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1 Introduction

This chapter, which is a summary of Josh Tenenbaum’s PhD thesis [Ten99], provides an intuitive introduction
to the key ideas behind Bayesian learning in relatively simple settings. In subsequent chapters we will study
more sophisticated models and more efficient computational techniques. Bayesian techniques are particularly
useful when learning from small datasets, as humans often have to do.

Consider the problem of learning to understand the meaning of a word, such as “dog”. Presumably, as
a child, one’s parents point out positive examples of this concept, saying such things as, “look at the
cute dog!”, or “mind the doggy”, etc. However, it is very unlikely that they provide negative examples,
by saying “look at that non-dog”. Certainly, negative examples may be obtained during an active learning
process — the child says “look at the dog” and the parent says “that’s a cat, dear, not a dog” — but
psychological research has shown that people can learn concepts from positive examples alone. This is in
contrast to many machine learning approaches to concept learning (binary classification), which require
positive and negative data. (We will study such methods later.)

In this chapter, we will explain how it is possible to learn concepts from positive only data, using three
examples proposed by Tenenbaum. The first is a simple discrete domain, where must identify an arithmetic
rule from a series of numbers (see Section 2). The second is a simple continuous domain, where one must
identify the true (rectangular-shaped) boundary that distinguishes positive from negative examples, given
positive examples alone (see Section 3). The third example is an attempt to model human word learning
based on visual similarity of objects.

2 A discrete domain (the number concept)

Suppose I tell you I am thinking of some simple arithemetical concept C. I give you a series of randomly

chosen positive examples X = {x1, . . . , xN}, and ask you whether any other test cases y belong to the
extension of C. Suppose, for simplicity, that all numbers are between 1 and 100, so the task is to compute
whether y ∈ C given X , for y ∈ {1, . . . , 100}; this is called the the generalization function.

Suppose I tell you “16” is a positive example of the concept. What other numbers do you think are
positive? 17? 6? 32? 99? It’s hard to tell with only one example, so the predictive distribution is quite
vague: see Figure 1(a). Presumably numbers that are similar in some sense to 16 are more likely. But
similar in what way? 17 is similar, because it is “close by”, 6 is similar because it has a digit in common
with 16, 32 is similar because it is also even and a power of 2, but 99 does not seem similar. Thus some
concepts are more likely than others, which induces a non-uniform predictive distribution: see Figure 2(top).
Learning from one example is called one-shot learning, although arguably we haven’t actually learned
much yet (because our prior was so vague).

Now suppose I tell you that 8, 2 and 64 are also positive examples. Now you may guess that the hidden
concept is “powers of two”: see Figure 1(b). This is an example of induction. Given this hypothesis, the
predictive distribution is quite specific: see Figure 2(bottom). We predict that other numbers belong to the
concept of the basis of a rule rather than on the basis of similarity.
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(a) (b)

Figure 1: The number game. Belief state after seeing (a) 1 example, (b) 4 examples.

Figure 2: Empirical predictive distribution of humans in the number game. Top: after seeing one example.
Bottom: after seeing 4 examples.
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The classic approach to rule based induction is to suppose we have a hypothesis space of concepts, H,
such as: odd numbers, even numbers, all numbers between 1 and 100, powers of two, all numbers ending
in j (for 0 ≤ j ≤ 9), etc. (We discuss where the hypothesis space comes from in Section 2.6). The subset
of H that is consistent with the data X is called the version space and is written HX . As we see more
examples, the version space shrinks and we become increasingly certain about the extension of the concept.

However, the version space is not the whole story. After seeing X = 16, there are many consistent rules;
how do you combine them to predict if y ∈ C? Also, after seeing X = {16, 8, 2, 64}, why did you choose the
rule “powers of two” and not, say, “all even numbers”, or “powers of two except for 32”, both of which are
equally consistent with the evidence? This is what we seek to explain.

2.1 Generalization

In the Bayesian approach, we maintain a probability distribution over hypotheses, p(h|X), which is like the
version space but has much more information. We call it our posterior belief state.

Assuming we have such a distribution, we can predict the future even when we are uncertain about the
exact concept. Specifically, we can compute the posterior predictive distribution by marginalizing
out the nuisance variable h:

p(y ∈ C|X) =
∑

h∈H

p(y ∈ C|h)p(h|X) (1)

where
∑

h∈H p(h|X) = 1. This is called Bayesian model averaging.
In this simple (noise-free) example, p(y ∈ C|h) = 1 if y is consistent with h, and is 0 otherwise. (For

example, p(32 ∈ C|h = even numbers) = 1.0, but p(33 ∈ C|h = even numbers) = 0.0.) Hence we can rewrite
the above as

p(y ∈ C|X) =
∑

h∈Hy

p(h|X) (2)

where Hy are all hypothesis that are consistent with y. Thus the predictive distribution is just a weighted
sum of consistent hypotheses; we discuss how to compute the weights p(h|X) below.

When we have a small dataset, p(h|X) is vague (has high entropy) which induces a broad predictive
distribution: see Figure 3. In this case, generalization is similarity-like. But when the dataset increases,
the posterior (usually) becomes sharper (has lower entropy), and so does the predictive distribution: see
Figure 4. In this case, generalization is rule-like.

2.2 Bayesian inference

By Bayes rule, we can compute the posterior distribution as follows

p(h|X) =
p(X |h)p(h)

∑

h′ p(X |h′)p(h′)
(3)

We therefore need to specify the prior p(h) and the likelihood function p(X |h). For more realistic problems,
we will also need to discuss how to compute this summation in the denominator tractably, but in this simple
case, we can use exhaustive enumeration.

2.3 Likelihood

We must explain why we chose h =“powers of two”, and not, say, h′ =“even numbers” after seeing X =
{16, 8, 2, 64}, given that both hypotheses are consistent with the evidence. The key idea is that we want
to avoid suspicious coincidences. If the true concept were even numbers, how come we didn’t see any
numbers that weren’t powers of two? (See Figure 5.)

Note that the fact that X = {16, 8, 2, 64} is considered “suspicious” is because we are implicitly making
the strong sampling assumption, namely that the examples were chosenly randomly from the concept’s
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Figure 3: Posterior over hypotheses and the corresponding predictive distribution after seeing one example.
A dot means this number is consistent with this hypothesis. The graph p(h|X) on the right is the weight
given to hypothesis h. By taking a weighed sum of dots, we get p(y ∈ C|X) (top).
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Figure 4: Posterior over hypotheses and the corresponding predictive distribution after seeing four examples.
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82  84  86  88  90  

92  94  96  98 100 

h1 h2

Figure 5: Illustration of the size principle. Consider h1 = even numbers and h2 = multiples of 10. If
X = {60}, it is slightly more of a coincidence under h1; but if X = {10, 30, 60, 80}, it is much more of a
coincidence under h1, i.e., p(X |h1) � p(X |h2). Thus the more data we get, the more likely the simpler
hypothesis becomes. This is an example of the Bayesian Occam’s razor.
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Figure 6: Strong vs weak sampling.

extension (see Figure 6). Under a weak sampling assumption, whereby numbers are chosen at random and
then are merely labeled as positive or negative, the surprise would focus on the random number generator,
that happened to generate four powers of two in a row, rather than on the program, which merely labeled
them as positive.

Under the strong sampling model, the probability of independently sampling n items (with replacement)
from h is given by

p(X |h) =

[

1

size(h)

]n

=

[

1

|h|

]n

(4)

(We will consider more realistic likelihood models, than can handle noise, outliers, etc. later.) This crucial
equation is called the size principle, and is a form of Ockham’s razor, which says one should pick the
simplest explanation that is consistent with the data. To see how it works, let X = 16. Then p(X |h =
powers of two) = 1/6, since there are only 6 powers of two less than 100. This is more likely than the
following, more general concept: p(X |h = even numbers) = 1/50. Of course, both of these are more likely
than inconsistent concepts: p(X |h = odd numbers) = 0. Figure 7(b) shows how the likelihood function
becomes exponentially more peaked on the smallest consistent hypotheses. After 4 examples, the likelihood
of “powers of two” is 1/64 = 7.7 × 10−4, whereas the likelihood of “even numbers” is 1/504 = 1.6 × 10−7.
This is a likelihood ratio of almost 5000:1 in favor of “power of two”. This quantifies our earlier intuition
that X = {16, 8, 2, 64} would be a very suspicious coincidence if generated by “even numbers”.

However, note that the most likely hypothesis is not “powers of two”, but rather the rather unnatural
hypothesis, “powers of two except 32”. This has higher likelihood because it does not need to explain the
(small) coincidence that we did not see 32. To rule out such “unnatural” concepts, we need a prior, as we
discuss in Section 2.4.

2.4 Priors

We must explain why we chose h =“powers of two”, and not, say, h′ =“powers of two except 32”, after
seeing X = {16, 8, 2, 64}. After all, h′ has higher likelihood, since it does not need to explain the coincidence
that 32 is missing from the set of examples. However, h′ is much less likely than h a priori, because it is
“conceptually unnatural”. It is the combination of the likelihood and the prior that determines the posterior.

One possible prior on hypotheses is shown in Figure 7(a). This puts less weight on “unnatural” concepts
such as “powers of two except 32”, and more weight on very simple concepts like “even numbers”. Of course,
your prior might be different. This subjective aspect of Bayesian reasoning is a source of controversy, since
it means, for example, that a child and a math professor (who presumably not only have different priors, but
different hypothesis spaces) will reach different answers. (Note that we can define the hypothesis space of
the child and the math professor to be the same, and simply set the child’s prior weight to be zero on certain
“advanced” concepts. Thus there is no sharp distinction between the prior and the hypothesis space.)
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(a) (b) (c)

Figure 7: 7(a) One possible prior. 7(b) Likelihood as a function of sample size. 7(c) Posterior as a function
of sample size.

On the other hand, this context dependence of the prior is actually quite useful. If you are told the
numbers are from some arithmetic rule, given 1200, 1500, 900 and 1400, you may think 400 is likely but
1183 is unlikely. But if you are told that the numbers are examples of healthy cholestrol levels, you would
probably think 400 is unlikely and 1183 is likely. So the prior is the mechanism by which background
knowledge can be brought to bear.

2.5 Posterior

The posterior is simply the likelihood times the prior, normalized:

p(h|X) =
p(X |h)p(h)

∑

h′∈H p(X, h′)
(5)

=
p(h)/|h|n

∑

h′∈HX
p(h′)/|h′|n

(6)

(In more complex models, this normalization procedure can be computationally difficult, but we ignore this
for now.) The result is shown in Figure 7(c). Note that the single sharp peak obtained after 4 examples is
not present in either the prior (Figure 7(a)) or the likelihood (Figure 7(b)).

2.6 More accurate model

The hypothesis space used above contains just 30 hypotheses for simplicity. To more accurately model the
human data in Figure 2, Tenenbaum used the 5090 hypotheses in Figure 8, with results shown in Figure 9.
This hypothesis space, which contains 40 mathematical concepts and 5050 interval/ magnitude hypotheses,
was derived by analysing some experimental data of how people measure similarity between numbers (see
[Ten99, p208] for details).
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Figure 8: Complete hypothesis space for the number game. There are 40 mathematical hypotheses, and
5050 magnitude/ interval hypotheses.

To specify a prior on this hypothesis space, let us put weight 0 < λ < 1 on the mathematical concepts,
and weight 1−λ on the interval concepts. (This is an example of a mixture model; λ and 1−λ are called
the mixing weights.) Within the mathematical concepts, we will use a uniform prior, so each one has prior
λ/40. λ is called a hyper-parameter, since it is a parameter of the prior; Tenenbaum used λ = 2/3 (chosen
by hand). Within the interval concepts, we can also use a uniform prior1, in which case each hypothesis
gets weight (1 − λ)/5050. Hence any individual interval hypothesis has lower prior, reflecting an a priori
preference to explain data using compact rules. (This is orthogonal to the likelihood-induced bias towards
small hypotheses.) This two-stage definition is an example of a hierarchical prior.

The overall model is called a generative model, since it specifies a procedure for generating data
(positive examples) as follows: first decide if the concept is mathematical or interval (by tossing a coin with
probability of heads λ); second, pick a specific rule or interval from within the set (by choosing a number
uniformly between 1 and 40, or 1 and 5050); finally, pick a specific number (uniformly at random) consistent
with the rule or interval. In more realistic models, we may also add noise to the observation as a final step.
See Section 6.

2.7 Special cases of the Bayesian framework

A summary of the Bayesian approach is given in Figure 10. The key “ingredients” are:

1. A constrained hypothesis space. Without this, it is impossible to generalize from a finite data set,
because any hypothesis consistent with the evidence is possible.

2. An informative prior, that ranks members of the hypothesis space. The alternative is to have a uniform
prior, p(h) = 1/|H|.

3. The size principle, which is the likelihood function of a strong sampling model. The alternative is
simply to enforce consistency, p(X |h) = 1 if h ∈ HX and 0 otherwise.

1In fact Tenenbaum used an Erlang prior for the intervals, with hyperparameter σ = 10: see Section ?? for details.)
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+ Examples Human generalization

60

60  80  10  30

60  52  57  55

Bayesian Model 

16

16  8  2  64

16  23  19  20

Figure 9: Predictive distributions for people and model using the full hypothesis space. We either get rule-
like generalization or similarity-like generalization, depending on which hypotheses have higher posterior
probability.

Figure 10: Summary of the Bayesian approach to concept learning.
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4. Hypothesis averaging, i.e., integrating out h when making predictions

p(y ∈ C|X) =
∑

h

p(y ∈ C|h)p(h|X) (7)

The alternative is simply to pick the most probable MAP (maximum a posterior) hypothesis

ĥ = arg max
h

p(h|X) (8)

and then use this for prediction as a plug-in estimate:

p(y ∈ C|X) ≈ p(y ∈ C|ĥ) (9)

If the posterior is peaked, so p(h|X) ≈ δ(h, ĥ), then the plug-in predictor is a good approximation,
since

p(y ∈ C|X) =
∑

h

p(y ∈ C|h)p(h|X) ≈
∑

h

p(y ∈ C|h)δ(h, ĥ) = p(y ∈ C|ĥ) (10)

Various other models have been proposed that lack one or more of these ingredients. It is interesting to
consider their weaknesses.

Maximum likelihood (ML) learning is ingredients 1 and 3 (no prior, no averaging). This is also called
the MIN method, since it picks the smallest (minimal) consistent hypothesis. Since there is no hypothesis
averaging, its generalization behavior is all-or-none. For example, given X = 16, the minimal consistent
hypothesis is “all powers of 4”, so only 4 and 16 get a non-zero probability. Given X = {16, 8, 2, 64}, the
minimal consistent hypothesis is “all powers of two”, which is the same as the Bayesian model. Thus the
ML predictive distribution gets broader (or stays the same) as we see more data, contrary to the Bayesian
approach, which gets narrower as we see more data. The Bayesian approach seems more natural, since more
data should reduce our uncertainty and hence narrow the predictive distribution. But this implies that
Bayes was initially broad; in contrast, ML is very conservative and is initially narrow, to avoid the risk
of over-generalizing. As the amount of data goes to infinity, the Bayesian and the ML approach reach the
same answer, because the prior has constant magnitude, whereas the likelihood term depends exponentially
on n. If truth is in the hypothesis space, then both methods will converge upon the correct hypothesis
; thus both techniques are consistent. We say that the hypothesis space is identifiable in the limit.

MAP learning is ingredients 1, 2 and 3 (no averaging). This cannot explain the shift from similarity-
based reasoning (with uncertain posteriors) to rule-based reasoning (with certain posteriors). But in the
large sample limit, it does as well as Bayes, since the likelihood overwhelms the prior.

One can imagine using ingredients 1 and 4 only — no prior and using weak sampling, p(X |h) = 1 is X
is consistent with h, and 0 otherwise. With this model, the predictive function is just

p(y ∈ C|X) =
|HX,y|

|HX |
(11)

This is similar to the way similarity based approaches work: the probability y belongs to the same set as
X is the number of features it shares with the examples X , divided by the number of features common to
all examples in X . Unfortunately, this does not work very well. If X = {16, 8, 2, 64}, there are 3 consistent
hypotheses: all powers of two, all even numbers, and all numbers less than 100. Each of these gets equal
weight, so a number such as 88, which is consistent with two of the hypotheses, gets probability 2/3 of
being positive, and numbers such as 87, which is consistent with one hypothesis, gets a non-negligible 1/3
probability. For this reason, the “weak Bayes” model is not consistent, i.e., it does not converge on the true
hypothesis even as the sample size increases, since the posterior weights are independent of sample size. One
can add ingredient 2 (informative prior), which amounts to putting weights on the features when measuring
similarity, but this does not solve the consistency problem. So we see that strong sampling is crucial to
ensure consistency, as well as rapid learning from small samples.
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Figure 11: The healthy levels concept

Figure 12: Axes parallel rectangles

3 A continuous domain (the healthy levels concept)

We now consider modeling real-valued data, which complicates the mathematics, although the basic ideas are
the same. Suppose we measure two continuous variables, the cholestrol and insulin levels of some randomly
chosen healthy patients. We would like to know what range of values correspond to a healthy range. As
usual, we want to learn the “healthy levels” concept from positive data alone: see Figure 11.

Let our hypothesis space be axis-parallel rectangles, as in Figure 12. This is reasonable, since we
know (from prior domain knowledge) that healthy levels of both insulin and cholestrol must fall between
(unknown) upper and lower bounds. (If the problem were to learn healthy levels of some chemical polutant,
we would use a different hypothesis space, since presumably zero is the healthiest.) Using the strong Bayes
framework (which we will explain in detail below), we get the generalization behavior shown in Figure 13.
We will explain this below.
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Figure 13: Generalization functions for three different methods on the healthy levels game.
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3.1 Likelihood

We can represent a rectangle hypothesis as h = (`1, `2, s1, s2), where `i ∈ [−∞,∞] are the coordinates of the
upper right, and si ∈ [0,∞] are the lengths of the two sides. If we assume each example is independently
sampled from the concept, the likelihood is given by

p(X |h) = 1/|h|n if ∀i.xi ∈ h (12)

= 0 otherwise (13)

where |h| = s1s2 is the size of the rectangle. If we have negative examples, we simply set p(X |h) = 0 if h
covers any of them.

3.2 Prior

Since one may have many different kinds of prior belief, the definition of p(h) is subjective. We will proceed
to make a variety of assumptions, mostly to simplify the mathematics. However, we will see that this results
in qualitatively sensible conclusions.

First let us assume the prior factorizes as follows

p(h) = p(`1)p(`2)p(s1)p(s1) (14)

We will assume p(`i) ∝ 1; this is called an uninformative or uniform prior, since we have no particular
preference where the coordinates of the upper right occurs. This is called a translation invariant prior.

We might try to use a uniform prior for the scale, as well:

p(si) ∝ 1 (15)

Note, however, that a uniform prior is an improper prior, since it does not integrate to 1. This causes a
problem when comparing models (rectangles) of different size. Jeffrey’s showed that the “right” way to get
an uniformative prior about a scale quantity such as s is to use

p(si) ∝ 1/si (16)

This is called a scale invariant prior.
An alternative is to use an informative prior. For scale parameters, it is common to use the Gamma

distribution
Ga(s|α, β) ∝ sα−1e−s/β (17)

where α controls the shape and β controls the scale. If we know the expected size σ of the scale parameter,
and that is all we know, then the principle of maximum entropy says the prior should have the form

p(s) ∝ e−s/σ = Ga(s|α = 1, σ) (18)

This is called an exponential prior. If we know a typical size σ and that sizes much smaller (s ≈ 0) or
larger (s � σ) are unlikely, then we should use an Erlang density

p(s) ∝ se−s/σ = Ga(s|α = 2, σ) (19)

If we consider the limit α→0, σ→∞, we recover the uninformative prior

p(s) ∝ 1/s = Ga(s|0,∞) (20)

See Figure 14.
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Figure 14: Some gamma distributions.
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3.3 Posterior

The posterior is given by

p(h|X) =
p(X |h)p(h)

p(X)
(21)

where

p(X) =

∫

h′

p(X |h′)p(h′)dh′ =

∫

h′∈HX

p(h′)/|h′|ndh′ (22)

Similarly, the posterior predictive is given by

p(y ∈ C|X) =

∫

h∈H

p(y ∈ C|h)p(h|X)dh (23)

=

∫

h∈H

p(y ∈ C|h)
p(X |h)p(h)

p(X)
(24)

=

∫

h∈HX,y
p(h)/|h|ndh

∫

h′∈HX
p(h′)/|h′|ndh′

(25)

It turns out there is a simple closed form expression for this if n ≥ 2 and if we use the Jeffrey’s prior
p(s) ∝ 1/s.

Since we assume a separable prior, p(`1, `2, s1, s2) = p(`1, s1)p(`2, s2), and since the likelihood also factors
across dimensions, we can consider the case of one dimensional “rectangles” (i.e., lines) , and then just
multiply the results to get the general case.

Since we assume a translation invariant prior, we can assume an arbitrary maximal value for the examples;
suppose we choose 0 to be the maximum. Then the right edge of the rectangle must lie past the data, so
` ≥ 0. Also, if r is the range spanned by the examples, then the left most data point is at −r, so the left
side of the rectangle must satisfy l − s ≤ −r, where s is size of the rectangle. Hence

p(X) =

∫

h∈HX

p(h)

|h|n
dh (26)

=

∫ ∞

s=r

∫ s−r

l=0

p(s)

sn
dlds (27)

=

∫ ∞

s=r

[
∫ s−r

l=0

1

sn+1
dl

]

ds (28)

=

∫ ∞

s=r

1

sn+1
[l]s−r

0 ds (29)

=

∫ ∞

s=r

s − r

sn+1
ds (30)

Now, using integration by parts

I =

∫ b

a

f(x)g′(x)dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x)g(x)dx (31)

with the substitutions

f(s) = s − r (32)

f ′(s) = 1 (33)

f ′(s) = s−n−1 (34)

g(s) =
s−n

−n
(35)
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we have

p(X) =

[

(s − r)s−n

−n

]∞

r

−

∫ ∞

r

s−n

−n
ds (36)

=

[

s−n+1

−n
+

rs−n

n
−

−1

n

s−n+1

−n + 1

]∞

r

(37)

=
r−n+1

n
−

rr−n

n
+

r−n+1

n(n − 1)
(38)

=
1

nrn−1
−

r

nrn−1r
+

1

n(n − 1)rn−1
(39)

=
1

n(n − 1)rn−1
(40)

To compute the generalization function, let us suppose y is outside the range spanned by the examples
(otherwise the probability of generalization is 1). Without loss of generality assume y > 0. Let d be the
distance from y to the closest observed example. Then we can compute the numerator in Equation 25 by
replacing r with r + d in the limits of integration (since we have expanded the range of the data by adding
y), yielding

p(y ∈ C, X) =

∫

h∈HX,y

p(h)

|h|n
dh (41)

=

∫ ∞

r+d

∫ s−(r+d)

0

p(s)

sn
dlds (42)

=
1

n(n − 1)(r + d)n−1
(43)

Hence the posterior predictive is

p(y ∈ C|X) =

∫

h∈HX,y

p(h)
|h|n dh

∫

h∈HX

p(h)
|h|n dh

(44)

=
n(n − 1)rn−1

n(n − 1)(r + d)n−1
(45)

=
rn−1

(r + d)n−1
(46)

=
1

(1 + d/r)n−1
(47)

For a general y, we replace d with d̃, which is 0 if y is inside the range of values spanned by X , and
otherwise is just d, which is the distance of y from the nearest example. Finally, for the 2D rectangle case,
we get

p(y ∈ C|X) =

[

1

(1 + d̃1/r1)(1 + d̃2/r2)

]n−1

(48)

where ri measures he size of the smallest rectangle containing X .
Note that if n = 1, this is undefined (since d is undefined). This seems reasonable, since if we have no

prior information and only one example, we cannot determine anything about the shape of the rectangles.
Similar results can be obtained using the Gamma prior, but various approximations must be made to get

an analytic solution.
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3.4 Intuition

Figure 13 plots the predictive distribution using an exponential prior with σ1 = σ2 = half the width of the
axes; other priors produce qualitatively similar results. The thick line represents the decision boundary
p(y ∈ C|X) = 0.5. What we see is that there is a broad gradient of generalization for n = 1 (row 1) that
rapidly sharpens up to the smallest consistent hypothesis as n increases (rows 2-3).

The reason for this behavior is as follows. The size principle dictates that the smallest enclosing rectangle
has the highest likelihood. However, there are many other rectangles that are slightly larger with only slightly
smaller likelihood; these all get averaged together to give a smooth generalization gradient. But when we
have a lot of data, the larger hypotheses get penalized more, and thus contribute less to the posterior; so
the generalization gradient is dominated by the most likely hypothesis.

In Figure 13 we also see that the generalization extends further along the dimension with the broader
range ri of observations (row 4). This is because the generalization function contains the term d̃i/ri in the
denominator, so if the range on dimension i is small, then the denominator is big, so p(y ∈ C|X) is very
small unless y falls inside X (in which case d̃ = 0). This also follows from the size principle: it would be a
suspicious coincidence if the rectangle is large in dimension i but ri is small.

3.5 Special cases of the Bayesian framework

Figure 13 also plots the predictive distribution of two special cases. The first one, MIN RULE, is just
maximum likelihood. By the size principle, the ML rectangle is the smallest rectangle than contains all
the positive examples. However, similar results hold for the MAP model. The key missing ingredient is
hypothesis averaging. MIN-RULE works well when n is large or ri is small (tightly clustered examples),
since then it provides a good approximation of the strong Bayes model (since the posterior is peaky, so
averaging has little effect).

The second method, MAX SIM*, is the weak Bayes model, i.e. it uses the weak sampling likelihood that
all consistent examples receive a likelihood of 1 instead of 1/|h|n. In this case, with an exponential prior,
the generalization function is

p(y ∈ C|X) = exp(−[
d̃1

σ1
+

d̃2

σ2
]) (49)

where 1/σj is a weighting factor for dimension j, and d̃j is the distance from y to the nearest positive
example along dimension j, or is zero if y is inside the range of examples. (This is like a nearest neighbor
classifier, but only uses positive examples, and returns a probability rather than a class label.) MAX-SIM*
works well when n is small or ri is large, since then it provides a good approximation of the strong Bayes
model. (If n is small, the weak sampling likelihood will be similar to the strong one; if ri is large, then
1/(1 + di/ri)

n−1 ≈ 1, which results in the weak Bayes generalization function.)
The question of how to learn the similarity metric (i.e., the weights σi) in MAX-SIM* is a standard

problem. However, in the strong Bayes framework, it does not matter so much, since these prior terms
will be dominated exponentially fast by the likelihood. By Equation ??, the effective weight of dimension i
increases if the distance of y (along dimension i) is small relative to the range ri.

4 Word learning

Let us return to the original example that motivated the discussion of learning from positive-only data.
Suppose, as a child, you see a dog (Rover, a black labrador) run by, and your mother says, “Look, a dog!”
What can you infer about the meaning of the word “dog” from this? It could refer to this particular dog
(Rover), to all dogs, to all mammals, to all animals, to all labradors, to all black labradors, to all dogs and
horses, etc.

People are able to rapidly learn the extension of a word from very small numbers of examples. What
hypothesis space are they using? When learning the meaning of nouns, it is reasonable to suppose they are
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using a tree-structured hypothesis space, i.e., they have a taxonomic bias. This is because nouns can
be arranged into hierarchies, such as subordinate, basic and superordinate level categories.

4.1 Experimental setup

To study this in the lab, Tenenbaum presented test images of novel objects, such as Figure 15, to adult
humans, and asked them to predict which other objects belonged to the same category. When presented
with a single subordinate level object, such as a green pepper, people tended to generalize to other objects
at the same subordinate level in the hierarchy (i.e., other green peppers), and, to a lesser extent, to objects
at the next level up (i.e., the basic level category of all peppers), and occasionally two levels up (i.e., the
superordinate level category of all vegetables), but never to objects on a different branch of the tree (the set
of all test objects is in Figure 17). Thus there appeared to be a gradient of generalization based on similarity.

However, when presented with three examples from a given level (e.g., three same colored peppers, three
differently colored peppers, or three different vegetables), people did not generalize above the level of the
given object. For example, when shown three green peppers, and told that they are called “pogs”, people
thought pog meant green pepper, not any kind of pepper; similarly, when shown three diffently colored
peppers, they thought pog meant any kind of pepper, but not any kind of vegetable. Thus the generalization
behavior appeared to be rule-like: they interpet the word to be the most specific category in the hierarchy
that contains all the examples. See Figure 16.

4.2 Bayesian analysis

It should be clear that this transition from similarity-based to rule-like generalization behavior can be
modeled by a Bayesian model, using the strong sampling assumption and a suitable prior. To test this
empirically, Tenenbaum asked the subjects to estimate the similarity between all pairs of 39 objects (13
animals, 13 vegetables, and 13 vehicles). He then applied average-link agglomerative clustering to this
similarity matrix, with the result shown in Figure 18. The dark-ringed nodes correspond to concepts used
in the experiment (e.g., 34 = animals), but other nodes represent plausible concepts, too (e.g., 33=mammals,
36=toys). Let us assume that the hypothesis space is that the extension of a word corresponds to a node
in this tree, and all the nodes below it. (We do not want to specify the tree by hand, since different people
may have different ideas about what words represent natural kinds, especially if they have different mother
tongues.)

Next we need to define the likelihood and the prior. The likelihood should be p(X |h) = 1/|h|n. Intuitively,
we can define the size of a hypothesis to be one minus its average similarity; thus small classes have high
similarity and vice-versa. For example, the class of green peppers is smaller than the class of all peppers, since
the similarity between green peppers is higher than between any pair of random peppers. Agglomerative
clustering always puts the most similar groups at the leaves, so the higher up in the tree, the lower the
within-class similarity, the larger the class, and hence the lower the likelihood: See Figure 19. Hence we
define

p(X |h) =

[

1

height(h)

]n

(50)

or p(X |h) = 0 if any x ∈ X is not in h. Hence all classes above the smallest consistent hypothesis in the tree
will have non-zero likelihood, and hence will be given some probability mass.

Note that n is the number of distinct individuals we have seen with the given name. Seeing the same
object being called “pog” on three separate occasions is not equivalent to seeing three separate objects,
each being called “pog”. Also, note that the size principle, implicit in the above equation, assumes that the
teacher is giving random examples of the concept in question (the strong sampling assumption), as opposed
to naming something given to it by some other process (such as the learner’s asking “what is this”?). For
the latter, one should use a weak sampling model: p(X |h) = 1 if X is consistent with h, and 0 otherwise.

For the prior, it seems reasonable that nodes (classes) whose members are much more similar to each
other than to objects outside the class should be reasonable candidates for being named with words. In
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Figure 15: The word learning game.
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Figure 16: Human generalization performance on the word learning game.
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Figure 17: The 24 test objects arranged hierarchically.
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Figure 18: A hierarchical clustering inferred from the empirical similarity matrix.
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Figure 19: An illustration of how the prior and likelihood are derived from the hierarchical clustering.
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Figure 20: Comparison of human data and model fit for word learning game. The prior has an extra bias
towards basic level categories.

contrast, a class whose members are no more similar to each other than to objects outside the class seems
like just another random collection of objects, not worthy of a name. The distinctiveness of a cluster can be
measured by the length of the branch connecting it to its parent: See Figure 19. Hence we define

p(h) = height(parent(h)) − height(h) (51)

Tenenbaum showed that the model described above was reasonably accurate at predicting people’s gen-
eralization behavior, in the sense that it could predict what fraction of the time they would generalize to
another subordinate, basic or superordinate level category (see Figure 20).

4.3 Relevance to word learning from real data

It is natural to ask how relevant the above model is for learning the meaning of words in the “real world”.
The biggest deficiency of the model is that it does not explain how to compute the similarity between
two objects. Instead, the similarity matrix is assumed to be known, and is used to derive the hypothesis
space. Furthermore, when computing the likelihood, we say p(X |h) = 0 unless all the test images in X are
contained in hypothesis h (in which case the likelihood is 1/|h|n); however, the mechanism for determining if
X is within h is to see if X was contained in the cluster for h, but these cluster were created during training.

Nevertheless, one can build a more elaborate Bayesian model in which the classes are arranged in a
tree, and each class has an (unknown) distibution over features. There are then two sources of uncertainty.
However, this requires more advanced computational machinery, which we will get to later.
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Figure 21: In the healthy levels task, the hypotheses are densely overlapping. In the word learning task, the
hypotheses are nested and are only sparsely overlapping.

5 Rules vs similarity

What is remarkable about the word learning experiments is how fast people learn: after only 3 examples,
they seem to have an “aha” moment, and figure out the rule that defines the concept. By contrast, in the
healthy levels domain, it takes many tens of examples until the boundary that defines the concept becomes
sharp.

The reason for this qualitatively different behavior has to do with differences in the two hypothesis
spaces. In the healthy levels case, there are many densely overlapping hypotheses. Thus for any given data
set, there are many rectangles with very similar size (and hence likelihood), all of which will be averaged
over, to produce a smooth generalization gradient. (Negative examples can rapidly define the boundaries of
the concept, however.)

In the word learning case, the hypotheses are only sparsely overlapping (see Figure 18). For any given data
set, there are only a few hypotheses that cover the data, and they differ dramatically in size: each hypothesis
is usually much smaller (and hence more likely) than its parent (especially since the prior favors well-separated
classes). Thus the smallest consistent hypothesis becomes exponentially more probable, resulting in rule-like
behavior.

In the number game, the hypothesis space is a mixture of both sparsely overlapping hypotheses (mathe-
matical concepts) and densely overlapping hypotheses (interval concepts). Hence whether the generalization
is similarity-like or rule-like depends on which hypotheses get “activated” by the data. This is illustrated in
Figure 9, where we see that if X = {16, 8, 2, 64}, people (and the model) generalize in a rule-like way (the
concept “powers of two” being by far the most probable), whereas if X = {6, 23, 19, 20}, people (and the
model) generalize in a similarity-like way (since several concepts, corresponding to intervals around 6–23, all
have posterior support).
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6 More realistic models

There are various ways in which we can extend the models to handle such things as noisy data, concepts
with two or more extensions (disjunctive concepts), and uncertainty about the relevant features. We sketch
a few of these extensions below, in the contetx of the healthy levels game.

The basic approach is to add extra hidden (latent) variables to the model, to capture extra sources of
uncertainty (orthogonal to uncertainty about the definition of the concept), and then to marginalize them
out:

p(h|X) =
p(X |h)p(h)

p(X)
(52)

=

∑

z p(X, Z = z|h)p(h)

p(X)
(53)

=

∑

z p(X |h, z)p(z)p(h)

p(X)
(54)

where h is the unknown hypothesis (concept) and z is the latent variable. (We have assumed that h and z
are conditionally independent.) (In realistic situations, this marginalization can be quite expensive, but we
leave discussion of efficient computational techniques until later.) Given the posterior, we can compute the
generalization function in the using

p(y ∈ C|X) =
∑

h

p(y ∈ C, h|X) (55)

=
∑

h

p(y ∈ C|h)p(h|X) (56)

or

p(y ∈ C|X) =
∑

z

∑

h

p(y ∈ C, h, z|X) (57)

=
∑

z

p(y ∈ C|z, X)p(z|X) (58)

6.1 Handling outliers

Consider the situation in Figure 22, where one data point (top right) is far from the cluster of the others.
There are (at least) two possible explanations: either the concept is a large rectangle (shown in Figure 22(a)),
or the data point in question is an outlier, and was not in fact generated from the concept (see Figure 22(b)).
The latter explanation may be more probable, depending on the number and location of the outliers, and
the prior probability of an outlier.

Let us partition the data X into inliers, Xin, and outliers, Xout = X \ Xin. Let z denote this partition;
hence it has 2n − 1 possible values (assuming we are not going to reject every example as an outlier).
Alternatively, z could be represented as a vector of n bits, where zi = 1 means xi is an outlier, otherwise
zi = 0; this is called a 1-of-n (distributed) encoding.

Let us assume the outliers are generated independently from the inliers. Suppose outliers are generated
uniformly at random with probability ε over a region of size L (the maximum possible range of values). Then
the likelihood becomes

p(Xout|z) =
1

L

nout

(59)

and the prior is
p(z) = εnout (60)
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Figure 22: Rectangle hypotheses where data may contain outliers.

If we assume an uninformative (scale-invariant) prior for the rectangles, then the (marginal) likelihood of
the inliers is a slight modification of Equation 40:

p(Xin|z) =

∫

p(Xin|h, z)p(h)p(z)dh (61)

=
1

nin(nin − 1)rnin−1
in

(62)

where nin is the number of inliers specified by z, and rin is the size of the smallest interval containing all
inliers. (Here we work in 1D for simplicity.) This equation is not defined if nin = 1/ rin = 0. One solution is
to use an informative prior. However, the solution adopted by Tenenbaum is to use p(s) ∝ 1/s1+β; the limit
as β→0 is uninformative. In addition, he assumes some observation noise α, so the data gets “fattened out”
at the edges by this amount. This amounts to replacing nin by nin + β, and rin by rin + α, Tenenbaum sets
α to 1% of the data range and β = 0.2. (This is an example of empirical Bayes, since the hyperparameters
are being set based on the data.)

The posterior over z is given by

p(z|X) ∝ p(X |z)p(z) (63)

= p(Xin|z)p(Xout|z)p(z) (64)

∝

(

1

rin

)nin−1
( ε

L

)nout

(65)

This equation makes intuitive sense. If we reject any example as an outlier, then nout decreases, which
decreases the second term, but if this rejection significantly reduces rin, then the rejection inceases the first
term, leading to an overall improvement. This is why the upper right point in Figure ??(b) is more likely to
be an outlier than any of the others (such as the bottom two in Figure ??(c)).
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Figure 23: Generalization function for rectangle hypotheses where data may contain outliers.
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Figure 24: Does the data come from one rectangle or two?

Having computed the posterior over z, the generalization function is

p(y ∈ C|X) =
∑

z

∑

h

p(y ∈ C, h, z|X) (66)

=
∑

z

p(y ∈ C|z, X)p(z|X) (67)

=
∑

z

p(y ∈ C|Xin(z))p(z|X) (68)

where

p(y ∈ C|Xin(z)) =
1

(1 + d̃/r)n−1
(69)

where d,r and n are functions of z. (Recall that d̃ is the distance of y to the closest point in Xin, or 0 if y is
inside the data.)

Figure 23 shows some examples of the generalization function for different sets X (working in 1D for
simplicity). If most of the data is tightly clustered, but some points are well separated from the rest, the
latter points will be detected as outliers, and will have little impact on the prediction performance. This
figure also shows the 15 most probable inlier sets; most of these have neglibible probability beyond the first
four of five. Furthermore, the top sets are all quite similar, suggesting that the average over all possible sets
z can be well approximated by Monte Carlo sampling, or even by maximum likelihood.

6.2 Model selection for disjunctive concepts

Consider Figure 24 where some data is drawn from one extension of the concept, X1, and other data is drawn
from another extension, X2. This could arise when learning a word with two distinct senses (polysemy), for
example.

Let z denote a partition of X into X1 and X2. Hence z can take on 2n − 1 possible values. (Without
loss of generality, we will assume n2 > 0, so only X1 can be empty.) Using the fact that p(A ∨ B) =
p(A) + p(B) − p(A ∧ B), for events A and B, the generalization function is

p(y ∈ C|X) =
∑

z

p(y ∈ C|z, X)p(z|X) (70)

=
∑

z

[p(y ∈ C|X1(z)) + p(y ∈ C|X2(z)) − p(y ∈ C|X1(z))p(y ∈ C|X2(z))]p(z|X) (71)
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If we assume the examples are drawn from each split independently, we have

p(z|X) ∝ p(X |z)p(z) (72)

∝ p(X1|z)p(X2|z)p(z) (73)

If we use an uninformative (scale-invariant) prior for the rectangles, then the marginal likelihood (in 1D) is

p(X1|z) =

∫

p(X1|h, z)p(h)dh (74)

=
1

n1(n1 − 1)rn1−1
1

(75)

and similarly for p(X2|z). Again, when n1 = 1, we can use the α/β fix as before. But if n1 = 0, we
are comparing two models of different dimensionalities: one has two rectangles and the other has one.
Model comparison with improper priors can lead to problems (see the discussion of Lindley’s paradox in
Section ??). Tenenbaum used the approximation p(X1|z) = 1/L if n1 = 0 as a simple alternative to exact
computation of the Bayes factor.

We can set the prior for z as follows. Let p(z = (0, . . . , 0)) ∝ κ (the assignment such that n1 = 0, so all
points are assigned to X2), and let all other assignments have probability proportional to 1 − κ. Thus κ is
our prior belief that there is only one extension. Overall, the posterior is

p(z|X) ∝

{

κ 1
L

1

n2(n2−1)r
n2−1

2

if n1 = 0

(1 − κ) 1

n1(n1−1)r
n1−1

1

1

n2(n2−1)r
n2−1

2

if n1 > 0
(76)

This equation makes intuitive sense. If we switch a point from X1 to X2, we decrease (or leave unchanged)
r1 but increase (or leave unchaned) r2. The optimal decision about which group to assign a particular
example to is thus determined by which groups’s range it will have a greater effect on. This is why the
split in Figure 24(b) seems more natural than the one in Figure 24(c). In addition, while the special case
of assigning all the examples to one group is the least favored on relative size grounds (since the likelihood
becomes 1/L), it is favored on grounds of simplicity (as controlled by κ). This is why a set of examples must
be highly clustered in order to be a plausible candidate for being its own separate extension.

Figure 25 shows the generalization function for different X . The degree of bimodality depends on the
support for the existence of two independent extensions, which in turn depends on several factors: the
relative ranges spanned by the two clusters of data, the separation between the clusters, and the amount of
data. It also shows the 8 most probable values of z. Againt,

6.3 Handling weak prior knowledge

Suppose you know the concept is a rectangle, but you do not its orientation (see Figure 26). Let z ∈ [0, π/2]
represent the unknown orientation. Let us use a uniform prior p(z) = 2/π. Let us assume points are sampled
at random from the concept, so the marginal likelihood (marginalizing over the extent of the rectangle) is

p(X |z) ∝
1

(rzrz+π/2)n−1
(77)

where rz is the range spanned by the examples when projected onto a line at orientation z. This prefers
orientations onto which the data project as small a range as possible.

Note that we can send this likelihood to infinity if n is less than or equal to the dimensionality of the
space, e.g., in 2D, if we have n = 2 points, we can choose z to lie along the line joining them, so rz+pi/2 is
infinite. However, the posterior

p(z|X) =
p(X |z)p(z)
∫

z
p(X, z)

(78)
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Figure 25: Generalization functions for when the data may come from one rectangle or two. A black dot
means this data point came from cluster 1, a hollow dot means it came from cluster 2. For the first row,
the top 4 hypotheses (not in order) are (X1 = ∅, X2 = {1, 2, 3, 4}) (X1 = {1}, X2 = {2, 3, 4}) (X1 =
{1, 2}, X2 = {3, 4}) (X1 = {1, 2, 3}, X2 = {4}). (The hypothesis (X1 = {1, 2, 3, 4}, X2 = ∅) is disallowed.)
Thus there is some ambiguity about whether there is one cluster or two (the exact results will depend on
the hyperparameters κ and L.) In the other cases, it is clear there are two clusters. Note that we can label
the “left” cluster X1 or X2; thus there is some label ambiguity.
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Figure 26: Which axes should we use?

should be finite for all z (since posteriors, unlike likelihoods, must integrate to 1). Similarly, the predictive
distribution

p(y ∈ C|X) =

∫

z

p(y ∈ C|z, X)p(z|X) (79)

should be well behaved.
In this example, since z is continuous, marginalizing out z may be hard analytically. In the 1D case, we

can approximate this by discretization. Figure 27 shows some examples. The blocky and sharp-cornered
generalization gradients of Section 3 have been replaced by smoother contours, as a consequence of averaging
over all possible rectangle orientations. The extent to which the generalization gradients deciate from
circularity is a function of how much evidence the data provide for a preferred set of axes, i.e., how tight the
examples are clustered on any one direction. (This is related to the number of principal components of
the data.)
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Figure 27: Generalization gradient when the orientation of the rectangle is unknown. We also show p(z|X).
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