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1 Simpson’s paradox
We will show a dramatic example of the dangers of not thinkingcausally. Suppose taking a drug (causeC) decreases
recovery rate (effectE) in females (F ) and males (¬F )

P (E|C, F ) < P (E|¬C, F )

P (E|C,¬F ) < P (E|¬C,¬F )

but in the combined population, the drug increases recoveryrate

P (E|C) > P (E|¬C)

By the rules of probability, this is perfectly possible, as the table of numbers below shows.
Combined Male Female

E ¬E Total Rate E ¬E Total Rate E ¬E Total Rate
C 20 20 40 50% 18 12 30 60% 2 8 10 20%
¬C 16 24 40 40% 7 3 10 70% 9 21 30 30%

Total 36 44 80 25 15 40 11 29 40

p(E|C) = p(E, C)/p(c) = 20/40 = 0.5 (1)

p(E|¬C) = 16/40 = 0.4 (2)

p(E|C, F ) = 2/10 = 0.2 (3)

p(E|¬C, F ) = 9/30 = 0.3 (4)

p(E|C,¬F ) = 18/30 = 0.6 (5)

p(E|¬C,¬F ) = 7/10 = 0.7 (6)

But the conclusion goes counter to intuition. Why? Put another way: given a new patient, do we use the drug or
not? Novick wrote “ The apparent answer is that when we know the gender of the patient, we do not use the drug, but
if the gender is unknown, we should use the drug. Obviously that conclusion is ridiculous”. (Quoted in [? , p175].)

We can resolve the paradox as follows. The statement that thedrugC causes recoveryE is

P (E|do(C)) > P (E|do(¬C)) (7)

whereas the data merely tell us

P (E|C) > P (E|¬C) (8)

This is not a contradiction. ObservingC is positive evidence forE, since more males than females take the drug, and
the male recovery rate is higher (regardless of the drug). Thus Equation 8 does not imply Equation 7.

If we assume that the drugC does not cause genderF , as in Figure 1(left), then we can prove that if taking the
drug is harmful in each subpopulation (male and female), then it must be harmful overall. Specifically, if we assume

p(E|do(C), F ) < p(E|do(¬C), F ) (9)

p(E|do(C),¬F ) < p(E|do(¬C),¬F ) (10)
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Figure 1: Two versios of the Simpson’s paradox. Left: F is gender and causes C. Right: F is blood pressure and is caused by C.

then we can show
p(E|do(C)) < p(E|do(¬C)) (11)

The proof is as follows [? , p181]. First we assume that drugs have no effect on gender

p(F |do(C)) = p(F |do(¬C)) = p(F ) (12)

Now using the law of total probability,

p(E|do(C)) = p(E|do(C), F )p(F |do(C)) + p(E|do(C),¬F )p(¬F |do(C)) (13)

= p(E|do(C), F )p(F ) + p(E|do(C),¬F )p(¬F ) (14)

Similarly,

p(E|do(¬C)) = p(E|do(¬C), F )p(F ) + p(E|do(¬C),¬F )p(¬F ) (15)

Since every term in Equation 14 is less than the corresponding term in Equation 15, we conclude that

p(E|do(C)) < p(E|do(¬C)) (16)

To assess the effect ofC on E, we have to take into account that there is abackdoor path from E to C via F .
Pearl [? , p79] proves that you have to adjust for (i.e., condition on)such backdoor variables. Intuitively, we need to be
sure the effect ofC onE is not due to their common cause,F . Thus we should check theC→E relationship for each
value ofF separately. In this example, the drug reducesE in both tables, so we should not take the drug regardless of
gender.

Now consider a different cover story. Suppose we keep the data the same but interpretF as something that is
affected byC, such as blood pressure. ThusF is now caused byC: see Figure 1(right). In this case, we can no longer
assume

p(F |do(C)) = p(F |do(¬C)) = p(F ) (17)

and the above proof breaks down. Sop(E|do(C)) − p(E|do(¬C)) may be positive or negaitve.
To assess the effect ofC onE, we should look at the combined(C, E) table. We should not condition onF , since

there is no backdoor path in this case. More intuitively, conditioning onF might block one of the causal pathways.
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In other words, by comparing patients with the same post-treatment blood pressure, we may mask the effect of one of
the two pathways by which the drug operates to bring about recover.

Thus we see that different causal assumptions lead to different actions. In this case, the models require distin-
guishing the direction of arcs into/ out of the latent variableF , so we need prior domain knowledge to choose the right
one.
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