Mixture models

Kevin P. Murphy
Last updated November 24, 2006

* Denotes advanced sections that may be omitted on a firsingad

1 Introduction

Most of the density functions we have considered so fauanmgmodal, that is, they have at most one peak. However,
often we want to be able to represent densities with multippeles. A common way to do this is to createixture
model, which is a convex combination of pdf’s:

K
p(a) = 3 mep(alk) (1)
k=1

whereK is the (fixed) number of mixture componentjs a vector ofmixing weights, andp(z|k) are the densities
for each component. We consider some examples below.

2 Gaussian mixture models

Consider the dataset of height and weight in Figure 1. Itesucthat there are two subpopulations in this data set,
and in this case they are easy to interpret. one represeids arad the other females. Within each classluoster,

the data is fairly well represented by a 2D Gaussian (as caede from the fitted ellipses), but to model the data as
a whole, we need to usemixture of Gaussians (MoG)or a Gaussian mixture model (GMM). This is defined as
follows:

K
p(@]0) =Y N (@], Tr))

k=1
wheref = {m, ur, Xr} are the parameters. The are called themixing weights, and satisfy0 < 7, < 1 and
Zszl mr = 1. ux andX are the mean and covariance of mixture compogeti is the number of components.

Note that the clusters do not always have an obvious meafiogexample, in Figure 2 we see a dataset which
seems to have two clusters. Discovering the number and sifagasters in data is an example wfisupervised
learning. The programAutoclassuses a Bayesian approach to fit a GMM (which we will explaiadatand has been
used to discover new kinds of stars.

A helpful way to think about GMMs is to imagine that each daténpz,, has an associatddtent indicator
variable z,, € {1, ..., K} that specifies which mixture component that data point caore.fThese are like the class
labels in a Bayesian classifier, except we assume the lateetsdden (since this is unsupervised learning). We can
write thecomplete data log likelihoodas

L.(0) = logp(xi.n,21.n]0) 3)
log [[p(zn|m)p(2n] 20, 6) 4)

wherep(z, = k|r) = 7, is a multinomial, angh(z,, |z, = k,0) = N (z,|muyg, Xx) is a Gaussian. This is illustrated
as a DGM in Figure 3.

red = female, blue=male

280

260

240+

220

200

180

weight

160

140

120+

100 -

80
55 60 65 70 75 80

height

Figure 1: A scatterplot of height and weight of various men (blue ces¥sand women (red circles). We superimpose two 2D
Gaussians, with the 2 ellipsoids representing the 95% confidence interval. Rrediybiometric_plot.m

100 100
80 80
60 60
40 40
1 2 3 4 5 6 1 2 3 4 5 6

Figure2: The Old Faithful data. Horizontal axis is duration of theugtion in minutes. Vertical axis is time until the next ertiop
in minutes. (a) A single Gaussian. (b) A mixture of two Gaassi Source: [Bis06] Figure 2.21.

The correspondinmcomplete data log likelihoodis

(0) = logp(z1.n|0) (5)
= > logp(xa|0) (6)
= ZlogZp(mn,an) @)

n Z;L{
= ZlogzW(Zn)N(xn|ZnaN(zn)aE(Zn)) (8)
n Zn=1

Note that this likelihood function has multiple modes. (D, 1t has K modes, but iZ > 1, it can have more thak’
modes [CPWO03].) Hence finding the global maximum will be difft. One can use gradient based methods, or the

N

Figure 3: A GMM represented as a GMM. Source: [Bis06] Figure 9.6.

1 1
(b)
0.5 0.5
0 0

0 0.5 1 0 0.5 1

Figure4: A mixture of 3 Gaussians in 2D. (a) We show the contours of @oriprobability and the mixing weights. (b) A contour
plot of the 2D density. (c) A 3D surface plot of the 2D densypurce: [Bis06] Figure 2.23.

EM algorithm , to find the MLE or an MAP estimate. However, both will get $tirc local minima. We discuss this
in more detail below.

2.1 Kernel density estimation

Given a sufficiently large number of mixture components, aNGkhn be used to approximate any density. See
Figure 4 for an example. If we associate a single Gaussiam eviery datapoint, we get what is calleckarnel
density estimate (kde)r Parzen window estimate This is anon parametric density estimator. This does not mean
it does not have parameters, rather it means that the nurhparameters grows (linearly) with the number of data
points. Specifically, a kde model has the form

1 N 1 T — Ty
p(alh) =+ > Fak(——) 9)
n=1

wherek(u) is called akernel function and the parametéris called thebandwidth. In the case that
k() = e~ lull*/2 (10)

we recover a GMM where each data point becomes a cluster wéémm, = =z,, covarianceX, = h2I; (so

1
|¥,|72 = 1/h?) and mixture weightr,, = 1/N. In general we can use any kernel function provi#éd) > 0 and
J k(u)du = 1.

h = 0.005
0
0 0.5 1
h =0.07
o /\
0 0.5 1
h=02 '
0 %
0 0.5 1

Figure 5: A nonparametric (Parzen) density estimator in 1D with a Gimskernel. The green curve is the true density, and the
blue curve is the approximation using different smoothiaggmeterd.. Source: [Bis06] Figure 2.25.

A

p(x)

T

Figure 6: lllustration of how singularities can arise in the likledwfunction of GMMs. Source: [Bis06] Figure 9.7.

h is called asmoothing parameter, and controls how smooth the resulting density is. See Eigdior an example.
Itis common to pickh by cross validation.

Although nonparametric models are very flexible, and samegieasy to fit (e.g., for kde, just memorize all the
data!), they take a a lot of memory and can be slow to use diirt@st

2.2 Reducing the number of parameters in a GMM

The number of parameters in a GMMGX K d?), since each covariance matrix hagd?) parameters. Although this
is constant with respect ty (since this is a parametric model), it may still be a lot ofgraeters to estimate if is
large. In particular, estimating;, can be a problem, since the empirical covariance matrix mnap@positive definite.
One common restriction is to assume a diagonal maftix= diago,, ..., 0%,). Another even stronger restriction
is to assume a spherical matrik;, = o7/,. In general, we can usBaussian graphical modelgo represent each
component density using a number of parameters that is amgtdetween 1 an@(d?), depending on the conditional
independence assumptions encoded in the graph. We camglsse priors ort;, and use MAP estimates, or the
posterior mean, instead of the MLE.

Orthogonal to the issue of how to repres&ptwithin each cluster is how to represent the dependenciesket
the parameters across clusters. A common assumption ialtliae lusters have the same “shape”, i, is tied
across classes.

2.3 Singularities

There is a fundamental flaw in trying to maximize the likeblkofunction of a GMM. To understand the problem,
suppose for simplicity that, = o071, and thatk = 2. It is possible to get an infinite likelihood by assigning one
of the centerg.;, sayy;, to a single data point, say,, and lettings; —0, and using the second Gaussian to fit the
remaining data points, since th¢h term makes the following contribution to the likelihood:

N (zp|2n, 0i1) = 1 (11)

g
(2m)2 %

Hence we can drive this term to infinity by lettiag—0. See Figure 6.

There are various heuristics which are used to avoid thiasiin, such as jumping to a random pointin parameter
space ifdet X5, gets too small. A more principled solution is to find a MAP estte by adding a prior to eacfy,. A
fully Bayesian approach also avoids the problem.

3 Mixture of multivariate Bernoullis

A mixture of Gaussians is appropriate if the data is realted)z,, € IR?. But what about binary data? For example,
consider clustering the binary images in Figure 7. In thisecave can replace the Gaussian densities with a product

of Bernoullis:
K K

plalz = k,0) = [[Be(as|0x:) [[2% (1 — 23)! % (12)
i=1 i=1
This can be represented as a DGM as shown in Figure 8. Notththad the same structure as a naive Bayes classifier,
except that the class labels are hidden.
One can show (exericse) that the mean and covariance of tkigrendistribution are given by

Elz] > (13)
k

Coviz] = > mi[Sk + prpt] — Ela]Elz]" (14)

whereX;, = diag(0xi(1 — 0i;)). Because the covariance matrix is no longer diagonal, theuna distribution can
capture correlations between variables, unlike a singldywet of Bernoullis.

Note that this model, unlike the GMM, does not suffer fromgsilarities, because the likelihood function is
bounded above, sin€¢e< p(z,|0;) < 1.

After fitting this model (with EM) to the binary image datagthesulting parameter vectafs can be visualized
as gray scale images: see Figure 7(bottom left). If we fit tbe@husing a single mixture component (i.e., a factored
distribution), we get a result which has blurred all the comgnts together.

4 Fitting GMMs with EM
For GMMs, we saw that the log likelihood is

K
(o) = Zlog Z (20)N (@0l 20, p1(2n), (2n)) (15)

zZn=1

This is a difficult function to optimize, because the log isside the sum.

A further problem is that the model is nidientifiable, which means there are many latent settings which have the
same likelihood. Specifically, in a mixture model wikh components, then for each setting of the parantettrere
are K'! — 1 other parameter settings (s&Y that have the same likelihoog(X'|#) = p(X0"). This is called théabel
switching problem. For example, in Figure 1, we might label the male clasg as 1 and the female ag = 2, or
vice versa. Of course, not all of these settings are maximaD|, for Gaussians, there aké modes in the likelihood,
although in higher dimensions, there may be more [CPWO03].

o
Y

Figure 7: lllustration of the Bernoulli mixture model. Top: 3 kinds loihary digits. Each image is28 x 28 binary image, derived
by thresholding the gray scale MNIST digits at 0.5. Bottohe 8 cluster centers that are learned. Source: [Bis06] €igu0.

(9/< | Ok

Figure 8: Mixture of Bernoullis as a DGM.

One can find a local optimum éf6) using a gradient based technique, such as conjugate gradeant. However,
this requires setting a step size parameter, and enforomgdnstraints tha} |, 7, = 1 and thaty;, are positive
definite. There is an alternative algorithm callexbectation Maximization (EM) that is often preferred for finding
MLE or MAP estimates of mixture models, because of its siniili

The key insight behind EM is this: if we knew the values of thieht variables,,, then optimizing the (complete
data) likelihood wrt) would be easy: we would simply esimatg and>;, applying the standard closed-form formula
to all the data assigned to cluster Since we don’t know the,,, let’s estimate them, and use théited in values
as substitutes for the real values. More precisely, we pilloize theexpected complete data log likelihood instead
of the actual complete data log likelihood. Since the edtémafz, depend on the parametetswe need to re-
estimate them after each updatétd his algorithm can be shown to monotonically increase &kdyound on the log
likelihood, and hence it will converge.

In more detail, the EM algorithm is as follows.

1. Initialize 6.

2. Repeat until(6) stops changing

(@) E step: computg(z, |z, 0°'?) for each case.
(b) M step: compute

Om" = arg mgxe(o,) (16)
whereauxiliary function @ is the expected complete data log likelihood:
Q0,6 = Y plzlz, %) log p(x, 2[0) (17)
= Zp (z1.n|z1.8, 071D Zlogp T, 2n|0)] (18)
= Z > p(znlwn, 0°) log p(an, 2n]0) (19)

(c) Compute the log likelihood

= log Z Zp(zn, Z,|0) (20)
Because EM will only find a local minimum, good initializatias important. But how to do this is problem
dependent. A general strategy is to tnyltiple restarts at random locations.
We now explain how to implement these steps for GMMs. We Ugiratialize by assigning eachy, to one of the
data points chosen at random, and settipgo be a small fraction of the global covariance.
The E step is to compute

TN (T | o, 2i)

p(zn = k|zn, 09 = rpy = (21)
(|) =Tk TN (@i, 25)
The valuer,,, is called theesponsibility of clusterk for data pointn.
The M step involves maximizing the expected complete dajdikelihood:
Q0.0°") = E) logp(zn, zulf) (22)
= E ZlogHﬂ'kN a:n|,uk,2k)l(z":k) (23)
= E Z Z (2 = k) log[mN (x| 1r, S)] (24)
= Z (Zn|xn, 6°19) Z I(z k) log[miN (zp |k, Xk)] (25)
= Z Z Tk Log[mpN (20 |1, Si)] (26)
= ernk log 7, +ernk log N (| g, X)) (27)
= J() + J(pks X)) (28)

This can be optimized wrt and i, X;, separately. For the term, we need to add a Lagrange multiplier to ensure

> ™ = 1. Hence we solve
o, ern’flog”*“—zﬂ (29)

n

to find

1
T = N;rnk (30)

This makes sense: it is just the (weighted) number of posgigyaed to clustek.
For thepuy, X) term, let us expand out the Gaussian:

NN def 1 = — N N i
N(Z|i, %) = GRS exp[— 4 (& — i)' SN & — iI))] (31)
Hence dropping constant terms we have
J(,Ukv Ek) = _% Z Z Tnk log |Ek| + (xn - Mk)TE_l(xn - Nk:) (32)

n k

This is just a weighted version of the standard problem dimeding a MVN. Taking derivatives in the usual way
results in the following

Z TnkZTn
new __ n 33
P Zn Pk ()
_ ,,new _ ,new\T
Ek _ Zn T'nk (x” :uk)(‘x'n luk) (34)
Zn T'nk

An example of the algorithm in action is shown in Figure 9. Wtswith y; = (—1,1), %y = I, po = (1, 1),
Yo = I;. We color code points such that blue points come from cldsgard red points from cluster 2. More precisely,
we set the color to
color(n) = r,1blue+ r,sred (35)

so ambiguous points appear purple. After 20 iterationsatgerithm has converged on a good clustering. (The data
wasstandardized by removing the mean and dividing by the standard deviabefore processing. This often helps
convergence.)

5 The K means algorithm

The K-means algorithm is a variant of the EM algorithm for GEIMt assumes that all the clusters have the same
fixed spherical covariance matriX,, = I, which is not updated. Also, in the E step, K-means uskard assign-
ment, which means it assigns each data painto the nearest cluster centrg, rather than computing a weighted
combination of points. This can be seen as a delta functipnoxgmation to the posterior (in the context of HMMs,
this is calledViterbi training):

p(zn|Tn, 0) = 6(zn — 27) (36)
wherez; is the cluster than,, is assigned to (at the current iteration):
2 = arg m]iLXp(ldxn7 0) (37)
= argmaxexp(—3lz, —) (38)
= argmkin |20 — pl? (39)

Thus the E step just requires finding the Euclidean distaetedenN data points and< cluster centers, which
takesO(N K D) time. This is faster than using full covariance matriceserehthe E step take@(N K D?) time.
Furthermore, since we are just picking a nearest neighlaoiows data structures, suchlabtrees, can be used to
speed this up in high dimensions [M0098]. In addition, one gse the triangle inequality to avoid some redundant
computations [EIkO3].

The K-means algorithm is faster than EM for GMMs with full @siance matrices, but its results tend to be not as
good, since it cannot model the shape of the clusters (hédoes not learn a distance metric). Also, it is not robust
to ambiguous points that are equidistant between clustecguse it uses hard assignment. (Probabalistic infenence
the E step would softly assign such ambiguous points to pleltlusters.)

Although k-means is implemented in the Matlab statistiacdliox (function nameéxmeans), it is a very simple
algorithm, so it is instructive to look at the source codeloBeis my “bare bones” implementation. (Tlsgdist
function is from Tom Minka’s toolbox.)

Figure 9: lllustration of the EM for a GMM applied to the Old Faithful tda Source: [Bis06] Figure 9.8.

function mu = kmeans(data, K, maxlter, thresh)

[N D] = size(data);

% initialization by picking random pi xel s
% mu(k,:) = k'th center

perm = randperm(N);

mu = data(perm(1:K),:);

converged = O;
iter = 1;
while “converged & (iter < maxlter)
newmu = zeros(K,D);
% dist(i,k) = squared distance frompixel i to center k
dist = sqdist(data’, mu’);
[junk, assign] = min(dist,[],2);
for k=1:K
newmu(k,:) = mean(data(assign==k,:), 1);
end
delta = abs(newmu(:) - mu());
if max(delta./abs(mu(:))) < thresh
converged = 1;

end

mu = newmu;

iter = iter + 1
end

if “converged
error(sprintf('did not converge within %d iterations’, ma
end

9B

function m = sqdist(p, q, A)
% SQDI ST Squar ed Euclidean or Mahal anobi s di st ance.

xlter))

% SQDI ST(p, q) returns nm(i,j)
% SQDI ST(p, g, A) returns n(i,j)

(pC:ui) - q(,j)) =(pC:, i) - a(:,i))-
(pC:ui) - q(:.j))" = : -

% From Tom M nka’ s |ightspeed t ool box

[d, pn]
[d, an]

if nargin == 2

pmag = sum(p . * p, 1);

gmag = sum(q . * g, 1);

m = repmat(gmag, pn, 1) + repmat(pmag’, 1, gn) - 2 *p’ *Q;

%n = ones(pn, 1)*qmag + pnag’ *ones(1, qn) - 2*p’ *q;
else

if isempty(A) | isempty(p)

error('sqdist: empty matrices’);

end

Ap = Axp;

Ag = Axq;

pmag = sum(p . * Ap, 1);

gmag = sum(gq . * Aq, 1);

m = repmat(gmag, pn, 1) + repmat(pmag’, 1, gn) - 2 *p’ *AQ;
end

size(p);
size(q);

The K centersuy, learned by K-means are often called@debook This can then be used for discretizing data.
This is calledvector quantization (VQ). The idea is that each new data poinis replaced by its nearegtototype
k- The result is a set oV discrete symbols. This can take much less space to storehbaoriginal data, and
is therefore an example ddssy data compression For example, consider the image in Figure 10(a). This is a
N = 512 x 512 = 262, 144 pixel image, and each pixel is represented by three 8-bithausn(each ranging from
0 to 255) that represent the green, red and blue intensitesdbr that pixel. The straightforward representation of
this image therefore takes aba4tN = 6,291, 456 bits. We applied vector quantization to this usiig= 5,10, 15
codewords using the code below.

% vqDeno

% Learn code book on small inmage (for speed)

A = double(imread('mandrill-small.tiff"));

figure; imshow(uint8(round(A)));

[nrows ncols ncolors] = size(A);

% data(i,:) = rgb value for pixel i

data = reshape(A, [nrows *ncols ncolors));

maxlter = 100; % usual |y converges |ong before 100 iterations!
thresh = le-2;

K = 15;

mu = kmeansKPM(data, K, maxlter, thresh);

% Appl y codebook to quantize |arge inage
B = double(imread(’'mandrill-large.tiff'));
imshow(uint8(round(B)));
[nrows ncols ncolors] = size(B);
data = reshape(B, [nrows *ncols ncolors));
[N D] = size(data);
dist = sqdist(data’, mu’);
[iunk, assign] = min(dist,[],2);
gdata = zeros(size(data));
for k=1:K

ndx = find(assign==Kk);

Nassign = length(ndx);

gdata(ndx, :) = repmat(mu(k,:), Nassign, 1);
end
Qimg = reshape(gdata, [nrows ncols ncolors]);
figure; imshow(uint8(round(Qimg)));
title(sprintf(K=%d’,K))

The results are shown in Figure 10. We né¢kg, K| bits to represnt each pixel (to specify which codebook entry
to use), plug4 K bits to represent the;, themselves, totalling4 K + N log, K. If K =5, the total space is 608,800
bits, which is about 10 times smaller. Greater compressmidcbe achieved if we modelled spatial correlation
between the pixels, e.g., if we encoded 5x5 blocks (as uselPBY). For more information machine learning and
data compression, see [Mac03].

When using Euclidean distance, as above, these centergeaegjas of the data points. For spaces in which such

10

(@) (0)

(©) (d)

Figure 10: A color image compressed using vector quantization withdebook of sizek'. (a) Original. (b)K = 5. (c) K = 10.
(d) K = 15. Best viewed in colour. Produced kgDemo.m.

averaging does not make sense, it is possible to replaceuti@&an distance measure by some other measure of
similarity/ distance} (., ui1;), So the E step becomes

= argminV () (40)

In the M step, we search over al;, points assigned to clustérto find the one with minimum distance to all the
others, and that is chosen as the prototypeThis algorithm is called th&-medoids algorithm.

6 EM variants
It is straightforward to modify EM to find MAP estimates inatkof MLEs. Simply modify the M step to optimize

Ezlogp(Z,x]0) + log p(0) (41)

Thep(6) term acts like aegularizer.

In the derivation of the M step for the GMM model, the new estienof;, relies on the new:, but not vice
versa, so we can solve them in sequence. If we have parartieaeese mutually dependent, we can either optimize
them jointly, or optimize them iteratively, one at a timee tlatter is callecexpectation conditional maximization
(ECM).

Sometimes we cannot find the maximum(pfn closed form. In such cases, we may perform a partial maami
tion, i.e., we findd™e® stQ (6™, 6°!4) > Q(#°'¢, 9°'?). This is called thegeneralized EM (GEM) algorithm.

When we have a lot of data\{ is large), computing(z,|x,,) for all n can be slow. In addition, it may be
unncessary, since this estimate is likely to be poor if threupeters are bad (as they are initially). Hence we may take

11

amini batch of data, and just sum up over the casie each batch. A batch size b= 10 is common. This allows us
to update the parameters more frequently. This versiorlsdiacremental EM. The special case of= 1 is called
stochastic EM since we are approximatinglog p(z, Z|6) by drawing a single data point.

In many models, computing(z, |z, 0) is intractable, because there are too many hidden variaii¢iseir pos-
terior is hard to compute. One approach is to use samplinggooaimatep(z,,|z,, d). This version is calledlonte
Carlo EM (not to be confused with stochastic EM!).

7 Estimating the number of mixture components

How do we choosé&’, the number of mixture components? Maximum likelihood @aiiays favor the largest possible
value of K, since that gives the greatest number of parameters andmzas the ability to fit the data. But this may
result in overfitting. A simple alternative is to useoss validation i.e., to find the value of< that maximizes the
log likleihood of a validation set. Alternatively, we couid to find the K that maximizes some kind gfenalized
likelihood function. One example is thBayesian information criterion (BIC) score, defined as

BIC(0) = logp(D|gMF) — ‘—21 log N (42)

whered is the “dimensionality” of the model, andl is the number of data cases. For simple modg&isthe number of
free parameters, but computiddor latent variable models is more difficult, since the pagtans are notindependent.
A similar objective function is thékaike information criterion (AIC) , defined as

AIC(0) = logp(D|OMF) —d (43)

Arguably the most conceptually elegant approach is toBegesian model selectionin which we compute the
posterior ovelrk:

p(K =k|D) o p(K=k)p(D|K = k) (44)

= p(K=k) [/p(D, 0| K = k)do (45)

Unfortunately, computing the marginal likelihood termidesthe brackets can be computationally expensive. How-
ever, one can use fast deterministic approximations, ssighrétional Bayes[Bis06].

The Bayesian approach offers an even more appealing stratbgeh is to allow an “infinite” (i.e., unbounded)
number of components, since in most applications we doaltyéelieve there is a “true” number of clusters. By
integrating over the parameters, such an infinite modelmaitloverfit. As the data set gets larger and more hetero-
geneous, the number of components grows automaticallys ddm be modelled usingirichlet process mixture
models[Ras00], which is an example ofreon-parametric Bayesian model

8 Hierarchical clustering

GMMs can be used to perform clustering, but the clusteritifids’. Often we want to learn hierarchical clusters. The
most popular approach is to uagglomerative clustering which we will describe below.

Agglomerative clustering starts witN groups, each initially containing one training instancergng similar
groups to form larger groups, until there is a single grougis TakesO (N ?) time. At each iteration of an agglomera-
tive algorithm, we choose the two closest groups to merge.

In single link clustering, the distance between two groups is defined as the distaneedre the two closest
members of each group:

Dsi(Gi,Gj) = ITECI;I,L-l,i:EI'l*EGj D(a",z°) (46)
where D(z", 2®) is a distance measure between two feature vectors, suchdigdzan distance or theity block
distance

d
Dey(a",2°) =Y _ |2} — a3 (47)
=1

12

3 .
45
281
4 2 261
35+ : : : 24t
3 1 22
25 ol
2 5 3 6 18
15 . B N 16
L 4 14}
12}
05
0 j '
0 1 2 3 4 5 6 7 8 3 4 6 1 2 5

Figure 11: An example of single link clustering. Figure generated gsigglomDemo.m.

In complete link clustering, the distance between two groups is defined as the distatwedrethe two most distant
pairs:

Dcr(Gi,Gj) = I,y‘ecr;rgi)gec;j D(z",z°) (48)
Another option isaverage link clustering, which measures the average distance between all pairs.

The order in which groups are merged can be representederglaogram. For example, in Figure 11, we see an
example of single link clustering (using Euclidan distgreeplied to a 2D dataset. Initially each group contains one
item. The closest groups ate2 and3, 4 (both distance 1 apart), which get merged at step 1. At theitexation,
the 1, 2 group gets merged with thiegroup (distance/2 = 1.41). Then the3, 4 group merges witl (distance 2).
The order of these events is shown in the tree on the right.c@nehen “cut” the tree at any height to get a desired
number of groups. (Note that the tree built using single tGhistering is thaninimal spanning tree of the data.)

In Matlab, you can perform agglomerative lustering using statistics toolbox using themkage = command
(which defaults to single link). For example, you can repu@alFigure 11 using the code below.

% aggl onDeno

X =

NN RS

~nvooe P

figure;clf

axis on

grid on

N = size(X,1);

for i=1:N
hold on
h=text(X(i,1)-0.1, X(i,2), sprintf(%d’, i));
set(h,’fontsize’,15,’color’,’r’)

end

axis([0 8 0 5])

Y= pdist(X); % Eucl i dean di stance
Z = linkage(Y); % single |ink
dendrogram(Z)

Note that agglomerative clustering is an algorithm, not alehowhereas GMM is a model, not an algorithm.
Model based clusteringhas many advantages: the objective function (likelihosd)jéarly defined (and can can be
optimized via various algorithms, such as EM, gradienta§¢ctéhe model can be easily combined with other proba-

13

bilistic models, such as PCA; one can compute the predidistebution and do model comparison, etc. Surprisingly,
there has been very little work on probabilistic hierarahidustering models (but see [HGO5] for a recent Bayesian
approach).

References

[Bis06] C. Bishop.Pattern recognition and machinelearning. Springer, 2006.
[CPWO03] M. Carreira-Perpinan and C. Williams. An isotrogaussian mixture can have more modes than compo-
nents. Technical Report EDI-INF-RR-0185, School of Infatios, U. Edinburgh, 2003.
[EIkO3] C. Elkan. Using the triangle inequality to accelerk-means. Inntl. Conf. on Machine Learning, 2003.
[HGO5] K. Heller and Z. Ghahramani. Bayesian Hierarchidailstering. Inintl. Conf. on Machine Learning, 2005.
[Mac03] D. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
[M0098] Andrew W. Moore. Very fast EM-based mixture modelstkering using multiresolution kd-trees. NhPS-
11, 1998.
[Ras00] C. Rasmussen. The infinite gaussian mixture mod@&lI RS, 2000.

14

