence under h1
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