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1 MonteCarlo integration
Suppose we want to evaluate the integral

1= /b h(z)dx Q)

for some functiorh, wherez € X, such ast = R”. There are many numerical methods to do this (e.g., Simpson’
rule), but they do not work well in high dimensions, due to tieed to evaluate the function at a number of points
which is exponential irD; this is called theur se of dimensionality.

An alternative approach for approximatifgwhich is notable for its simplicity, generality and scaldyy is Monte
Carlo integration. Let us start by writing

b b
I= / h(z)dz = / w(x)p(z)de (2)
wherew(z) = h(x)(b — a) andp(xz) = 1/(b — a) is the pdf of a uniform random variable over, b). Hence
I = Eplw(X)] @)

whereX ~ U(a,b). By samplingX;.s ~ U(a, b), by thelaw of large nunberswe have

S
A 1
I== X))~ T 4
S;w( o) @)
Thestandard error of the estimate is
S
se = — 5
V5 ®)
1 S
2 _ Y 72
# = g e =) (6)

So al — « confidence interval of is I + Zq/28, Wherez, is theq'th quantile of a standard/(0, 1) variable.

For example, supposgr) = 2. Thenl = fol x3dxr = 1/4. We can approximate this integral using Monte Carlo
sampling as follows.

% nmc\Wasser man. m

% Denp of Monte Carlo integration from Wssernman p405
S = 10000;

xs = unifrnd(0,1,S,1);

samples = xs.”3;

lhat = mean(samples)

se = sqrt(var(samples)/S)



% 0 1 2

Figure 1: Estimatingr by Monte Carlo integration. Blue circles are inside theleirced crosses are outside. This
figure was produced bycpi.m .

We find I = 0.2525 with standard error 0f.0028.
Let us consider another example. Suppose we want to estimate know that the area of a circle with radius
is 72, The area of a circle is given by

I :/ / I(2® + y* < r¥)dady @

Hencer = I/(r?). Let us approximate this by Monte Carlo integration. D&ty” ~ U(—r, ), So using the above
notation

w(z,y) = (b —az)(by — ay)I(a:Q +y° < 7”2) 8
= (27")(2r)[(x2 +y? < r2) 9)
47"21'(962 +y? < 7"2) (20)

We can implement this in Matlab as follows.

% mcpi . m
% Denp of nonte carlo integration for estimating pi

r=2;
S=5000;

xs = unifrnd(-r,r,S,1);

ys = unifrnd(-r,r,S,1);

s = xs.2 + ys."2;

inside = (rs <= r2);
samples = 4 *(r"2) =*inside;
lhat = mean(samples)

piHat = lhat/(r"2)

se = sqrt(var(samples)/S)

o

figure(1);clf

outside = Tinside;

plot(xs(inside), ys(inside), 'bo’);

hold on

plot(xs(outside), ys(outside), 'rx’);

axis square

print(gcf,’-depsc’,’C:/kmurphy/figures/other/mc_pi. eps’)

We find7 = 3.1416 with standard error 0.09. We can plot the points that arepedérejected as in Figure 1.
We can generalize this to compute integrals of the form

I= /h(x)p(x)dw (11)



If p(z) is uniform, we get the special case above. This is very ugeBhyesian inference (and in other applications).
For example, ifh(x) = I(z; = j), thenI = Eh(X) = p(X; = j) is the marginal probability ofX;. We can
approximate this as

L1 e
I=< ; h(z(*) (12)

The key question is how to draw® ~ p(z). There are many methods e.g., rejection sampling, impoetan
sampling, etc. The most popular method for high-dimensiprablems isMarkov chain Monte Carlo (MCMC).
(In a survey bySIAM News!, MCMC was placed in the top 10 most important algorithms ef2Bth century.)

2 MetropolisHastings (MH) algorithm

In MCMC, we construct a Markov chain oki whose stationary distribution is the target densify:). (This is just
some probability density function. In Bayesian inferericepuld typically be a priorp(x), or a posteriorp(x|y), but
MCMC can be used in hon Bayesian contexts, too.) By drawipgdédent (correlated) statég), X, Xo, ..., from
the chain, we can perform Monte Carlo integration wirt

Letx, 2’ € X be states in the chain. Letx’|x) be an arbitrary, easy-to-sample frqmoposal distribution. Of
course, such an arbitrary proposal cannot be expectedisfys@gtailed balance, and hence may not be a stationary
distribution. However, suppose (without loss of geneyatiat

q(@'|x)m(z) > q(x|")m(2") (13)
Then there is a factor(z’|x) < 1 such that the above inequality is balanced
q(@'|z)m(2)r (2’ |2) = q(z]a")7(2') (14)
Solving forr yields ) /
r(z'|z) = min{1, 77;((;;))5((?'9;))} (15)
This can be converted into an algorithm as follows.
1. Initialize X arbitrarily.
2. Fors=0,2,...
(a) Generate a proposed state~ ¢(z/|xs)
(b) Evaluate the acceptance propability
_ m@)glalr) _ n(a)/g(al]) 16)
m(x)q(@'|z)  m(z)/q(x]a’)
r(z'|x) = min{l,a} (17)
(c) Set _ N
Xon={ 5. Vi brobasiitys -1 a8)
For a given target distribution, the proposa4 is valid/ admissible if
supp) € U supgg(-|z)) (19)

Ihttp://amath.colorado.edu/resources/archive/topten. pdf ,



where suppr) = {z : w(x) > 0} is the support of distributiom (i.e., the set of points with non-zero probability).
This condition just says that our proposal must have a noof®bability of moving to the states that have non-zero
probability in the target. The resulting transition distriion of the algorithm is

pu(@'|x) = q(@’|2)r(2'|z) + I(a" = 2)(1 - /Q(x'lx)r(w’lx)dw') (20)

An easy way to implement step (c) is to gener&ite~ U(0,1) and to setX;;, = 2’ if U < r, and to set
rsr1 = X, otherwise.
Note that when evaluating, we only need to know the target densityp to a normalization constant. In particular,

supposer(z) = L 7’(z), wherer’(z) is an unnormalized distribution arflis the normalization constant. Then

o @6)/2) alal) e

(w'(x)/Z) q(«'|x)
so theZ’s cancel. Thus, using MH, we can sample franeven if we can only compute’. Later we will see many
examples where it is hard to evaludédut easy to evaluate'.
If we have asymmetric proposal distribution ¢(z'|x) = q(z|z"), then the acceptance ratio simplifies to

a = (22)

This is called theMetropolis algorithm. For example, it is common to use a Gaussian as a proposabudiiin:
q(z'|x) = N(2'|z,0%). This is called aandom walk MH algorithm. It is crucial to pick the right? to ensure that
a reasonable number (say 50%) of the proposals are accspt#igure 3.

In the Metropolis algorithm, if the new staié is more probable than the current statehe proposal is always
accepted(z'|x) = 1, otherwise it is accepted with probabilityfz’) /m(x).

A special case of the Metropolis algorithm is when the prapasindependent of the current statgx’|z) =
q(z"). Then the acceptance probability is

m(a')/q(x")

= S @)/e(@) (@3)

This is called thendependence sampler, and is similar to importance sampling.
Below is some generic MH code. If the proposal distribut®gayimmetric, it is not necessary to compute the actual
probabilitiesg(z’'|x) andq(z|2’), it is only necessary to be able to sample fref’|z).

function [samples, naccept] = MH(target, proposal, xinit, Nsamples , targetArgs, proposalArgs, proposalProb)
% Met ropol i s- Hastings al gorithm

%

% | nput s

% target returns the unnornmalized | og posterior, called as 'p = exp(target(x, targetArgs{:}))’
% proposal is a fn, as 'xprine = proposal (x, proposal Args{:})’ where x is a 1xd vector

% xinit is a 1xd vector specifying the initial state

% Nsanpl es - total nunber of sanples to draw

%target Args - cell array passed to target

% proposal Args - cell array passed to proposal

% proposal Prob - optional fn, called as 'p = proposal Prob(x, xprinme, proposal Args{:})’,

% conputes q(xprine|lx). Not needed for symmetric proposals (Metropolis algorithmn

%

% CQut put s

% sanpl es(s,:) is the s’'th sanple (of size d)

% naccept = nunmber of accepted noves

if nargin < 5, targetArgs = {}; end
if nargin < 6, proposalArgs = {}; end
if nargin < 7, proposalProb = []; end

d = length(xinit);

samples = zeros(Nsamples, d);

X = Xxinit(:)’;

naccept = 0O;

logpOld = feval(target, X, targetArgs{:});
for t=1:Nsamples



xprime = feval(proposal, x, proposalArgs{:});

%l pha = feval (target, xprime, targetArgs{:})/feval (target, x, targetArgs{:});

logpNew = feval(target, xprime, targetArgs{:});

alpha = exp(logpNew - logpOld);

if “isempty(proposalProb)
gnumer = feval(proposalProb, x, xprime, proposalArgs{:}) ;o % q(x|x)
gdenom = feval(proposalProb, xprime, x, proposalArgs{:}) 7 % q(x’ | x)
alpha = alpha * (gnumer/qdenom);

end

r = min(1, alpha);

u = rand(1,1);

ifu<r
X = xprime;
naccept = naccept + 1;
logpOld = logpNew;

end

samples(t,:) = x;

end

2.1 Example: sampling from a mixture of two 1D Gaussians

We now show an example of how to call the above function whieeetarget distribution is a mixture of two 1D
Gaussians
m(x) = N (z|p1, 01) + woN (x| 2, 02) (24)

wherew; + ws = 1 are called thenixture weights. The proposal is a 1D Gaussiatx’|z) = N (2'|z, ,,), whereo,,
is a parameter of the proposal.

functi on mhDemoMOG()

% Denp of Metropolis-Hastings algorithmfor sanpling from
% a m xture of two 1D Gaussi ans using a Gaussi an proposal .
% Based on code originally witten by Nando de Freitas.

weights = [0.3 0.7];
mus = [0 10];
sigmas = [2 2];

Nsamples = 5000;
x = zeros(Nsamples,1);
sigma_prop = 10; % St andard devi ati on of the Gaussian proposal .

targetArgs = {weights, mus, sigmas};
proposalArgs = {sigma_prop};

seed = 1; randn(state’, seed); rand('state’, seed);
xinit = 20 *rand(1,1); %initial state
[x, naccept] = MH(@target, @proposal, xinit, Nsamples, tar getArgs, proposalArgs);

% Let us check the asymetric proposal works

%eed = 1; randn(’state’, seed); rand(’'state’, seed);

%init = 20xrand(1,1); %initial state

% x2, naccept] = MH(@arget, @roposal, xinit, Nsanples, targetArgs, proposal Args, @roposal Prob);
Y%assert (approxeq(x, x2))

% pl ot the histogram of sanples

N_bins = 50;

Ns = [100 500 1000 Nsamples];
figure;

for i=1:4

subplot(2,2,i)
x_t = linspace(-10,20,1000);
y_t = feval(@target, x_t, weights, mus, sigmas);
[b,a] = hist(x(1:Ns(i)), N_bins);
measure = a(2)-a(1); % bin w dt h.
area = sum(b *measure);
bar(a,b/(area),’y’)
hold on;
plot(x_t,y_t,’k’, linewidth’,2)
axis([-10 20 0 .15])
text(14,.1,sprintfC(N=%d’, Ns(i)))
end



0.1 N=10¢ 0.1 N=50

0.05 0.05

0.15

0.1

0.05

Figure 2: An example of the Metropolis Hastings algorithmdampling from a mixture of two 1D Gaussians using a
Gaussian proposal with varianeg = 102. Figure produced usingghDemoMOG.m
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function p = mogProb(x, mixWeights, mu, sigma)

% p(n) = sumk w(k) N(x(n)|nu(k), signma(k))
K = length(mixWeights);
N = length(x);
p = zeros(N,1);
for k=1:K
p = p + mixWeights(k)  * mvnpdf(x(:), mu(k), sigma(k));
end

function p = target(x, mixWeights, mus, sigmas)
p = log(mogProb(x, mixWeights, mus, sigmas));

function xp = proposal(x, sigma_prop)
Xp = x + sigma_prop *randn(1,1);

function p = proposalProb(x, xprime, sigma_prop)
p = normpdf(x, xprime, sigma_prop);

Some typical results are shown in Figure 2. It is importanseo the variance of the proposal correctly: see
Figure 3.

2.2 Example: sampling from a 2D Gaussian

As another example, below we show code to sample from a 2Ds&gaudNe use the proposgl’ |z) = N (z'|z, o *
1), wherel, is the2 x 2 identity matrix. We consides = 0.01, which does not mix well, an¢ = 1, which does
mix well: see Figure 9.

functi on mhDemoGauss2d()

% Denmo of Metropolis-Hastings algorithmfor sanpling from
% a 2D Gaussi an using a Gaussi an proposal .

% Conpare to gi bbsGaussDenp. m

Nsamples = 5000;
burnin = 1000;

%igma = 0.01; %does’t mix
sigma = 1; % ni xes
SigmaProp = sigma *eye(2);

mu = [0 O];
C=1[21 11j

targetArgs = {mu, C};
proposalArgs = {SigmaProp};
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Figure 3: An example of the Metropolis Hastings algorithmdampling from a mixture of two 1D Gaussians using a
Gaussian proposal with different variances. Source: [AHF).



%try different starting seeds to check if mxing
seeds = [1 2 3
figure; colors = {r, 'g’, 'b’, 'K}
samples = zeros(Nsamples-burnin, 2, length(seeds));
for c=1:length(seeds)
seed = seeds(c);
randn(’state’, seed); rand(’state’, seed);
xinit = 20 *rand(2,1); %initial state
[tmp, naccept] = MH(@target, @proposal, xinit, Nsamples, t argetArgs, proposalArgs);
samples(:,:;,c) = tmp(burnin+l:end,:);
plot(samples(:,1,c), colors{c});
hold on
end
Rhatl = EPSR(squeeze(samples(:,1,:)))
Rhat2 = EPSR(squeeze(samples(:,2,:)))
title(sprintf('sigmaProposal _=.%3.2f, _Rhat=%5.3f, sigma, Rhatl))

figure;

h=draw_ellipse(mu’, C);

set(h, ’linewidth’, 3, ’color, r’);
axis equal
set(gca, xlim’, [-5 5]);
set(gca, 'ylim’, [-5 5]);
hold on

ndx = 1:10:size(samples,1); % only plot subset of points
plot(samples(ndx,1), samples(ndx,2), ’k.");

% Pl ot 1D exact and approxi mate marginal s
for i=1:2

figure;

Nbins = 100;

[h, xs] = hist(samples(:,1),Nbins);

binwWidth = xs(2)-xs(1);

bar(xs, normalise(h)/binWidth);

hold on
ps = normpdf(xs, mu(i), sqrt(C(i,)));
plot(xs, ps, '-');
title(sprintf('x%d’, i)
end
BB

function p = target(x, mu, Sigma)
p = log(mvnpdf(x(:)’, mu, Sigma));

function xp = proposal(x, SigmaProp)
xp = mvnrnd(x, SigmaProp);

2.3 Example: Binomial distribution with non conjugate prior

Suppose we make a new version of a product andMask 20 people if they prefer it to the old versioX = 12
people say yes. Létbe probability they prefer the new version. We want to coraptif) = p(6|X = 12, N = 20).2

Let X ~ Bino(N,#). Suppose the prior is flat but we know that at least half thepfgewill prefer the new
version, which we encode és~ U(0.5, 1). In other words, our probability model is

pxien) = (§)era-or (25)
PO = —==T0520<1) (26)
7(0) = p(0|X,N) < 6X(1—-0)"N¥105<0<1) (27)

Note that the truncated uniform prior is not conjugate toliimmmial likelihood. We can compute the posterior using
MH. Although it is possible to use proposals that only prapeslid values of) € [0.5, 1], it is common to transform

2This example is from Brani Vidakovic.



such constrained parameters to unconstrained form. Define

0—0.5
¢ =log— (28)
S0¢ € (—o0, 00), with inverse transform
0.5+ e?
= — 2
o 1+e? (29)

Now we can use a Gaussian proposalgonHowever, we have to compute the transformed target denBigythe
change of variablesformula, we have

do
O = p@)l (30)
= 1(05<060<1)J (31)
= I(~00< ¢ < 00)J (32)
where theJacobian is given by
do
J = |@| (33)
0.5e®
T Wreop (34)
Since . .
14+e?—-05—e€ 0.5
1=0= 14 e 14 (35)
the posterior of the transformed variable is
p(d|X) o< p(X[¢)p(e) (36)
& X N-X I
~ 0.5+e€ 0.5 0.5e (37)
1+e? 1+e? (1+e?)?
(0.5 +e?)Xe?
& (1 + e¢)N+2 (38)
(05 +e?)t2e?
B (14 e2)22 (39)

We can use this is a target density for MH, and then transfhetsamples back to th@ represesentation using
Equation 29. See Figure 4 for some results using a Gaussipogal withc = 0.5, and Figure 5 for some results
using a Gaussian proposal with= 10, which does not mix as well.

3 Why MH works

Recall from the Markov chain chapter that a chain satigfetailed balance if
Tjkﬂ'j == Tkjﬂ'k (40)

We also showed that if a chain satisfies detailed balance stl®its stationary distribution.
In MCMC, we often deal with continuous state spaces, so wiemnile p(«’|z) for the transition probability from
x to 2/, instead ofl;;, andr(z) for the stationary distribution, instead of. In this case, detailed balance means

m(2)p(z'|z) = (2’ )p(2’|x) (41)



p(6|D), 0=0.50

1800

p(@D), 0=0.50

0=0.50

0.6 0.7 0.8 0.9 1

3500 T T T T

3000

2500

2000

1500

1000

500

100

200

300

400

500

Figure 4: An example of the Metropolis algorithm for samglinom a binomial distribution with uniform prior using
a Gaussian proposal with = 0.5. We used 40,000 samples and a burnin of 2000. Left: sampléseadriginal
parametef. The peak is near the MLE ¢/~ = 0.6. Middle: samples of the transformed parameteRight: plot

of the last 500 samples gf Figure produced usingghDemoBino.m (exercise).
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This impliesr is a stationary distribution, since

/ﬂ(x’)p(xh:’)dx’ = /W(x)p(x’h:)da:’ = W(x)/p(x’|x)dx’ = 7(x) (42)

Our goal is to show that the MH algorithm defines a transitiomction that satisfies detailed balance and hencepthat
is its stationary distribution.
Consider two states andz’. Either

m(z)q(z'|z) < m(z")q(z|z’) (43)
or

m(z)q(z'|z) > m(a")q(z|z’) (44)
We will ignore ties (which occur with probability zero foretnuous distributions). Without loss of generality, assu
thatm(z)q(2' |z) > m(2")q(z|z).
7(z")g(z|z’)
m(x)q(x'|x)
Hence from Equation 17, we havér'|z) = a(z’|x), butr(z|z’) = 1 sincea(z|z’) > 1.

Now to move fromz to =’ we must first propose’ and then accept it. Hence

a(z'|z) = <1 (45)

pla'lo) = e (e o) = a(a'l0) TR = T g(ala) (46)
Hence
m(@)p(a’|z) = m(2')q(z]2’) (47)
The backwards probability is
plalz’) = q(z|2’)r(z]a") = q(z]a”) (48)
sincer(z|a’) = 1. Inserting this into Equation 47 we get
m(2)p(2'|z) = m(2")p(z|’) (49)

so detailed balance holds.

4 Simulated annealing

Simulate annealing (SA) is an optimization algorithm,, iieattempts to find a global optimum
x* € argmax 7 (x) (50)

This can be implemented by modifying the MH algorithm to ugarget distribution that is “cooled” over time: at
iterations, we user,(z) = 7(z)'/”* instead ofp(x) as the target, wherE, is the temperature at steplt is common
to useexponential cooling:

T, =ToC" (51)
whereTj is the initial temperature (oftel, = 1) andC is the cooling rate (ofted’ = 0.9). (These particular values
are heuristically chosen.)

At high temperatureg,(x) will be almost uniform, allowing the algorithm to move frgddetween all states. As
the temperature drops, “bumps” in the probability disttitn start to appear. A5—0, only the largest peak survives:
see Figure 6 for an example. If the temperature is cooledlglemough, one can prove this algorithm will find a
global optimum, essentially by “tracking” the peaks. HoeeVslowly enough” in practice might take exponential
time. Designing goodnnealing schedulesis a difficult problem.Simulated tempering is a related MCMC method
in which the temperature is a stochastic variable and doedewease deterministically.

Note that there are many other methods for finding the optimardifferentiable functions, such B8l climbing,
stochastic local sear ch, tabu search, genetic algorithms, etc. The unique thing about SA is its theoretical guarantee
However, in practice, some of the above heuristic methodswoak much better. (For functions that are differentiable,
a variety of numerical methods, suchMdanvton’s method, can be used. We will encounter these later.)

11
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Figure 6: An example of simulated annealing. Left: we creatandom distribution on 10 states,(z), and plot

7' (z)Y/T for T = 1,0.5,0.1,0.01. We see that the smallest peaks die off exponentially falster the largest peaks.
This figure was produced usirf@AdemoHisto.m . Right: we apply this cooling idea to a mixture of two 1D Gaus-
sians. We use the cooling schedifle= 0.995°~1, starting atl; = 1. We plot samples drawn from this distribution
for s = 100, 500, 1000, 5000. At the end, most of the samples come from the peak. This fiyaseproduced using
SAdemoMOG.m

5 Gibbssampling

Gibbs sampling is a way to sample from a joint distributioe eariable at a time. In particular, we use a sequence of
proposals. To generate sampfe !, we sample each component in turn:

1. xSH ~p(x)es, ..., x%)

2. x (12|£LS+1, T3, ..., Th)
3.z S+1 (1Z|117 10 T3 41: D)
4. x S+1 ~ px |xs+1, $73+11)

wherep(z;|-) = w(x;|-) are conditionals of the target distributian See Figure 7 for an example. Note that we can
update the components in any order we wish.

We now prove that the acceptance rate of this proposal istlz Lebe all the variables exceptLet the proposal
be denoted by

q((xf, z—) (w5, 2 _3)) = p(aj|z_;) (52)
Then
_ p(e)a(ale’)
* = ) (53)
o op(ile_)p(e_)p(e|r ;)
= il @) 4

(55)

Gibbs sampling is very popular because it is easy to useg $i@re is no need to design a proposal distribution.
All it requires is that theull conditionals p(z;|z_;) be easy to sample from, which is often the case, especially in
hierarchical Bayesian models, as we will see later.

12
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Figure 7: Example of Gibbs sampling in a 2D Gaussian. Solikéac03].
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5.1 Example: Gibbssampling for multivariate Gaussians

As a demonstration of Gibbs sampling, let us try samplingifeomultivariate Gaussian

e 1 N D
N(&|fi, X) « W exp[—%(w - N)Tz GE )] (56)

Although it is possible to sample directly from a Gaussiae shall use Gibbs sampling for didactic reasons.
We need the following key fact. If we partition a Gaussiard@m vectorz,.p = (z1, z2) and its parameteres

M1

= 57
2 ( m) (57)

Y11 Y12
Y = 58
(Ezl E22) (°8)

then we can computg(z; |z2) as follows:

plxilre) = N(zi;p2,212) (59)
pap = g1+ 1255 (12 — o) (60)
L = S - Z1285, B (61)

The following function computes(X 4| Xp = z) = N (pa5, X a8):
function [muAgivenB, sigmaAgivenB] = gaussCondition(mu, Sigma, a, X)

D = length(mu);

b = setdiff(1:D, a);

muA = mu(a); muB = mu(b);

SAA = Sigma(a,a);

SAB = Sigma(a,b);

SBB = Sigma(b,b);

SBBinv = inv(SBB);

muAgivenB = mu(a) + SAB * SBBInv * (x(b)-mu(b));
sigmaAgivenB = SAA - SAB *SBBinv * SAB’;

Using this, we can implement Gibbs sampling as follows.

function samples = gibbsGauss(mu, Sigma, Xinit, Nsamples)
% G bbs sanpling for a nultivariate Gaussian
%

% | nput :

% mu(1:D) is the nmean

% Sigma(1: D, 1: D) is the covariance

% xinit(1:D) is the initial state

% Nsanpl es = nunber of sanples to draw

%

% Qut put :

% sanpl es(t,:)

D = length(mu);
samples = zeros(Nsamples, D);

X = xinit(:)’;
for s=1:Nsamples
for i=1:D
[muAgivenB, sigmaAGivenB] = gaussCondition(mu, Sigma, i, X);
x(i) = normrnd(muAgivenB, sqrt(sigmaAGivenB));
end
samples(s,:) = x;
end

A demo of using this code is shown below, which results in Fegi

% gi bbsGaussDenp
% Use G bbs sanpling to sanple froma 2D Gaussi an

S = 5000;
mu = [1 1];
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C=1[21 11j

%try different starting seeds to check if mxing
seeds = [1 2 3]
figure; colors = {r, 'g’, 'b’, 'k};
for seedi=1:length(seeds)
seed = seeds(seedi);
rand('state’, seed); randn(’state’, seed);
xinit = 20 *rand(2,1); %initial state
samples = gibbsGauss(mu, C, xinit, S);
burnin = 1000;
samples = samples(burnin+1:end,:);
plot(samples(:,1), colors{seedi});
hold on
end

figure;

h=draw_ellipse(mu’, C);

set(h, ’linewidth’, 3, ’color, r’);
axis equal

set(gca, xlim’, [-5 5]);
set(gca, 'ylim’, [-5 5]);

hold on

ndx = 1:10:size(samples,1); % only plot subset of points
plot(samples(ndx,1), samples(ndx,2), ’k.’);

% Pl ot 1D exact and approxi mate margi nal s
for i=1:2

figure;

Nbins = 100;

[h, xs] = hist(samples(:,1),Nbins);

binWidth = xs(2)-xs(1);

bar(xs, normalise(h)/binWidth);

hold on
ps = normpdf(xs, mu(i), sqrt(C(i,i)));
plot(xs, ps, '-');
title(sprintf('’x%d’, i))
end

This demo uses the following handy function.

function h = draw_ellipse(x, c, outline_color, fill_color)

% DRAW ELLI PSE(x, c, outline_color, fill_color)

% Draws ellipses at centers x with covariance matrix c.

% x is a mtrix of colums. c¢ is a positive definite matrix.
% outline_color and fill_color are optional.

% Witten by Tom M nka

n = 40; % resol ution
radians = [0:(2 *pi)/(n-1):2 *pil;

unitC = [sin(radians); cos(radians)];

r = chol(c)’;

if nargin < 3
outline_color = 'g’;
end

h =1
for i=1:size(x,2)
y = r*unitC + repmat(x(:, i), 1, n);

if nargin < 4
h = [h line(y(1,:), y(2,:), 'Color’, outline_color)];
else
h = [h fill(y(1,:), y(2,:), fill_color, ’EdgeColor’, outli ne_color)];
end
end

5.2 Metropoliswithin Gibbs*

If we cannot easily sample from the full conditionals, we cee the MH algorithm inside the Gibbs algorithm.
Specifically, to sample from
wfﬂ ~ P($i|$i:i1,xf+1;p) (62)
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Figure 8: Example of Gibbs sampling on a 2D Gaussian. Thisdiguas produced bgibbsGaussDemo.m .

we proceed in 3 steps:

1. Proposer, ~ q(z/|z%)

2. Compute the acceptance probability= min(1, «;) where

3. Samples ~ U(0,1) and setri ™' = =/ if u < r, and set:; ™' = 7 otherwise.

6 Convergence

o =

(2151,
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i T1.p)/4(x

'

xT:

S
3

)

.s+1

S
P15y, @}

7xf+1:D)/q(xf|x;1)

(63)

We start MCMC from an arbitrary initial state. The amountiofe it takes taconvergetoitsstationary distribution
is called thamixing time or burnin time. Once the chain has mixed, it is “safe” to start collectingngbes. Since the
samples are correlated, it is common to pick a subset of tisaspndvery 10°th), a practice known gsnning. This

reduces the storage requirements but does not improve theutational or statistical efficiency.

How do we know the chain has converged? This is a hard theatetiestion. There are many heuristics, but none
are guaranteed to work. In particular, some diagnosticsfalagly claim the chain has converged yielding incorrect
results. A common approach is to run multiple chains fronykfferentover disper sed starting points, and to plot
the samples of some variables of interest. If the chain haednit should have “forgotten” where it started from.

Figure 9 shows some examples of chains that have mixed andired.

6.1 EPSR*

We can assess convergence more quantitatively as followgpdse we collect samples from each af' chains,
Tise,i =1:D,s =1:5c=1:C. Lety be a scalar quantity of interest computed frem, (e.g., one of the

variables, say = x;). Define the within-sequence mean and overall mean as

Y.e

<

1

|

1

Ql
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sigmaProposal = 1.00, Rhat=1.003 sigmaProposal = 0.01, Rhat=1.206

N

nM Wi W *'“ ‘ \M ke K

_6 L L L _4 L L L
1000 2000 3000 4000 0 1000 2000 3000 4000

\!
0 il

-4

Figure 9: Left: Example of 3 chains that have mixed. Rightafple of 3 chains that have not mixed. This figure
was generated bphDemoGauss2d.m

Define the between sequence and within sequence variance as

s &
N — = \2
B = 0_1;:1(31.0 7.) (66)
1 1 &
o - _§ = )2
o= CZC:1 S—lszl(y“ e 7

We can now construct two estimates of the variancg dfhe first estimate i8/: this should underestimate V&y) if
the chains have not ranged over the full posterior. The skestimate

- S—1 1
V. o= —W+3B (68)

is an estimate of Vafy) that is unbiased under stationarity but is an overestinh@éhte starting points were overdis-
pered. The convergence diagnostic statistic, known aestireated potential scale reduction (EPSR), is defined as

\/E, where
v
%%

>

(69)

R measures the degree to which the posterior variance woutease if we were to continue sampling in fie> oo
limit. If R ~ 1 for any given quantity such ag then that estimate is reliable. Essentially it means thi@nee
between the chains is similar to the variance within eaclincha

Below is some simple code to compute

function [Rhat, m, s] = EPSR(samples)

% EPSR "estimated potential scale reduction" statistic due to Gel man and Rubi n.
%

% | nput s

% sanpl es(i,j) for sanple i, chain j

%

% Qut put s

% Rhat = neasure of scale reduction - value below 1.1 neans converged:

% m = nmean(sanpl es)

% s = std(sanpl es)

[n m] = size(samples);

meanPerChain = mean(samples,1); % each col um of sanples is a chain
meanOverall = mean(meanPerChain);
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Figure 10: 3 possible sampling schemes for MCMC. Sourcec[\a

% Rhat only works if nore than one chain is specified.
ifm>1

% bet ween sequence vari ace

B = (n/(m-1)) *sum( (meanPerChain-meanOverall)."2);

% w thin sequence vari ance
varPerChain = var(samples);
W = (1/m) * sum(varPerChain);

vhat = ((n-1)/n) *W + (1/n) *B;
Rhat = sqrt(vhat/(W+eps));

else
Rhat = nan;

end

m = meanOverall;

s = std(samples(:));

R is widely used to assess convergence (e.g., in the BUGS aftpackage). Since we are using means and
variances, it is best to transform the scalar estimands &ppeoximately Normal (e.g., take logs of positive quaasiti
and logits of quantities in 0..1).

Another practical question is how many chains to run. We a@either run one long chain to ensure convergence,
and then collect samples spaced far apart, or we could ruty steort chains, but that wastes the burnin time. In
practice it is best to run a medium number (say 4) of mediurgtlefsay 10k-100k) chains and take samples from
each. See Figure 10.

7 Advanced topics*
There are many topics we have not discussed. Some of the mpsttant are

e Hybrid Monte Carlo (HMC), that exploits the gradientigfr) to move in the direction of high probability.

Adapting the proposal distribution.

Block updates, to update many variables at once.

Rao-Blackwellisation, to integrate out many of the varahthus reducing the size of the state space.

Using data-driven (e.g., discriminative) proposal disttions [TZ02].
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e Perfect sampling, in which samples are guaranteed to cametfre target distribution, and there is no need to
perform convergence diagnostics.

e Reversible jump MCMC, in which we can sample in spaces oétifit dimension.

For details, see e.g., [GRS96, RC04].
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