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1 Introduction

In this Chapter, we provide a brief overview of the most comipatudied problems and solution methods within the
field of machine learning. This Chapter might be hard to usi@ed on a first reading; we recommend you return to it
after reading some of the subsequent chapters. Howeveryésto provide a “big picture” and some motivation, and
to introduce some useful notation.

2 Supervised learning

The most widely studied problem in machine learningupervised learning We are given dabeled training setof
input-output pairspP = (x;,y;),, and have to learn a way to predict thetput or target ¢ for a noveltest input x
(i.e, forz ¢ D). (We use the tilde notation to denote test cases that wertai\a=en before.) Some examples include:
predicting if someone has canaggre {0, 1} given some measured variablespredicting the stock price tomorrow
7 € IR given the stock prices today, etc.

A common approach is to just predict one’s “best guess”, sisaf{x). However, we prefer to compute a prob-
ability distribution over the outpuy(g|x), since it is very useful to have a measure of confidence agsociith
one’s prediction, especially in medical and financial dareailn addition, probabilistic methods are essential for
unsupervised learning, as we discuss in Section 3.

If y is discrete ocategorical sayy € {1,2,...,C}, this problem is calledlassificationor pattern recognition.

If there areC’ = 2 classes olabels the problem is calletinary classification (see Figure 1 for an example), otherwise
it is calledmulti-class classification. We usually assume the classes are mutudlysive, soy can only be in one
possible state. If we want to allow multiple labels, we capresenty by a bit-vector of lengtiC, soy; = 1if y
belongs to clasg.

If y is continuous, say € IR, this problem is calledegression If  is multidimensional, say € IR?, we call it
multivariate regression. If y is discrete, but ordered (e.g@.,c {low,medium,high), the problem is calledrdinal
regression

A priori, our prediction might be quite poor, but we are paed with a labeled training set of input-output pairs,
D = (x;,y:)",, which provides a set of examples of the “right response’afget of possible inputs. If each input

Figure 1. lllustration of binary classification where the input spa&dR?. White points are negative, red points are positive.
The axes could represent cholestrol and insulin levels tlaadlass labels could represent “healthy” or “unhealthyeft: linear
classifier: we separate the classes with a line. Points odehision boundaryare equally likely to be in class 1 or class 2; as
we move away from the boundany(y = 1|x) increases or decreases, depending on which side of the &guwe are on. The
parameters controlling the shape of the line are cailled he line makes 3 misclassification erroR§ght: we separate the classes
with a “wiggly” boundary. This makes no errors, but may haverfit. Source: Leslie Kaelbling.



d features (attributes)

Color Shape Size (cm)| | Label
n cases | | Blue Square |10 Yes
Red Ellipse 24 Yes
Red Ellipse 20.7 No
X y

Figure 2: Design matrix. We assume the user has converted the inpu(tdate, coloured shapes) into an adequate set of features,
and has labeled every example. The learning algorithm ttes tb learn a mapping from the features to the class latiglré&
courtesy of Leslie Kaelbling.

x; IS ad-dimensional vector, calledfaature vector, we can store the training data in anx d design matrix. See
Figure 2 for an example. We can then usepbsterior predictive density, p(7|%, D), to generate possible answérs.

We can assess how well we are doing by computingtsterior predictive likelihood, i.e., how much probability
mass does our mod@l assign to future data? We can approximate this by lookingeaetmpirical performance of
the model on dest set In particular, we can compute the averdag-likelihood of the test data:

m

~ 1 o
((M|D) = — logp(§;[%, D, M) €Y
=1

wherem is the number of test case¥ is the model we are testing, aiielis the training data. A good model will be
able to predict the future, and hence will have high predicfiog) likelihood.

A simpler performance measure, in the case of classifiejgsito compute thenisclassification rateor error
rate. However, we may want more than just being right; we may warkiniow when we are right, so that if we are
uncertain about our answer, we can do something else, likeakelp, rather than make a potentially serious mistake
(see Chapte??). In addition, another advantage of using log-likelihosdktiat it is well-defined even in the case of
unsupervised learning, where there is no well defined eigoag as we will see in Section 3.

2.1 Parametric vs non-parametric models

In this book, we will mostly focus oparametric models which essentially means we can “absorb” the training
data into a fixed-length parameter vecfofof size independent of), and then “throw away” the data. The process
of infering p(@|D) is calledlearning; often we will approximate it by computing a point estimate,'best guess”,
é?(D). (For example, when predicting the outcome of a series of taEses, we may estimate that the probability of
heads is given b§3 = Ni/n, whereN; is the number of heads i, andn is the total number of trials i.) Given
our parameter estimate, we can predict the future as follows

p(/%, D) = / p(i1%. 0)p(6]D)d6 @)

1The posterior predictive is just the probability distrilant over possible outputg given the inputk, and given the training dat®. It is called
“posterior” because it is the distribution after we havenste training dataD. By contrastp(g|x) would be call the prior predictive.



We will often use glug-in approximation to this:

p(§%, D) ~ p(jl%, 6(D)) (3)

See Sectiof?? for more details.

The main alternative to a parametric model isan-parametric model, in which the number of parameters is
allowed to grow with the size of the data. A simple example ime@mory-based approach such as anearest
neighbor classifier (see Sectio®?), in which we remember all our training examplés,, y;), and predicty by
comparingx to all the storedk;, and using the labe}; of the x; that is closest t&. Such models often work very
well, but they need a lot of time and memory at test time (angsiidy training time, too). In addition, such models
are often hard to interpret, which may or may not be importaany given problem.

2.2 Generative vs discriminative models
There are two main ways to computg/|x), depending on whether we write

p(y,x) = p(y[x)p(x) (4)

or
p(y,x) = p(y)p(x|y) (5)

(We drop the conditioning ofl and D for notational simplicity.) The first approach is to dirgcéstimate theson-
ditional density p(y|x). In the context of classification, this is callediscriminative model, since it discriminates
between different classesgiven the input. The distribution of the inpup(x), is irrelevant, since we assume that
the input is always known ogxogeneous (This is not true if we havenissing valuesin the input, however.) We
shall usually usev to denote the parameters of the distributigp|x). These are often called regressigeights in
statistics they are denoted Byand are called regressiaoefficients

The alternative is to learnjaint density model of the inputs and outputg(y, x). Then we can usBayes rule?
to infer the posterior op:

o = Pxy)
plbe) = 2 (6)
The joint is usually written as
p(y.x) = p(y)p(x|y) (7

wherep(x|y) is theclass-conditional densityandp(y) is the prior over class labels. (The terminology is specdfic t
the classification setting, since in the regression settirig more common to use discriminative models.) We will
often user to denote the parameters of the class ppiar), and@ to denote the parameters of the class-conditional
densitiesp(z|y). The approach of learning(y, x) is calledgenerative modeling sincep(x|y) specifies a way to
generate the feature vectors for each possible clags We will see an example of this in Secti@f.

We discuss the advantages and disadvantages of discriveimatgenerative classifiers in Secti®h Most classi-
fication methods that you may have heard of (logistic regoasseural networks, decision trees, SVMs) are discrim-
inative (see Chapte?? for a discussion of these models). However, generativaifieis are often easier to learn, so
we will study these first. In particular, in Chapt?, we will study the naive Bayes classifier, which is widely dise
for emailspam filtering.

2.3 Graphical models

The distinction between generative and discriminative e®tiecomes much clearer if we use the notation of (di-
rected)graphical models We will explain these in Sectio®?, and in more detail in Chapté?. However, the basic
idea is very simple: we create a graph in which nodes repteardom variables (which may be scalars or vectors),
such a, y, 6, etc. We then draw arrows between the nodes which have & ¢rebabilistic) dependence between
them. We shade the nodes that abserved(known), and leave unshaded the nodes that are not obsemvieaicivn).

2Recall that Bayes rule is simply(Y = i|X = j) = %, wherep(X = j) = >, p(X = j|Y = i)p(Y =1i)isjusta
normalization constant to ensuy€, p(Y = | X = j) = 1. See Sectio?? for more details.



Name Training data Goal Model

@™
Conditional density estimation (discriminative modelD = (x;, ;) (g%, D)
|
A9
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Joint density estimation (generative model) D = (x;,y;) p(y|x, D) é}/) @

_ ' @u &
Transductive learning D = (x4,y:,%;)  p(g;|D) J

&7
Semi-supervised learning D= (x,, L, x¥) p(jlx, D) 7

V’\.
X
Density estimation D = (x;) p(X|D) @

z
J J
o4
Latent variable model D = (x;) p(z|x, D)

Table 1: Most of machine learning, represented in terms of directaplycal models. Nodes on the left represent training data,
nodes on the right represent test data, and nodes in theanfaith Greek letters, plusv) are parameters. Shaded nodes are
observed, unshaded nodes are unknown. The first four me#inedsipervised, the rest are unsupervised.
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Figure 3: Example of semi-supervised learnirigeft: two points are labeled, red and blue. Note that the poinketX is closer
to the red point in terms of Euclidean distance, but closénedlue point in terms of distance along the datnifold. Right: we
propagate the labels to the nearest neighbors, thus géctabeling all the points. Source: Nando de Freitas.
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Figure 4: Left: A scatterplot of height and weight of various peopleghR: points have been colour coded: men are blue crosses,
women are red circles. Figure producedhaightWeightDataPlot

We give some examples in Figure 2.3. For discriminative nedee have arcs from andw to y to represent the
termp(y|x, w). Similarly we have arcs frork andw to 5. The goal of learning is to estimate from D = (x;, y;),
and then use this to predigtgivenx andw.

For generative models, we have arcs frero y, to represent(y|r), and arcs from frony andé to x, to represent
the termp(x|y, 0). At test time x is observed, and we use Bayes rule to “invert the arrow” afet jnfrom x.

2.4 Variants of supervised learning

Some variations on the standard supervised learning gameldave been proposed. transductive learning, one

is given access to the test questions at training time. Bhd i= {x;,y,}";U{x;}",, wheren is the number of
training cases aneh is the number of test cases. One can use this when learningeigéts,p(w|D). The goal

is just to predict the output; for the fixed test sek;, rather than for arbitrary test inputs. Note that in a statida
discriminative model, we are allowed to include an arc froio w, reflecting the fact that the prior om can depend
onx, p(w|x), since everything can be conditionedxn(We will see an example of this when we study g-priors in
Section??.) However, in transductive learning, we calso include an arc fronx to w.

In semi-supervised learning only some of the training cases have labels; call thig$ey!). The other training
cases have features but no labels; call théseThe goal is to use all this data to predict future outputg|z, D). By
exploiting the fact that the inputs may bienilar in some way, we capropagatethe labels from the labeled examples
to the unlabeled ones, and thereby increase the effectigen$ithe training set. See Figure 3. (A similar technique
can be used for transductive learning.)



3 Unsupervised learning

In unsupervised learning the data only consists of a set of featurBs= {x; }, with no target variablg; to predict.

The goal is to fit a model to all the data, in order to discovensihing “interesting”. For example, given the data in
Figure 4(left), we might hope to discover that there are tlustersunderlying the data (in this case corresponding to
male and females), and furthemore, we might hope to infeagisggnment of points to clusters, as in Figure 4(right).
Of course, since we are never told the “true” clustering @ilmight not even exist), we cannot measure performance
in this way. Instead, we will assess performance of an unsigeel modelM/ by its predictive likelihood:

m

(MID) = 3 p(xi|D, M) ®)

i=1

This is similar to Equation 1, except it tries to predict &k tvariables, rather than just the target variable

The hope is that a model that can model the data accuratetyis@s/ered something fundamental about the data,
and hence it is sensible to try and “look under the hood” ofrtioglel, for example by examining its parameters, in
order to learn something about the purported mechanisnonsge for generating the data. Note that such model
fitting plus model examination is the mainstay of statistiwbereas machine learning has traditionally been more
concerned purely with supervised prediction tasks, of@ngihard-to-interpret models. This is also reflected in the
fact that statisticians worry a lot about the confidence ttayattach to their parameter estimates, whereas this topic
is rarely discussed within machine learning.

Note that it is possible to try to intepret the parametersafrditional density modeh(y|x, 6), as well. Indeed,
this is very common in statistics (linear regression beingry widely used example of a conditional density model).
The only difference from supervised machine learning istiegoal is to learn something about the data, rather than
merely predicting accurately. In other words, it is oftert @eough to build an accurate predictor; one often wants to
knowwhy it is an accurate predictor. Such a task is best describeidgdys'model fitting”, and does not fall neatly
into the categories of “supervised” or “unsupervised” héag.

Density models (both unconditional and conditional) oftentainhidden variablesor latent variables, z;, whose
values are never observed. These are not part of the datardopart of the model. They are just like parameters,
except there ar®(n) of them, i.e., there is ong; for eachx; (and for eachy;, if we are using a conditional density
model). By contrast, we assume the number of parametersed. fifurthermore, we often think of “fixing” the
parameters to the best value learned from the training éeﬂa),, whereas the hidden variables will be free to change
at test time. However, in Sectid??, we will see that, from the Bayesian viewpoint, this distioc between hidden
variables and parameters is rather artificial.

The meaning of the hidden variables depends on the model/ application. In the clustering exarapbve,
zi € {1,..., K} represents the cluster to whigh is assigned, and&” is the (unknown) number of clusters. Another
example isdimensionality reduction, in which z; is a low-dimensional representation »f. For more flexible
models, it can be harder to interpret the hidden states.r&igshows an example ofoltzmann maching which
is an (undirected) graphical model defined on binary vaesbI'he observed variablesorrespond to the data (here
clamped to the digit '8’). A typical hidden state, sampleadnfrthe posteriop(z|x, é), is shown. This is an example
of adistributed representation: the “meaning” of the state is encoded across the whole $ghafy variables, which
can be thought of as acting like stochastéurons

A different subset of the variables are on in each sampl&drdike neural firing). Each such bit pattezn
together with the model’'s parameté&sinduces a different prediction about the dataSince many bit patterns can
make similar predictions (just as many different visualnesecan produce the same image), it is not clear what the
“right” bit pattern should be. Hence the system stochakicaoves between differernterpretations of the data.

A similar thing is presumed to happentioman vision: given an imagex, there are many possible interpretations
(scenesy that could have produced it (think of optical illusions)ethrain’s job is to solve thaverse problem of
inferring z from x. Since there are multiple possible answers (due to ampigtite brain uses prior knowledge in
the form ofp(z), together with Bayes rule, to infer the posterior over seepie|x). This is sometimes callestate
estimation. See Figure 6.

In some problems, the meaning of the latent variablds well-defined, because the user imposes a meaning on
them. For example, in the Boltzmann machine in Figure 5, titen in the smaf x 5 block on the left have been



Figure5: Visualization of the hidden state of a probabilistic modeairted to generate handwritten digits. The observedxlatahe
digit '8’ in the bottom right corner. The hidden variabtesre binary random variables, structured as a series ofKatibipartite
graphs. (This model is called@oltzmann machine and will be studied in Sectid?f?). We are showing a sample from the posterior

p(z|vz, 0). The small2 x 4 rectangular block in the top left represents the class ldbelrently the bit corresponding to digit 8 is
activated, indicating a correct classification. Soukdép://www.cs.toronto.edu/ ~ hinton/adi/index.htm
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Figure 6: Computer/human vision as inverse graphics. The wedénerates observations the system must invert this to infer
from x. Since this is an ill-posed problem, the system must com&ipegor p(z), i.e., a world model, with the likelihoogh(x|z),
in order to compute its posterigs(z|x). Source: [Rao97].



engineered to represent the class lapglThis was done by simplglamping the appropriate node to its “on” value
when an image is presented. For example; i$ set to the digit 8, we clamp the node representing classt8 tm
state; the remaining hidden nodes anelamped We then update our posterior over the parameters base@ oeth
x,y pair by computing(0|x, y, D).

This technique of forcing some of the hidden nodes to reptdabels can be seen as simply a generative model
for supervised learning. But because it is a generative nagecan train it in an unsupervised way on large quantities
of unlabeled data as well, by computipf|x, D). There are two advantages of this. First, unlabeled datasiee
to acquire in large quantities (no human is required to ldbelimages, one simply feeds a video stream into the
system). Second, because the model is required to explaineatiata, and not just the labels, it is less likely to
overfit, which means we can use more complex models. Put @anatly, there is much more information content in
a video stream to constrain our parameter estimates tham itha the captions at the bottom of the video stréam.
Consequently, this book will focus more on generative metlehn on discriminative models. (For a textbook that
focuses on discriminative models, see [HTF01].)
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3This observation is due to Geoff Hinton (personal commutitio



