
CS 340 Fall 2007: Homework 5

1 Bayes Ball

Here we compute some global independence statements from some directed graphical models. You can use the “Bayes
ball” algorithm, the d-separation criterion, or the methodof converting to an undirected graph (all should give the same
results).

1. Consider the DAG in Figure 1(a). List all variablesX s.t.,X ⊥ A|B, i.e., variables that are independent ofA

given evidence onB.

2. Consider the DAG in Figure 1(b). List all variablesX s.t.,X 6⊥ A|J , i.e., variables which depend onA given
evidence onJ .
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Figure 1: Bayes nets

2 Bayes nets for a rainy day

In this question you must model a problem with 4 binary variables: G =”gray”, V =”Vancouver”,R =”rain” and
S =”sad”. You are given the following graphical model describing the relationship between these variables:
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1. Write down an expression forP (S = 1|V = 1) in terms ofα, β, γ, δ.

2. Write down an expression forP (S = 1|V = 0). Is this the same or different toP (S = 1|V = 1)? Explain
why.

3. Find maximum likelihood estimates ofα, β, γ using the following data set, where each row is a training case.
(You may state your answers without proof.)

V G R S

1 1 1 1
1 1 0 1
1 0 0 0

(1)

3 Fishing nets

Consider the Bayes net shown in Figure 2. Here, the nodes represent the following variables

X1 ∈ {winter, spring, summer, autumn}

X2 ∈ {salmon, sea bass}

X3 ∈ {light, medium, dark}

X4 ∈ {wide, thin}

The corresponding conditional probability tables are

p(x1) =
(

.25 .25 .25 .25
)

p(x2|x1) =









.9 .1

.3 .7

.4 .6

.8 .2









p(x3|x2) =

(

.33 .33 .34
.8 .1 .1

)
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Figure 2: Fish Bayes net

p(x4|x2) =

(

.4 .6
.95 .05

)

Note that inp(x4|x2), the rows representx2 and the columnsx4 (so each row sums to one and represents the child of
the CPD). Thusp(x4 = thin|x2 = sea bass) = 0.05, p(x4 = thin|x2 = salmon) = 0.6, etc.
Answer the following queries. You may use matlab or do it by hand. In either case, show your work.

1. Suppose the fish was caught on December 20 — the end of autumnand the beginning of winter — and thus let
p(x1) = (.5, 0, 0, .5) instead of the above prior. (This is calledsoft evidence, since we do not know the exact
value ofX1, but we have a distribution over it.) Suppose the lightness has not been measured but it is known
that the fish is thin. Classify the fish as salmon or sea bass.

2. Suppose all we know is that the fish is thin and medium lightness. What season is it now, most likely? Use
p(x1) =

(

.25 .25 .25 .25
)

4 Learning to use BNT

BNT (the Bayes Net Toolbox) is a Matlab package I wrote that makes it easy to do Bayesian inference about discrete
random variables in directed graphical models with fixed parameters. In this exercise, you will learn how to use some
of its most basic functions.

1. Download BNT.zip fromhttp://www.cs.ubc.ca/ ˜ murphyk/Software/BNT/bnt.html .

2. Install according to the instructions athttp://www.cs.ubc.ca/ ˜ murphyk/Software/BNT/install.
html

3. Read the manual athttp://www.cs.ubc.ca/ ˜ murphyk/Software/BNT/usage.html . In particu-
lar, read the sections entitled “Creating your first Bayes net” and “Inference”.

4. Load the fileBNT/examples/static/sprinkler1.m , which illustrates how to do inference in the water
sprinkler example. Modify this file to computep(S = true|W = false) (hint: should be 0.0621) andp(S =
true|W = false, R = false). (Note: false is state 1, and true is state 2; the value of 0 is not allowed as
evidence in BNT.) Turn in your probability estimates and code.

3



Figure 3: A small QMR Bayes net with 3 diseases and 5 symptoms.The small blue numbers in the top left next to
each node are the topological numbers.

5 QMR in BNT

As discussed in class, the QMR (Quick Medical Reference) is aBayes net designed by doctors to model the domain
of internal medicine. Here we will consider a highly simplified version with 3 diseases nodes and 5 symptom nodes
(see Figure 3). We will let the probability of inhibition be 0on all arcs, so that the child nodes (symptoms) will be
deterministic ORs of their parents. Also, we will initiallyset the probability of inhibiting the leak nodes to 1.0, thus
essentially turning off the leaky parents.

1. Load the fileqmrStub . This sets up the Bayes net in the way we have just described. qmrStub shows how you
can create an evidence vector indicating thatS1 = + (nodeS1 is in state 2) but that all the other symptoms/ test
results are unobserved/ unknown, perhaps because the test has not been done yet; we denote this byS2 =?, S3 =
?, S4 =?, S5 =? in the table below, and insert an empty array as evidence for the corresponding nodes. If the
test result was negative, we would writeS1 = − (nodeS1 is in state 1). After calling the inference engine, you
need to extract the marginal probabilities on each disease node, and then computep(Di = +|ev), for i = 1 : 3,
whereev means all the observed evidence (data). These marginal probabilities are shown in the columns labeled
D1, D2 andD3 in the first row of the table below. We see that, sinceS1 is on, its only parent,D1, must also be
on; however, the other diseases are at their baseline probabilities (0.1), since we have no evidence about their
status. In addition, we showlog p(ev), the log likelihood of the data. Note thatlog(ε) = −36.0437, whereε is
the smallest representable number in Matlab, which meansp(ev) ≈ 0 for the fourth case (see discussion below).
Your goal is to finish writing theqmrStub function so it computes the remainingx entries in the table. Turn in
your numbers and code.

S1,S2,S3,S4,S5 | D1 D2 D3 LogLik
+ ? ? ? ? | 1.000 0.100 0.100 | -2.303
? + ? ? ? | x x x | -1.661
+ + ? + ? | x x x | -2.303
+ + ? - ? | 0.000 0.000 0.000 | -36.044

2. In the example above, we see that in the fourth case,S1 is on, so its parentD1 must also be on; however,D1’s
other child,S4, is off. This is a logical contradiction, sop(ev) = 0. The deterministic model cannot explain
why D1 is on yetS4 is off. We can handle such noisy data by using the noisy OR model. One option would be
to assume the “wires” in the OR gate occasionally flip +’s to -’s; this could explain whyS4 is off even though
D1 is on. An alternative is to add leak nodes, which allow child nodes to turn on even if all their parents are
off; this could explain whyS1 is on even ifD1 is off. We will follow the latter strategy here. Modify your code
so the probability of inhibiting the leak is 0.999; thus leaky parents are enabled. Now recompute the posterior
marginals using the 4 evidence cases above, and fill in the table below. Turn in your numbers and code.
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S1,S2,S3,S4,S5 | D1 D2 D3 LogLik
+ ? ? ? ? | 0.991 0.100 0.100 | -2.294
? + ? ? ? | x x x | -1.656
+ + ? + ? | x x x | -2.302
+ + ? - ? | 0.000 0.991 0.000 | -9.413

We see that the behavior of this model is similar to the deterministic model, except this stochastic model does
not “crash” when it encounters the “logically contradictory” case 4. Instead, we infer thatD2 is (probably) on,
causingS2, but thatD1 is off, soS1 was caused byS1’s leak parent. (D1 cannot be on, sinceS4 is off, and there
is no mechanism to turn children off if all the inhibition probabilities are zero.)
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