
Markov chain Monte Carlo (MCMC)

Kevin P. Murphy

Last updated November 3, 2006

* Denotes advanced topics that may be skipped on a first reading.

1 Monte Carlo integration

Suppose we want to evaluate the integral

I =

∫ b

a

h(x)dx (1)

for some functionh, wherex ∈ X , such asX = IRD. There are many numerical methods to do this (e.g., Simpson’s
rule), but they do not work well in high dimensions, due to theneed to evaluate the function at a number of points
which is exponential inD; this is called thecurse of dimensionality.

An alternative approach for approximatingI, which is notable for its simplicity, generality and scalability, is Monte
Carlo integration. Let us start by writing

I =

∫ b

a

h(x)dx =

∫ b

a

w(x)p(x)dx (2)

wherew(x) = h(x)(b − a) andp(x) = 1/(b − a) is the pdf of a uniform random variable over(a, b). Hence

I = Ep[w(X)] (3)

whereX ∼ U(a, b). By samplingX1:S ∼ U(a, b), by thelaw of large nunbers we have

Î =
1

S

S
∑

s=1

w(Xs) ≈ I (4)

Thestandard error of the estimate is

ŝe =
s√
S

(5)

s2 =
1

S − 1

S
∑

s=1

(h(xs) − Î)2 (6)

So a1 − α confidence interval ofI is Î ± zα/2ŝ, wherezq is theq’th quantile of a standardN (0, 1) variable.

For example, supposeh(x) = x3. ThenI =
∫ 1

0
x3dx = 1/4. We can approximate this integral using Monte Carlo

sampling as follows.

% mcWasserman.m
% Demo of Monte Carlo integration from Wasserman p405
S = 10000;
xs = unifrnd(0,1,S,1);
samples = xs.ˆ3;
Ihat = mean(samples)
se = sqrt(var(samples)/S)

1

−2 −1 0 1 2
−2

−1

0

1

2

Figure 1: Estimatingπ by Monte Carlo integration. Blue circles are inside the circle, red crosses are outside. This
figure was produced bymcpi.m .

We find Î = 0.2525 with standard error of0.0028.
Let us consider another example. Suppose we want to estimateπ. We know that the area of a circle with radiusr

is πr2. The area of a circle is given by

I =

∫ r

−r

∫ r

−r

I(x2 + y2 ≤ r2)dxdy (7)

Henceπ = I/(r2). Let us approximate this by Monte Carlo integration. LetX, Y ∼ U(−r, r), so using the above
notation

w(x, y) = (bx − ax)(by − ay)I(x2 + y2 ≤ r2) (8)

= (2r)(2r)I(x2 + y2 ≤ r2) (9)

= 4r2I(x2 + y2 ≤ r2) (10)

We can implement this in Matlab as follows.

% mcpi.m
% Demo of monte carlo integration for estimating pi

r=2;
S=5000;
xs = unifrnd(-r,r,S,1);
ys = unifrnd(-r,r,S,1);
rs = xs.ˆ2 + ys.ˆ2;
inside = (rs <= rˆ2);
samples = 4 * (rˆ2) * inside;
Ihat = mean(samples)
piHat = Ihat/(rˆ2)
se = sqrt(var(samples)/S)

figure(1);clf
outside = ˜inside;
plot(xs(inside), ys(inside), ’bo’);
hold on
plot(xs(outside), ys(outside), ’rx’);
axis square
print(gcf,’-depsc’,’C:/kmurphy/figures/other/mc_pi. eps’)

We findπ̂ = 3.1416 with standard error 0.09. We can plot the points that are accepted/ rejected as in Figure 1.
We can generalize this to compute integrals of the form

I =

∫

h(x)p(x)dx (11)

2

If p(x) is uniform, we get the special case above. This is very usefulin Bayesian inference (and in other applications).
For example, ifh(x) = I(xi = j), thenI = Eh(X) = p(Xi = j) is the marginal probability ofXi. We can
approximate this as

Î =
1

S

S
∑

s=1

h(x(s)) (12)

The key question is how to drawxs ∼ p(x). There are many methods e.g., rejection sampling, importance
sampling, etc. The most popular method for high-dimensional problems isMarkov chain Monte Carlo (MCMC).
(In a survey bySIAM News1, MCMC was placed in the top 10 most important algorithms of the 20th century.)

2 Metropolis Hastings (MH) algorithm

In MCMC, we construct a Markov chain onX whose stationary distribution is the target densityπ(x). (This is just
some probability density function. In Bayesian inference,it would typically be a prior,p(x), or a posterior,p(x|y), but
MCMC can be used in non Bayesian contexts, too.) By drawing dependent (correlated) statesX0, X1, X2, . . . , from
the chain, we can perform Monte Carlo integration wrtπ.

Let x, x′ ∈ X be states in the chain. Letq(x′|x) be an arbitrary, easy-to-sample fromproposal distribution. Of
course, such an arbitrary proposal cannot be expected to satisfy detailed balance, and hence may not be a stationary
distribution. However, suppose (without loss of generality) that

q(x′|x)π(x) > q(x|x′)π(x′) (13)

Then there is a factorr(x′|x) ≤ 1 such that the above inequality is balanced

q(x′|x)π(x)r(x′ |x) = q(x|x′)π(x′) (14)

Solving forr yields

r(x′|x) = min{1,
π(x′)q(x|x′)

π(x)q(x′|x)
} (15)

This can be converted into an algorithm as follows.

1. InitializeX0 arbitrarily.

2. Fors = 0, 2, . . .

(a) Generate a proposed statex′ ∼ q(x′|xs)

(b) Evaluate the acceptance propability

α =
π(x′)q(x|x′)

π(x)q(x′|x)
=

π(x′)/q(x′|x)

π(x)/q(x|x′)
(16)

r(x′|x) = min{1, α} (17)

(c) Set

Xs+1 =

{

x′ with probabilityr
xs with probability1 − r

(18)

For a given target distributionπ, the proposalq is valid/ admissible if

supp(π) ⊆ ∪xsupp(q(·|x)) (19)

1http://amath.colorado.edu/resources/archive/topten. pdf ,

3

where supp(π) = {x : π(x) > 0} is the support of distributionπ (i.e., the set of points with non-zero probability).
This condition just says that our proposal must have a non-zero probability of moving to the states that have non-zero
probability in the target. The resulting transition distribution of the algorithm is

pM (x′|x) = q(x′|x)r(x′|x) + I(x′ = x)(1 −
∫

q(x′|x)r(x′|x)dx′) (20)

An easy way to implement step (c) is to generateU ∼ U(0, 1) and to setXs+1 = x′ if U < r, and to set
xs+1 = Xs otherwise.

Note that when evaluatingα, we only need to know the target densityp up to a normalization constant. In particular,
supposeπ(x) = 1

Z π′(x), whereπ′(x) is an unnormalized distribution andZ is the normalization constant. Then

α =
(π′(x′)/Z) q(x|x′)

(π′(x)/Z) q(x′|x)
(21)

so theZ ’s cancel. Thus, using MH, we can sample fromπ even if we can only computeπ′. Later we will see many
examples where it is hard to evaluateZ but easy to evaluateπ′.

If we have asymmetric proposal distribution q(x′|x) = q(x|x′), then the acceptance ratio simplifies to

α =
π(x′)

π(x)
(22)

This is called theMetropolis algorithm. For example, it is common to use a Gaussian as a proposal distribution:
q(x′|x) = N (x′|x, σ2). This is called arandom walk MH algorithm. It is crucial to pick the rightσ2 to ensure that
a reasonable number (say 50%) of the proposals are accepted:see Figure 3.

In the Metropolis algorithm, if the new statex′ is more probable than the current statex, the proposal is always
acceptedr(x′|x) = 1, otherwise it is accepted with probabilityπ(x′)/π(x).

A special case of the Metropolis algorithm is when the proposal is independent of the current state:q(x′|x) =
q(x′). Then the acceptance probability is

α =
π(x′)/q(x′)

π(x)/q(x)
(23)

This is called theindependence sampler, and is similar to importance sampling.
Below is some generic MH code. If the proposal distribution is symmetric, it is not necessary to compute the actual

probabilitiesq(x′|x) andq(x|x′), it is only necessary to be able to sample fromq(x′|x).

function [samples, naccept] = MH(target, proposal, xinit, Nsamples , targetArgs, proposalArgs, proposalProb)
% Metropolis-Hastings algorithm
%
% Inputs
% target returns the unnormalized log posterior, called as ’p = exp(target(x, targetArgs{:}))’
% proposal is a fn, as ’xprime = proposal(x, proposalArgs{:})’ where x is a 1xd vector
% xinit is a 1xd vector specifying the initial state
% Nsamples - total number of samples to draw
% targetArgs - cell array passed to target
% proposalArgs - cell array passed to proposal
% proposalProb - optional fn, called as ’p = proposalProb(x,xprime, proposalArgs{:})’,
% computes q(xprime|x). Not needed for symmetric proposals (Metropolis algorithm)
%
% Outputs
% samples(s,:) is the s’th sample (of size d)
% naccept = number of accepted moves

if nargin < 5, targetArgs = {}; end
if nargin < 6, proposalArgs = {}; end
if nargin < 7, proposalProb = []; end

d = length(xinit);
samples = zeros(Nsamples, d);
x = xinit(:)’;
naccept = 0;
logpOld = feval(target, x, targetArgs{:});
for t=1:Nsamples

4

xprime = feval(proposal, x, proposalArgs{:});
%alpha = feval(target, xprime, targetArgs{:})/feval(target, x, targetArgs{:});
logpNew = feval(target, xprime, targetArgs{:});
alpha = exp(logpNew - logpOld);
if ˜isempty(proposalProb)

qnumer = feval(proposalProb, x, xprime, proposalArgs{:}) ; % q(x|x’)
qdenom = feval(proposalProb, xprime, x, proposalArgs{:}) ; % q(x’|x)
alpha = alpha * (qnumer/qdenom);

end
r = min(1, alpha);
u = rand(1,1);
if u < r

x = xprime;
naccept = naccept + 1;
logpOld = logpNew;

end
samples(t,:) = x;

end

2.1 Example: sampling from a mixture of two 1D Gaussians

We now show an example of how to call the above function where the target distribution is a mixture of two 1D
Gaussians

π(x) = w1N (x|µ1, σ1) + w2N (x|µ2, σ2) (24)

wherew1 + w2 = 1 are called themixture weights. The proposal is a 1D Gaussianq(x′|x) = N (x′|x, σp), whereσp

is a parameter of the proposal.

function mhDemoMOG()
% Demo of Metropolis-Hastings algorithm for sampling from
% a mixture of two 1D Gaussians using a Gaussian proposal.
% Based on code originally written by Nando de Freitas.

weights = [0.3 0.7];
mus = [0 10];
sigmas = [2 2];

Nsamples = 5000;
x = zeros(Nsamples,1);
sigma_prop = 10; % Standard deviation of the Gaussian proposal.

targetArgs = {weights, mus, sigmas};
proposalArgs = {sigma_prop};

seed = 1; randn(’state’, seed); rand(’state’, seed);
xinit = 20 * rand(1,1); % initial state
[x, naccept] = MH(@target, @proposal, xinit, Nsamples, tar getArgs, proposalArgs);

% Let us check the asymmetric proposal works
%seed = 1; randn(’state’, seed); rand(’state’, seed);
%xinit = 20*rand(1,1); % initial state
%[x2, naccept] = MH(@target, @proposal, xinit, Nsamples, targetArgs, proposalArgs, @proposalProb);
%assert(approxeq(x, x2))

% plot the histogram of samples
N_bins = 50;
Ns = [100 500 1000 Nsamples];
figure;
for i=1:4

subplot(2,2,i)
x_t = linspace(-10,20,1000);
y_t = feval(@target, x_t, weights, mus, sigmas);
[b,a] = hist(x(1:Ns(i)), N_bins);
measure = a(2)-a(1); % bin width.
area = sum(b * measure);
bar(a,b/(area),’y’)
hold on;
plot(x_t,y_t,’k’,’linewidth’,2)
axis([-10 20 0 .15])
text(14,.1,sprintf(’N=%d’, Ns(i)))

end

5

−10 0 10 20
0

0.05

0.1 N=100

−10 0 10 20
0

0.05

0.1 N=500

−10 0 10 20
0

0.05

0.1

0.15

N=1000

−10 0 10 20
0

0.05

0.1

0.15

N=5000

Figure 2: An example of the Metropolis Hastings algorithm for sampling from a mixture of two 1D Gaussians using a
Gaussian proposal with varianceσ2 = 102. Figure produced usingmhDemoMOG.m.

%%%%%%%%%%

function p = mogProb(x, mixWeights, mu, sigma)

% p(n) = sum_k w(k) N(x(n)|mu(k), sigma(k))
K = length(mixWeights);
N = length(x);
p = zeros(N,1);
for k=1:K

p = p + mixWeights(k) * mvnpdf(x(:), mu(k), sigma(k));
end

function p = target(x, mixWeights, mus, sigmas)
p = log(mogProb(x, mixWeights, mus, sigmas));

function xp = proposal(x, sigma_prop)
xp = x + sigma_prop * randn(1,1);

function p = proposalProb(x, xprime, sigma_prop)
p = normpdf(x, xprime, sigma_prop);

Some typical results are shown in Figure 2. It is important toset the variance of the proposal correctly: see
Figure 3.

2.2 Example: sampling from a 2D Gaussian

As another example, below we show code to sample from a 2D Gaussian. We use the proposalq(x′|x) = N (x′|x, σ ∗
I2), whereI2 is the2 × 2 identity matrix. We considerσ = 0.01, which does not mix well, andσ = 1, which does
mix well: see Figure 9.

function mhDemoGauss2d()
% Demo of Metropolis-Hastings algorithm for sampling from
% a 2D Gaussian using a Gaussian proposal.
% Compare to gibbsGaussDemo.m

Nsamples = 5000;
burnin = 1000;

%sigma = 0.01; % does’t mix
sigma = 1; % mixes
SigmaProp = sigma * eye(2);

mu = [0 0];
C = [2 1; 1 1];

targetArgs = {mu, C};
proposalArgs = {SigmaProp};

6

Target distribution

MCMC approximation

Markov chain

t θ

σ =1 σ =100

σ =10

* *

*

Figure 3: An example of the Metropolis Hastings algorithm for sampling from a mixture of two 1D Gaussians using a
Gaussian proposal with different variances. Source: [AdFDJ03].

7

% try different starting seeds to check if mixing
seeds = [1 2 3];
figure; colors = {’r’, ’g’, ’b’, ’k’};
samples = zeros(Nsamples-burnin, 2, length(seeds));
for c=1:length(seeds)

seed = seeds(c);
randn(’state’, seed); rand(’state’, seed);
xinit = 20 * rand(2,1); % initial state
[tmp, naccept] = MH(@target, @proposal, xinit, Nsamples, t argetArgs, proposalArgs);
samples(:,:,c) = tmp(burnin+1:end,:);
plot(samples(:,1,c), colors{c});
hold on

end
Rhat1 = EPSR(squeeze(samples(:,1,:)))
Rhat2 = EPSR(squeeze(samples(:,2,:)))
title(sprintf(’sigmaProposal = %3.2f, Rhat=%5.3f’, sigma, Rhat1))

figure;
h=draw_ellipse(mu’, C);
set(h, ’linewidth’, 3, ’color’, ’r’);
axis equal
set(gca, ’xlim’, [-5 5]);
set(gca, ’ylim’, [-5 5]);
hold on
ndx = 1:10:size(samples,1); % only plot subset of points
plot(samples(ndx,1), samples(ndx,2), ’k.’);

% Plot 1D exact and approximate marginals
for i=1:2

figure;
Nbins = 100;
[h, xs] = hist(samples(:,1),Nbins);
binWidth = xs(2)-xs(1);
bar(xs, normalise(h)/binWidth);
hold on
ps = normpdf(xs, mu(i), sqrt(C(i,i)));
plot(xs, ps, ’-’);
title(sprintf(’x%d’, i))

end

%%%%%%%%%%

function p = target(x, mu, Sigma)
p = log(mvnpdf(x(:)’, mu, Sigma));

function xp = proposal(x, SigmaProp)
xp = mvnrnd(x, SigmaProp);

2.3 Example: Binomial distribution with non conjugate prior

Suppose we make a new version of a product and askN = 20 people if they prefer it to the old version;X = 12
people say yes. Letθ be probability they prefer the new version. We want to computeπ(θ) = p(θ|X = 12, N = 20).2

Let X ∼ Bino(N, θ). Suppose the prior is flat but we know that at least half the people will prefer the new
version, which we encode asθ ∼ U(0.5, 1). In other words, our probability model is

p(X |θ, N) =

(

N
X

)

θX(1 − θ)N−X (25)

p(θ) =
1

1 − 0.5
I(0.5 ≤ θ ≤ 1) (26)

π(θ) = p(θ|X, N) ∝ θX(1 − θ)N−XI(0.5 ≤ θ ≤ 1) (27)

Note that the truncated uniform prior is not conjugate to thebinomial likelihood. We can compute the posterior using
MH. Although it is possible to use proposals that only propose valid values ofθ ∈ [0.5, 1], it is common to transform

2This example is from Brani Vidakovic.

8

such constrained parameters to unconstrained form. Define

φ = log
θ − 0.5

1 − θ
(28)

soφ ∈ (−∞,∞), with inverse transform

θ =
0.5 + eφ

1 + eφ
(29)

Now we can use a Gaussian proposal onφ. However, we have to compute the transformed target density. By the
change of variables formula, we have

p(θ) = p(φ)|dφ

dθ
| (30)

= I(0.5 ≤ θ ≤ 1)J (31)

= I(−∞ ≤ φ ≤ ∞)J (32)

where theJacobian is given by

J = |dφ

dθ
| (33)

=
0.5eφ

(1 + eφ)2
(34)

Since

1 − θ =
1 + eφ − 0.5 − eφ

1 + eφ
=

0.5

1 + eφ
(35)

the posterior of the transformed variable is

p(φ|X) ∝ p(X |φ)p(φ) (36)

∝
(

0.5 + eφ

1 + eφ

)X (

0.5

1 + eφ

)N−X
0.5eφ

(1 + eφ)2
(37)

∝ (0.5 + eφ)Xeφ

(1 + eφ)N+2
(38)

=
(0.5 + eφ)12eφ

(1 + eφ)22
(39)

We can use this is a target density for MH, and then transform the φ samples back to theθ represesentation using
Equation 29. See Figure 4 for some results using a Gaussian proposal withσ = 0.5, and Figure 5 for some results
using a Gaussian proposal withσ = 10, which does not mix as well.

3 Why MH works

Recall from the Markov chain chapter that a chain satisfiesdetailed balance if

Tjkπj = Tkjπk (40)

We also showed that if a chain satisfies detailed balance, then π is its stationary distribution.
In MCMC, we often deal with continuous state spaces, so we will write p(x′|x) for the transition probability from

x to x′, instead ofTij , andπ(x) for the stationary distribution, instead ofπk. In this case, detailed balance means

π(x)p(x′|x) = π(x′)p(x′|x) (41)

9

0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800
p(θ|D), σ=0.50

−8 −6 −4 −2 0 2
0

500

1000

1500

2000

2500

3000

3500
p(φ|D), σ=0.50

0 100 200 300 400 500 600
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
σ=0.50

Figure 4: An example of the Metropolis algorithm for sampling from a binomial distribution with uniform prior using
a Gaussian proposal withσ = 0.5. We used 40,000 samples and a burnin of 2000. Left: samples ofthe original
parameterθ. The peak is near the MLE of̂θML = 0.6. Middle: samples of the transformed parameterφ. Right: plot
of the last 500 samples ofφ. Figure produced usingmhDemoBino.m (exercise).

0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000
p(θ|D), σ=10.00

−12 −10 −8 −6 −4 −2 0 2 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500
p(φ|D), σ=10.00

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

1
σ=10.00

Figure 5: Same as Figure 4, except the Gaussian proposal hasσ = 10. On the right we see the chain is not mixing is
well, so the histograms are narrower and more blocky.

10

This impliesπ is a stationary distribution, since
∫

π(x′)p(x|x′)dx′ =

∫

π(x)p(x′|x)dx′ = π(x)

∫

p(x′|x)dx′ = π(x) (42)

Our goal is to show that the MH algorithm defines a transition function that satisfies detailed balance and hence thatp
is its stationary distribution.

Consider two statesx andx′. Either

π(x)q(x′|x) < π(x′)q(x|x′) (43)

or
π(x)q(x′|x) > π(x′)q(x|x′) (44)

We will ignore ties (which occur with probability zero for continuous distributions). Without loss of generality, assume
thatπ(x)q(x′|x) > π(x′)q(x|x′).

α(x′|x) =
π(x′)q(x|x′)

π(x)q(x′|x)
< 1 (45)

Hence from Equation 17, we haver(x′|x) = α(x′|x), butr(x|x′) = 1 sinceα(x|x′) > 1.
Now to move fromx to x′ we must first proposex′ and then accept it. Hence

p(x′|x) = q(x′|x)r(x′|x) = q(x′|x)
π(x′)q(x|x′)

π(x)q(x′|x)
=

π(x′)

π(x)
q(x|x′) (46)

Hence
π(x)p(x′|x) = π(x′)q(x|x′) (47)

The backwards probability is
p(x|x′) = q(x|x′)r(x|x′) = q(x|x′) (48)

sincer(x|x′) = 1. Inserting this into Equation 47 we get

π(x)p(x′|x) = π(x′)p(x|x′) (49)

so detailed balance holds.

4 Simulated annealing

Simulate annealing (SA) is an optimization algorithm, i.e., it attempts to find a global optimum

x∗ ∈ argmax
x

π(x) (50)

This can be implemented by modifying the MH algorithm to use atarget distribution that is “cooled” over time: at
iterations, we useπs(x) = π(x)1/Ts instead ofp(x) as the target, whereTs is the temperature at steps. It is common
to useexponential cooling:

Ts = T0C
s (51)

whereT0 is the initial temperature (oftenT0 = 1) andC is the cooling rate (oftenC = 0.9). (These particular values
are heuristically chosen.)

At high temperature,πs(x) will be almost uniform, allowing the algorithm to move freely between all states. As
the temperature drops, “bumps” in the probability distribution start to appear. AsT→0, only the largest peak survives:
see Figure 6 for an example. If the temperature is cooled slowly enough, one can prove this algorithm will find a
global optimum, essentially by “tracking” the peaks. However, “slowly enough” in practice might take exponential
time. Designing goodannealing schedules is a difficult problem.Simulated tempering is a related MCMC method
in which the temperature is a stochastic variable and does not decrease deterministically.

Note that there are many other methods for finding the optima of non differentiable functions, such ashill climbing,
stochastic local search, tabu search, genetic algorithms, etc. The unique thing about SA is its theoretical guarantee.
However, in practice, some of the above heuristic methods can work much better. (For functions that are differentiable,
a variety of numerical methods, such asNewton’s method, can be used. We will encounter these later.)

11

1 2 3 4 5 6 7 8 910
0

0.5

1
T= 1.00

1 2 3 4 5 6 7 8 910
0

0.5

1
T= 0.50

1 2 3 4 5 6 7 8 910
0

0.2

0.4

0.6

0.8
T= 0.10

1 2 3 4 5 6 7 8 910
0

2

4

6

8
x 10

−3 T= 0.01

−10 0 10 20
0

0.05

0.1 N=100

−10 0 10 20
0

0.05

0.1 N=500

−10 0 10 20
0

0.05

0.1

0.15

N=1000

−10 0 10 20
0

0.05

0.1

0.15

N=5000

Figure 6: An example of simulated annealing. Left: we createa random distribution on 10 states,π′(x), and plot
π′(x)1/T for T = 1, 0.5, 0.1, 0.01. We see that the smallest peaks die off exponentially fasterthan the largest peaks.
This figure was produced usingSAdemoHisto.m . Right: we apply this cooling idea to a mixture of two 1D Gaus-
sians. We use the cooling scheduleTs = 0.995s−1, starting atT1 = 1. We plot samples drawn from this distribution
for s = 100, 500, 1000, 5000. At the end, most of the samples come from the peak. This figurewas produced using
SAdemoMOG.m.

5 Gibbs sampling

Gibbs sampling is a way to sample from a joint distribution one variable at a time. In particular, we use a sequence of
proposals. To generate samplexs+1, we sample each component in turn:

1. xs+1
1 ∼ p(x1|xs

2, . . . , x
s
D)

2. xs+1
2 ∼ p(x2|xs+1

1 , xs
3, . . . , x

s
D)

3. xs+1
i ∼ p(xi|xs+1

1:i−1, x
s
i+1:D)

4. xs+1
D ∼ p(xD|xs+1

1 , . . . , xs+1
D−1)

wherep(xi|·) = π(xi|·) are conditionals of the target distributionπ. See Figure 7 for an example. Note that we can
update the components in any order we wish.

We now prove that the acceptance rate of this proposal is 1. Let x−i be all the variables excepti. Let the proposal
be denoted by

q((x′
i, x−i)|(xi, x−i)) = p(x′

i|x−i) (52)

Then

α =
p(x′)q(x|x′)

p(x)q(x′|x)
(53)

=
p(x′

i|x−i)p(x−i)p(xi|x−i)

p(xi|x−i)p(x−i)p(x′
i|x−i)

(54)

= 1 (55)

Gibbs sampling is very popular because it is easy to use, since there is no need to design a proposal distribution.
All it requires is that thefull conditionals p(xi|x−i) be easy to sample from, which is often the case, especially in
hierarchical Bayesian models, as we will see later.

12

Figure 7: Example of Gibbs sampling in a 2D Gaussian. Source:[Mac03].

13

5.1 Example: Gibbs sampling for multivariate Gaussians

As a demonstration of Gibbs sampling, let us try sampling from a multivariate Gaussian

N (~x|~µ, Σ)
def
=

1

(2π)D/2|Σ|1/2
exp[− 1

2 (~x − ~µ)T Σ−1(~x − ~µ)] (56)

Although it is possible to sample directly from a Gaussian, we shall use Gibbs sampling for didactic reasons.
We need the following key fact. If we partition a Gaussian random vectorx1:D = (x1, x2) and its parameteres

µ =

(

µ1

µ2

)

(57)

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

(58)

then we can computep(x1|x2) as follows:

p(x1|x2) = N (x1; µ1|2, Σ1|2) (59)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (60)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (61)

The following function computesp(XA|XB = x) = N (µA|B, ΣA|B):

function [muAgivenB, sigmaAgivenB] = gaussCondition(mu, Sigma, a, x)

D = length(mu);
b = setdiff(1:D, a);
muA = mu(a); muB = mu(b);
SAA = Sigma(a,a);
SAB = Sigma(a,b);
SBB = Sigma(b,b);
SBBinv = inv(SBB);
muAgivenB = mu(a) + SAB * SBBinv * (x(b)-mu(b));
sigmaAgivenB = SAA - SAB * SBBinv * SAB’;

Using this, we can implement Gibbs sampling as follows.

function samples = gibbsGauss(mu, Sigma, xinit, Nsamples)
% Gibbs sampling for a multivariate Gaussian
%
% Input:
% mu(1:D) is the mean
% Sigma(1:D, 1:D) is the covariance
% xinit(1:D) is the initial state
% Nsamples = number of samples to draw
%
% Output:
% samples(t,:)

D = length(mu);
samples = zeros(Nsamples, D);
x = xinit(:)’;
for s=1:Nsamples

for i=1:D
[muAgivenB, sigmaAGivenB] = gaussCondition(mu, Sigma, i, x);
x(i) = normrnd(muAgivenB, sqrt(sigmaAGivenB));

end
samples(s,:) = x;

end

A demo of using this code is shown below, which results in Figure 8.

% gibbsGaussDemo
% Use Gibbs sampling to sample from a 2D Gaussian

S = 5000;
mu = [1 1];

14

C = [2 1; 1 1];

% try different starting seeds to check if mixing
seeds = [1 2 3];
figure; colors = {’r’, ’g’, ’b’, ’k’};
for seedi=1:length(seeds)

seed = seeds(seedi);
rand(’state’, seed); randn(’state’, seed);
xinit = 20 * rand(2,1); % initial state
samples = gibbsGauss(mu, C, xinit, S);
burnin = 1000;
samples = samples(burnin+1:end,:);
plot(samples(:,1), colors{seedi});
hold on

end

figure;
h=draw_ellipse(mu’, C);
set(h, ’linewidth’, 3, ’color’, ’r’);
axis equal
set(gca, ’xlim’, [-5 5]);
set(gca, ’ylim’, [-5 5]);
hold on
ndx = 1:10:size(samples,1); % only plot subset of points
plot(samples(ndx,1), samples(ndx,2), ’k.’);

% Plot 1D exact and approximate marginals
for i=1:2

figure;
Nbins = 100;
[h, xs] = hist(samples(:,1),Nbins);
binWidth = xs(2)-xs(1);
bar(xs, normalise(h)/binWidth);
hold on
ps = normpdf(xs, mu(i), sqrt(C(i,i)));
plot(xs, ps, ’-’);
title(sprintf(’x%d’, i))

end

This demo uses the following handy function.

function h = draw_ellipse(x, c, outline_color, fill_color)
% DRAW_ELLIPSE(x, c, outline_color, fill_color)
% Draws ellipses at centers x with covariance matrix c.
% x is a matrix of columns. c is a positive definite matrix.
% outline_color and fill_color are optional.
% Written by Tom Minka

n = 40; % resolution
radians = [0:(2 * pi)/(n-1):2 * pi];
unitC = [sin(radians); cos(radians)];
r = chol(c)’;

if nargin < 3
outline_color = ’g’;

end

h = [];
for i=1:size(x,2)

y = r * unitC + repmat(x(:, i), 1, n);
if nargin < 4

h = [h line(y(1,:), y(2,:), ’Color’, outline_color)];
else

h = [h fill(y(1,:), y(2,:), fill_color, ’EdgeColor’, outli ne_color)];
end

end

5.2 Metropolis within Gibbs *

If we cannot easily sample from the full conditionals, we canuse the MH algorithm inside the Gibbs algorithm.
Specifically, to sample from

xs+1
i ∼ p(xi|xs+1

1:i−1, x
s
i+1:D) (62)

15

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
gibbs

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
gibbs x1

−5 0 5
0

0.2

0.4

0.6

0.8

1
gibbs x2

Figure 8: Example of Gibbs sampling on a 2D Gaussian. This figure was produced bygibbsGaussDemo.m .

we proceed in 3 steps:

1. Proposex′
i ∼ q(x′

i|xs
i)

2. Compute the acceptance probabilityri = min(1, αi) where

αi =
p(xs+1

1:i−1, x
′
i, x

s
i+1:D)/q(x′|xs

i)

p(xs+1
1:i−1, x

s
i , x

s
i+1:D)/q(xs

i |x′
i)

(63)

3. Sampleu ∼ U(0, 1) and setxs+1
i = x′

i if u < r, and setxs+1
i = xs

i otherwise.

6 Convergence

We start MCMC from an arbitrary initial state. The amount of time it takes toconverge to its stationary distribution
is called themixing time or burnin time. Once the chain has mixed, it is “safe” to start collecting samples. Since the
samples are correlated, it is common to pick a subset of them (say every 10’th), a practice known asthinning. This
reduces the storage requirements but does not improve the computational or statistical efficiency.

How do we know the chain has converged? This is a hard theoretical question. There are many heuristics, but none
are guaranteed to work. In particular, some diagnostics mayfalsely claim the chain has converged yielding incorrect
results. A common approach is to run multiple chains from very differentoverdispersed starting points, and to plot
the samples of some variables of interest. If the chain has mixed, it should have “forgotten” where it started from.
Figure 9 shows some examples of chains that have mixed and notmixed.

6.1 EPSR *

We can assess convergence more quantitatively as follows. Suppose we collectS samples from each ofC chains,
xisc, i = 1 : D, s = 1 : S, c = 1 : C. Let y be a scalar quantity of interest computed fromx1:D (e.g., one of the
variables, sayy = xi). Define the within-sequence mean and overall mean as

y·c =
1

S

S
∑

s=1

ysc (64)

y·· =
1

C

C
∑

c=1

y·c (65)

16

0 1000 2000 3000 4000
−6

−4

−2

0

2

4

6
sigmaProposal = 1.00, Rhat=1.003

0 1000 2000 3000 4000
−4

−2

0

2

4

6
sigmaProposal = 0.01, Rhat=1.206

Figure 9: Left: Example of 3 chains that have mixed. Right: Example of 3 chains that have not mixed. This figure
was generated bymhDemoGauss2d.m.

Define the between sequence and within sequence variance as

B =
S

C − 1

C
∑

c=1

(y·c − y··)
2 (66)

W =
1

C

C
∑

c=1

[

1

S − 1

S
∑

s=1

(ysc − y·c)
2

]

(67)

We can now construct two estimates of the variance ofy. The first estimate isW : this should underestimate Var(y) if
the chains have not ranged over the full posterior. The second estimate

V̂ =
S − 1

S
W +

1

S
B (68)

is an estimate of Var(y) that is unbiased under stationarity but is an overestimate the the starting points were overdis-
pered. The convergence diagnostic statistic, known as theestimated potential scale reduction (EPSR), is defined as
√

R̂, where

R̂ =
V̂

W
(69)

R̂ measures the degree to which the posterior variance would decrease if we were to continue sampling in theS → ∞
limit. If R̂ ≈ 1 for any given quantity such asy, then that estimate is reliable. Essentially it means the variance
between the chains is similar to the variance within each chain.

Below is some simple code to computeR̂.

function [Rhat, m, s] = EPSR(samples)
% EPSR "estimated potential scale reduction" statistic due to Gelman and Rubin.
%
% Inputs
% samples(i,j) for sample i, chain j
%
% Outputs
% Rhat = measure of scale reduction - value below 1.1 means converged:
% m = mean(samples)
% s = std(samples)

[n m] = size(samples);
meanPerChain = mean(samples,1); % each column of samples is a chain
meanOverall = mean(meanPerChain);

17

Figure 10: 3 possible sampling schemes for MCMC. Source: [Mac03].

% Rhat only works if more than one chain is specified.
if m > 1

% between sequence variace
B = (n/(m-1)) * sum((meanPerChain-meanOverall).ˆ2);

% within sequence variance
varPerChain = var(samples);
W = (1/m) * sum(varPerChain);

vhat = ((n-1)/n) * W + (1/n) * B;
Rhat = sqrt(vhat/(W+eps));

else
Rhat = nan;

end
m = meanOverall;
s = std(samples(:));

R̂ is widely used to assess convergence (e.g., in the BUGS software package). Since we are using means and
variances, it is best to transform the scalar estimands to beapproximately Normal (e.g., take logs of positive quantities
and logits of quantities in 0..1).

Another practical question is how many chains to run. We could either run one long chain to ensure convergence,
and then collect samples spaced far apart, or we could run many short chains, but that wastes the burnin time. In
practice it is best to run a medium number (say 4) of medium length (say 10k-100k) chains and take samples from
each. See Figure 10.

7 Advanced topics*

There are many topics we have not discussed. Some of the most important are

• Hybrid Monte Carlo (HMC), that exploits the gradient ofp(x) to move in the direction of high probability.

• Adapting the proposal distribution.

• Block updates, to update many variables at once.

• Rao-Blackwellisation, to integrate out many of the variables, thus reducing the size of the state space.

• Using data-driven (e.g., discriminative) proposal distributions [TZ02].

18

• Perfect sampling, in which samples are guaranteed to come from the target distribution, and there is no need to
perform convergence diagnostics.

• Reversible jump MCMC, in which we can sample in spaces of different dimension.

For details, see e.g., [GRS96, RC04].

References

[AdFDJ03] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan. An introduction to MCMC for machine learning.
Machine Learning, 50:5–43, 2003.

[Bis06] C. Bishop.Pattern recognition and machine learning. Springer, 2006. Draft version 1.21.

[GRS96] W. Gilks, S. Richardson, and D. Spiegelhalter.Markov Chain Monte Carlo in Practice. Chapman and
Hall, 1996.

[Mac03] D. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

[RC04] C. Robert and G. Casella.Monte Carlo Statisical Methods. Springer, 2004. 2nd edition.

[TZ02] Z.W. Tu and S.C. Zhu. Image Segmentation by Data-Driven Markov Chain Monte Carlo.IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(5):657–673, 2002.

19

