668 -

Chapter 18. Learning from Observations

combination of 20 decision stumps suffices to fit the 100 examples exactly. As more stumps
are added to the ensemble, the error remains at zero. The graph also shows that the rest
set performance continues to increase long after the training set error has reached zero. At
M = 20, the test performance is 0.95 (or 0.05 error), and the performance increases to 0.98
as late as M = 137, before gradually dropping to 0.95.
~ This finding, which is quite robust across data sets and hypothesis spaces, came as quite -

a surprise when it was first noticed. Ockham’s razor tells us not to make hypotheses more
complex than necessary, but the graph tells us that the predictions improve as the ensemble
hypothesis gets more complex! Various explanations have been proposed for this. One view
is that boosting approximates Bayesian learning (see Chapter 20), which can be shown to
be an optimal learning algorithm, and the approximation improves as more hypotheses are
added. Another possible explanation is that the addition of further hypotheses enables the
ensemble to be more definite in its distinction between positive and negative examples, which
helps it when it comes to classifying new examples.

18.5 WHY LEARNING WORKS: COMPUTATIONAL LEARNING THEORY

COMPUTATIONAL
LEARNING THEORY

PROBABLY
APPROXIMATELY
CORRECT

PAC-LEARNING

STATIONARITY

The main unanswered question posed in Section 18.2 was this: how can one be sure that
one’s learning algorithm has produced a theory that will correctly predict the future? In
formal terms, how do we know that the hypothesis F is close to the target function f if we
don’t know what f is? These questions have been pondered for several centuries. Until we
find answers, machine learning will, at best, be puzzled by its own success.

The approach taken in this section is based on computational learning theory, a field
at the intersection of Al, statistics, and theoretical computer science. The underlying principle
is the following: any hypothesis that is seriously wrong will almost certainly be “found out”

“with high probability after a small number of examples, because it will make an incorrect

prediction. Thus, any hypothesis that is consistent with a sufficiently large set of training
examples is unlikely to be seriously wrong: that is, it must be probably approximately correct.
Any learning algorithm that returns hypotheses that are probably approx1mately correct 1s
called a PAC-learning algorithm. - :
There are some subtleties in the preceding argument The main questlon is the con-
nection between the training and the test examples; after all, we want the hypothesis to be

‘approximately correct on the test set, not just on the training set. The key assumption is

that the training and test sets are drawn randomly and independently from the same pop-
ulation of examples with the same probability distribution. This is called the stationarity
assumption. Without the stationarity assumption, the theory can make no claims at all about
the future, because there would be no necessary connection between future and past. The
stationarity assumption amounts to supposing that the process that selects examples is not
malevolent. Obviously, if the training set consists only of weird examples—two-headed dogs,
for instance—then the learning algorithm cannot help but make unsuccessful generalizations
about how to recognize dogs.

Section 18.5.

ERROR’

€-BALL

Why Learning Works: Computational Learning Theory | 669

How many examples are needed?

In order to put these insights into practice, we will need some notation:

e Let X be the set of all possible examples.

e Let D be the distribution from which examples are drawn.
e Let H be the set of possible hypotheses.

e Let IV be the number of examples in the training set.

Initially, we will assume that the true function f is a member of H. Now we can define the
error of a hypothesis h with respect to the true function f given a distribution D over the
examnples as the probability that A is different from f on an example:
error(h) = P(h(z) # f(z)|x drawn from D) .
This is the same quantity being measured experimentally by the learning curves shown earlier.
A hypothesis h is called approximately correct if error(h) < €, where ¢ is a small
constant. The plan of attack is to show that after seeing N examples, with high probability,
all consistent hypotheses will be approximately correct. One can think of an approximately
correct hypothesis as being “close” to the true function in hypothesis space: it lies inside what
is called the e-ball around the true function f. Figure 18.12 shows the set of all hypotheses
H, divided into the e-ball around f and the remainder, which we call Hbad

H

Hbad

-

Figure 18.12 Schematic diagram of hypothesis space, showing the “e-ball” around. the
true function f.

We can calculate the probability that a “seriously wrong” h};pothesis hy € Hpag is
consistent with the first NV examples as follows. We. know that error(hy) > €. Thus, the
probability that it agrees with a given example is at ast 1 — €. The bound for N examples is

P(hy agrees with N examples) < (1 — e)V . o
The probability that Hyaq contains at least one consistent hypothesis is bounded by the sum
of the individual probabilities: -

P(Hpag contains a consistent hypothesis) < [Hyaa|(1 — €)™ < [H|(1 —)V,

670

SAMPLE
COMPLEXITY

DECISION LIST

Chapter 18. Learning from Observations

where we have used the fact that [Hpaq| < |H|. We would like to reduce the probability of

this event below some small number 4

|H| (1= e)N <9.
Given that 1 — € < e™¢, we can achieve this if we allow the algorithm to see
1 1

examples. Thus, if a learning algorithm returns a hypothesis that is consistent with this many
examples, then with probability at least 1 — 4, it has error at most €. In other words, it is
probably approximately correct. The number of required examples, as a function of € and 4,
is called the sample complexity of the hypothesis space.

It appears, then, that the key question is the size of the hypothesis space. As we saw
earlier, if H is the set of all Boolean functions on n attributes, then |H| = 22" Thus, the
sample complexity of the space grows as 2™. Because the number of possible examples is
also 2™, this says that any learning algorithm for the space of all Boolean functions will do no
better than a lookup table if it merely returns a hypothesis that is consistent with all known
examples. Another way to see this is to observe that for any unseen example, the hypothesis

-space will contain as many consistent hypotheses that predict a positive outcome as it does

hypotheses that predict a negative outcome. -

The dilemma we face, then, is that unless we restrict the space of functions the algorithm
can consider, it will not be able to learn; but if we do restrict the space, we might eliminate
the true function altogether. There are two ways to “escape” this dilemma. The first way is to
insist that the algorithm return not just any consistent hypothesis, but preferably a simple one
(as is done in decision tree learning). The theoretical analysis of such algorithms is beyond the
scope of this book, but in cases where finding simple consistent hypotheses is tractable, the
sample complexity results are generally better than for analyses based only on consistency.
The second escape, which we pursue here, is to focus on learnable subsets of the entire set of
Boolean functions. The idea is that in most cases we do not need the full expressive power
of Boolean functions, and can get by with more restricted languages. We now examine one
such restricted language in more detail.

Learning decision lists

A decision list is a logical expression of a restricted form. It consists of a series of tests, each
of which is a conjunction of literals. If a test succeeds when applied to an example description,
the decision list specifies the value to be returned. If the test fails, processing continues with
the next test in the list.° Decision lists resemble decision trees, but their overall structure is
simpler. In contrast, the individual tests are more complex. Figure 18.13 shows a decision
list that represents the following hypothesis:

Yz WillWait(z) < Patrons(xz,Some) V (Patrons(z, Full) A Fri/Sat(x)) .

If we allow tests of arbitrary size, then decision lists can represent any Boolean function

(Exercise 18.15). On the other hand, if we restrict the size of each test to at most k literals,
1oaciiiest o at

6 A decision list is therefore identical in structure to a COND statement in Lisp.

Section 18.5. Why Learning Works: Computational Learning Theory 671

k-DL
kDT

No - No
Ijatrons(x, SomeHatrons(x, Full) A Fri/Sat(x) '——>m
" {Yes

Yes

Figure 18.13 A decision list for the restaurant problem.

then it is possible for the learning algorithm to generalize successfully from a small number
of examples. We call this language k-pL. The example in Figure 18.13 is in 2-DL. It is easy to
show (Exercise 18.15) that k-pr includes as a subset the language k-DT, the set of all decision
trees of depth at most k. It is important to remember H‘Ehﬁe‘f)amcular languageréferred to
by kDL depends on the attributes used to describe the examples. We will use the notation
k-pL(n) to denote a k-DL. language using n Boolean attributes.

The first task is to show that k-DL is learnable—that is, that any function in k-DL can
be approximated accurately after training on a reasonable number of examples. To do this,
we need to calculate the number of hypotheses in the language. Let the language of tests—
conjunctions of at most k literals using 7 attributes—be Congj(n, k). Because a decision list
is constructed of tests, and because each test can be attached to either a Yes or a No outcome

or g@j)gg@ggpt from the decision list, there are at most 3 o) distinct sets of component
tests. Each of these sets of tests can be in any order, so

|k-pL(n)| < 31C R Cong(n, K)|! .

The number of conjunctions of % literals from n attributes is given by
k
) 2n
| Conj(n, k)| = 3 (Z.) = 0(n*).
=0

Hence, after some work, we obtain

|k-pL(n)| = 20(n* loga(n))
We can plug this into Equation (18.1) to show that the number of examples needed for PAC-

learning a k£-pL function is polynomial in n:

N > % <ln§ + O(nF logQ(nk))> .

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k-pL function
in a reasonable number of examples, for small k. ,.

The next task is to find an efficient algorithm that returns a ‘consistent decision list.
We will use a greedy algorithm called DECISION-LIST-LEARNING that repeatedly finds a
test that agrees exactly with some subset of the training set. Once it finds such a test, it
adds it to the decision list under construction and removes the corresponding examples. It
then constructs the remainder of the decision list, using just the remaining examples. This is
repeated until there are no examples left. The algorithm is shown in Figure 18.14.

This algorithm does not specify the method for selecting the next test to add to the
decision list. Although the formal results given earlier do not depend on the selection method,

I3

672

Chapter 18. Learning from Observations

IDENTIFICATION IN
THE LIMIT

function DECISION-LIST-LEARNING(ezamples) returns a decision list, or failure

if examples is empty then return the trivial decision list No
t « a test that matches a nonempty subset ezamples, of ezamples
such that the members of ezamples, are all positive or all negative
if there'is no such ¢ then return failure
if the examples in ezamples, are positive then o'« Yes else 0 < No
return a decision list with initial test ¢ and outcome o and remaining tests given by
DECISION-LIST-LEARNING(ezamples — examples,)

Figure 18.14 An algorithm for learning decision lists.
1 -
D
2 09 1
8
gos8d{ V,
8 4 Decision tree
5 0.7 I Decision list --------
51 { ’
gos6{|/
5 ;
805 1
="
04 r r r r ,
0 20 40 60 80 100
Training set size
Figure 18.15 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant

data. The curve for DECISION-TREE-LEARNING is shown for comparison.

it would seem reasonable to prefer small tests that match large sets of uniformly classified
examples, so that the overall decision list will be as compact as possible. The simplest strategy
is to find the smallest test ¢ that matches any uniformly classified subset, regardless of the size
of the subset. Even this approach works quite well, as Figure 18.15 suggests.

Discussion

Computational learning theory has generated a new way of looking at the problem of learn-
ing. In the early 1960s, the theory of learning focused on the problem of identification in
the limit. According to this notion, an identification algorithm must return a hypothesis that

- exactly matches the true function. One way to do that is as follows: First, order all the hy-

potheses in H according to some measure of simplicity. Then, choose the simplest hypothesis
consistent with all the examples so far. As new examples arrive, the method will abandon a
simpler hypothesis that is invalidated and adopt a more complex one instead. Once it reaches
the true function, it will never abandon it. Unfortunately, in many hypothesis spaces, the num-
ber of examples and the computation time required to reach the true function are enormous.
Thus, computational learning theory does not insist that the learning agent find the “one true

* Section 18.6.

Summary ' 673

law” governing its environment, but instead that it find a hypothesis with a certain degree of
predictive accuracy. Computational learning theory also brings sharply into focus the tradeoff
between the expressiveness of the hypothesis language and the complexity of learning, and
has lead directly to an important class of learning algorithms called support vector machines.

The PAC-learning results we have shown are worst-case complexity results and do not
necessarily reflect the average-case sample complexity as measured by the learning curves we
have shown. An average-case analysis must also make assumptions about the distribution of
examples and the distribution of true functions that the algorithm will have to learn. As these
issues become better understood, computational learning theory continues to provide valu-
able guidance to machine learning researchers who are interested in predicting or modifying
the learning ability of their algorithms. Besides decision lists, results have been obtained
for almost all known subclasses of Boolean functions, for neural networks (see Chapter 20),
and for sets of first-order logical sentences (see Chapter 19). The results show that the pure
inductive learning problem, where the agent begins with no prior knowledge about the target
function, is generally very hard. As we show in Chapter 19, the use of prior knowledge to
guide inductive learning makes it possible to learn quite large sets of sentences from reason-
able numbers of examples, even in a language as expressive as first-order logic.

18.6 SUMMARY

This chapter has concentrated on inductive learning of deterministic functions from examples.
The main points were as follows:

e Learning takes many forms, depending on the nature of the performance element, the
component to be improved, and the available feedback.

o If the available feedback, either from a teacher or from the environment, provides the
correct value for the examples, the learning problem is called supervised learning.
The task, also called inductive learning, is then to learn a function from examples
of its inputs and outputs. Learning a discrete-valued function is called classification;
learning a continuous function is called regression.

¢ Inductive learning involves finding a consistent hypothesis that agrees with the ex-
amples. Ockham’s razor suggests choosing the simplest consistent hypothe31s The
difficulty of this task depends on the chosen representation.

¢ Decision trees can represent all Boolean functions. The mformatlon gain heunstlc
provides an efficient method for finding a simple, consistent decision tree. .

e The performance of a learning algorithm is measured by the learning curve, which
shows the prediction accuracy on the test set as a function of the training set size.

e Ensemble methods such as boosting often perform better than individual methods.

o Computational learning theory analyzes the sample complexity and computational
complexity of inductive learning. There is a tradeoff between the expressiveness of the
hypothesis language and the ease of learning.

674

Chapter 18. Learning from Observations

BIBLIOGRAPHICAL AND HISTORICAL NOTES

- BAGGING

Chapter 1 outlined the history of philosophical investigations into inductive learning. William
of Ockham (1280-1349), the most influential philosopher of his century and a major con-
tributer to medieval epistemology, logic, and metaphysics, is credited with a statement called

“Ockham’s Razor”—in Latin, Entia non sunt multiplicanda praeter necessitatem, and in En-
: glish, “Entities are not to be multiplied beyond necessity.” Unfortunately, this laudable piece
- of advice is nowhere to be found in his writings in precisely these words.

EPAM, the “Elementary Perceiver And Memorizer” (Feigenbaum, 1961), was one of

- the earliest systems to use decision trees (or discrimination nets). EPAM was intended

as a cognitive-simulation model of human concept learning. CLS (Hunt et al., 1966) used
a heuristic look-ahead method to construct decision trees. ID3 (Quinlan, 1979) added the
crucial idea of using information content to provide the heuristic function. Information theory
itself was developed by Claude Shannon to aid in the study of communication (Shannon and -
Weaver, 1949). (Shannon also contributed one of the earliest examples of machine learning, a
mechanical mouse named Theseus that learned to navigate through a maze by trial and error.)
The x? method of tree pruning was described by Quinlan (1986). C4.5, an industrial-strength
decision tree package, can be found in Quinlan (1993). An independent tradition of decision
tree learning exists in the statistical literature. Classification and Regression Trees (Breiman
et al., 1984), known as the “CART book,” is the principal reference.

Many other algorithmic approaches to learning have been tried. The current-best-
hypothesis approach maintains a single hypothesis, specializing it when it proves too broad *
and generalizing it when it proves too narrow. This is an old idea in philosophy (Mill, 1843).
Early work in cognitive psychology also suggested that it is a natural form of concept learning
in humans (Bruner ez al., 1957). In Al, the approach is most closely associated with the work
of Patrick Winston, whose Ph.D. thesis (Winston, 1970) addressed the problem of learning
descriptions of complex objects. The version space method (Mitchell, 1977, 1982) takes
a different approach, maintaining the set of all consistent hypotheses and eliminating those
found to be inconsistent with new examples. The approach was used in the Meta-DENDRAL -
expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell’s (1983)
LEX system, which learns to solve calculus problems. A third influential thread was formed
by the work of Michalski and colleagues on the AQ series of algorithms, which learned sets
of logical rules (Michalski, 1969; Michalski et al., 1986b).

Ensemble learning is an increasingly popular technique for improving the performance
of learning algorithms. Bagging (Breiman, 1996), the first effective method, combines hy-
potheses learned from multiple bootstrap data sets, each generated by subsampling the orig-
inal data set. The boosting method described in the chapter originated with theoretical work
by Schapire (1990). The ADABOOST algorithm was developed by Freund and Schapire
(1996) and analyzed theoretically by Schapire (1999). Friedman ef al. (2000) explain boost-
ing from a statistician’s viewpoint.

Theoretical analysis of learning algorithms began with the work of Gold (1967) on
identification in the limit. This approach was motivated in part by models of scientific

Section 18.6.

Summary ' 675

KOLMOGOROV
COMPLEXITY

MINIMUM
DESCRIPTION
LENGTH

UNIFORM
CONVERGENCE
THEORY

VC DIMENSION

discovery from the philosophy of science (Popper, 1962), but has been applied mainly to the
problem of learning grammars from example sentences (Osherson ef al., 1986).

Whereas the identification-in-the-limit approach concentrates on eventual convergence,
the study of Kolmogorov complexity or algorithmic complexity, developed independently
by Solomonoff (1964) and Kolmogorov (1965), attempts to provide a formal definition for the
notion of simplicity used in Ockham’s razor. To escape the problem that simplicity depends
on the way in which information is represented, it is proposed that simplicity be measured by
the length of the shortest program for a universal Turing machine that correctly reproduces
the observed data. Although there are many possible universal Turing machines, and hence
many possible “shortest” programs, these programs differ in length by at most a constant that
is independent of the amount of data. This beautiful insight, which essentially shows that any
initial representation bias will eventually be overcome by the data itself, is marred only by the
undecidability of computing the length of the shortest program. Approximate measures such
as the minimum description length, or MDL (Rissanen, 1984) can be used instead and have
produced excellent results in practice. The text by Li and Vitanyi (1993) is the best source
for Kolmogorov complexity.

Computational learning theory—that is, the theory of PAC-learning—was inaugurated

- by Leslie Valiant (1984). Valiant’s work stressed the importance of computational and sample

complexity. With Michael Kearns (1990), Valiant showed that several concept classes cannot
be PAC-learned tractably, even though sufficient information is available in the examples.
Some positive results were obtained for classes such as decision lists (Rivest, 1987).

An independent tradition of sample complexity analysis has existed in statistics, begin-
ning with the work on uniform convergence theory (Vapnik and Chervonenkis, 1971). The
so-called VC dimension provides a measure roughly analogous to, but more general than, the
In [H| measure obtained from PAC analysis. The VC dimension can be applied to continuous
function classes, to which standard PAC analysis does not apply. PAC-learning theory and
VC theory were first connected by the “four Germans” (none of whom actually is German):
Blumer, Ehrenfeucht, Haussler, and Warmuth (1989). Subsequent developments in VC the-
ory led to the invention of the support vector machine or SVM (Boser et al., 1992; Vapnik,
1998), which we describe in Chapter 20.

A large number of important papers on machine learning have been collected in Read-
ings in Machine Learning (Shavlik and Dietterich, 1990). The two volumes Machine Learn-
ing 1 (Michalski et al., 1983) and Machine Learning 2 (Michalski et al., 1986a) also contain
many important papers, as well as huge bibliographies. Weiss and Kulikowski (1991) pro-
vide a broad introduction to function-learning methods from machine learning, statistics, and
neural networks. The STATLOG project (Michie ez al., 1994) is by far the most exhaustive
investigation into the comparative performance of learning algorithms. Good current research
in machine learning is published in the annual proceedings of the International Conference
on Machine Learning and the conference on Neural Information Processing Systems, in Ma-
chine Learning and the Journal of Machine Learning Research, and in mainstream Al jour-
nals. Work in computational learning theory also appears in the annual ACM Workshop on
Computational Learning Theory (COLT), and is described in the texts by Kearns and Vazuam
(1994) and Anthony and Bartlett (1999).

