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* Denotes advanced sections that may be omitted on a first reading

1 Definitions

A stochastic process is an indexed collection of random variables, {Xi}, i ∈ I, Xi ∈ X . If the index set I
is discrete, we will often write i ∈ {1, 2, . . .}, to represent discrete time steps. For a finite number of variables,
we will assume i ∈ 1 : D as usual. If the state space X is discrete and finite, we will write Xi ∈ {1, 2, . . . , K},
where K is the number of states. Recall that for any set of random variables X1, . . . , XD, we can write the
joint density using the chain rule as

p(X1, . . . , XD) = p(X1)

D
∏

i=2

p(Xi|X1:i−1) (1)

A (first order) Markov chain is a stochastic process in which Xi only depends on Xi−1, not the whole past.
Hence the joint becomes

p(X1:D) = p(X1)p(X2|X1)p(X3|X2) . . . = p(X1)

D
∏

i=2

p(Xi|Xi−1) (2)

The resulting process is called a (discrete-time, discrete-state) Markov chain. p(X1 = j) = πj is the

initial state distribution and p(Xi = k|Xi−1 = j) = T
(i)
jk is the state transition matrix at time i.

If we assume the transition matrix T (i) is independent of time, then the chain is called homogeneous/
stationary/ time-invariant. We will usually make this assumption. Each row of the matrix sums to one,
∑

k T (j, k) = 1, so this is called a stochastic matrix.
The state transition matrix is often visualized by drawing a state transition diagram, where nodes

represent states and arrows represent legal transitions, i.e., non-zero elements of T . The weights associated
with the arcs are the probabilities. For example, Figure 1 shows a left-to-right transition matrix commonly
used in speech recognition. Another example is a simple random walk on the integers {1, . . . , K}, so
T (x → x′) = p iff x′ = x + 1, T (x→x′) = q if x′ = x − 1, and T (x→x′) = 0 otherwise. If we make states 1
and K be absorbing states, we get (for K = 5)

A =













1 0 0 0 0
q 0 p 0 0
0 q 0 p 0
0 0 q 0 p
0 0 0 0 1













(3)

The n-step transition matrix T (n) is defined as

Tjk(n) = p(Xi+n = k|Xi = j) (4)
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Figure 1: State transition diagram for a 3-state left-to-right Markov chain, with the corresponding transition
matrix shown below. Zeros in the matrix correspond to absent edges in the graph.

where T (1) = T . The Chapman-Kolmogorov equations state that

Tjk(m + n) =
∑

l

Tjl(m)Tlk(n) (5)

So T (m + n) = T (m)T (n) and T (n) = T n. Hence we can simulate multiple steps of a Markov chain by
powering up the matrix. For example, the probability distribution over states at time t is given by

πt(k) = p(Xt = k) =
∑

j

p(Xt = k|X0 = j)p(X0 = j) (6)

=
∑

j

π0(j)Tjk(t) (7)

πt = π0T
t (8)

where we have assumed πt is a row vector.

2 Parameter estimation

Since Tjk = p(Xi = k|Xi−1 = j) is just a conditional multinomial distribution, it is easy to estimate its
parameters from an observed sequence of states. Let π1

k = p(X1 = k) be the initial state distribution. Then
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the likelihood of a single sequence x1:D is

p(x1:D|T, π1) = π1(x1)
D
∏

i=2

p(xi|xi−1) (9)

= π1(x1)
∏

i

∏

jk

T
I(xi=k,xi−1=j)
jk (10)

= π1(x1)
∏

jk

T
Njk

jk (11)

=
∏

k

(π1
k)N1

k

∏

jk

T
Njk

jk (12)

where Njk is the number of j→k transitions and N1
k is the number of times we start in state k:

Njk
def
=

D
∑

i=2

I(Xi = k, Xi−1 = j) (13)

N1
k

def
= I(X1 = k) (14)

If we have N iid sequences, the likelihood of all the data D is given by

p(D|θ) =

N
∏

n=1

∏

k

(π1
k)I(Xn1=k)

D
∏

i=2

∏

j

∏

k

T
I(Xni=k,Xn,i−1=j)
jk (15)

=
∏

k

(π1
k)N1

k

∏

j

∏

k

T
Njk

jk (16)

Njk
def
=

∑

n

D
∑

i=2

I(Xn,i = k, Xn,i−1 = j) (17)

N1
k

def
=

∑

n

I(Xn1 = k) (18)

We can optimize the likelihood wrt the multinomial parameters π1 and Tj,· for each state j separately, to
yield

T̂jk =
Njk

Nj

(19)

Nj =
∑

k

Njk (20)

π̂1
k =

N1
k

N
(21)

Note that Nj is the number of transitions leaving state j at any timestep after 1, whereas N1
k is the number

of times we start in state k. An alternative to estimating π1 is to set it to be the stationary distribution of
T . This is actually a harder optimization problem, however, since the parameters become coupled.

Alternatively, we can adopt a Bayesian approach. If we we assume the prior on each row of the transition
matrix is independent (the local parameter independence assumption) and Dirichlet (the conjugate
assumption), then the prior is

p(T ) =

K
∏

j=1

Dir(Tj,1:K |αj1, . . . , αjK) (22)
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where αj,· are the hyperparameters for row j. A factored prior times a factored likelihood induces a factored
posterior:

p(T |D) =

K
∏

j=1

Dir(Tj,1:K |Nj1 + αj1, . . . , NjK + αjK) (23)

and the posterior mean is

Tjk = p(Xi+1 = k|Xi = j) =
Njk + αjk

Nj +
∑

k′ αjk′

(24)

We can estimate p(π1|D) similarly.

3 Computing the likelihood of a sequence

At test time, we can plug in either the posterior mean or the MLE to compute the predictive density

p(x1:D|T, π1) = π1(x1)

D
∏

i=2

∏

jk

T
I(xi=k,xi−1=j)
jk (25)

Of course, this is likely to underflow, so for numerical reasons we would usually compute the log-likelihood
as

log p(x1:D|T, π1) = log π1(x1) +
∑

jk

Njk log Tjk (26)

Note that if we use the MLE, it may happen that T̂ MLE
jk = 0, but this can only occur if N train

jk = 0. Since

we define 0 log 0 = 0, we will not encounter any numerical difficulties on the training set, but if N test
jk > 0,

we will get a “log of zero” error. Equivalently, the model is saying the probability of this test sentence is 0.
We can avoid such problems by using pseudocounts.

4 Application: Language models

If the state space of the Markov chain is all the words in English (or some other natural language), then
the marginal probabilities p(Xi = k) are called unigram statistics. If we use a first-order Markov model,
then p(Xi = k|Xi−1 = j) is called a a bigram model. If we use a second-order Markov model, then
p(Xi = k|Xi−1 = j, Xi−2 = l) is called a a trigram model. And so on. In general these are called
language models. For example, Figure 2 shows 1-gram and 2-grams counts for the letters {a, . . . , z,−}
(where - represents space) estimated from The FAQ Manual for Linux.

We can sample from the resulting model to produce pseudo-English sentences. With enough training
data, this can produce surprisingly good results: see Figure 3 for an example. Another application is to use
the Markov model as a class-conditional density in a Bayesian classifier. This can be used to perform offline
classification of variable-length sequences.

We can compute maximum likelihood parameter estimates of the transition matrix Tjk by counting how
many times word j is followed by word k. The above examples used letters, but for words, since the state
space is large (K ∼ 50, 000), estimating bigram probabilities using maximum likelihood suffers from two
problems. The first is that unseen words will be given probability zero. This is often overcome by replacing
all novel words (at test time) with the symbol unk, which stands for unknown, and assigning a probability
to that. Using a uniform Dirichlet prior can avoid 0 counts, but this is not a very accurate prior, since we
do not believe that all possible words are equally likely.

The second problem is that our estimate of the probability of word occurrences may have high variance if
the sample size is small. One approach is to use deleted interpretation [CG96]. This defines the transition
matrix as a convex combination of the bigram counts fjk = Njk/Nj and the unigram counts fk = Nk/N :

Tjk = (1 − λ)fjk + λfk (27)
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i ai pi1 a 0.05752 b 0.01283 c 0.02634 d 0.02855 e 0.09136 f 0.01737 g 0.01338 h 0.03139 i 0.059910 j 0.000611 k 0.008412 l 0.033513 m 0.023514 n 0.059615 o 0.068916 p 0.019217 q 0.000818 r 0.050819 s 0.056720 t 0.070621 u 0.033422 v 0.006923 w 0.011924 x 0.007325 y 0.016426 z 0.000727 { 0.1928

abcdefghijklmnopqrstuvwxyz{ a b c d e f g h i j k l m n o p q r s t u v w x y z { y

abcdefghijklmnopqrstuvwxyz{

x

Figure 2: Unigram and bigram counts, from [Mac03, p22].

When in the course of human Events, it becomes necessary for one People to dissolve the Political Bands
which have connected them with another, and to assume among the Powers of the Earth, the separate and
equal Station to which the Laws of Nature and of Natures God entitle them, a decent Respect to the Opinions
of Mankind requires that they should declare the causes which impel them to the Separation. . . .
our Emigrations hitherefore, That the Life, Liberty, all other Legislature Separalleled totally unwarrantab-
lishing Warfare, acquiesce in Warfare, transporting his Government. The History of our Laws for absolved
for these right their Safety and Usurpation. He has marked by these Oppresent ought a

Figure 3: Example output from an n-gram letter model. Top: input text (declaration of independence for
the USA). Bottom: output sample from a 5-gram model. Source: http://jonathanwellons.com/n-grams/
index.cgi
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where λ is set by cross validation. (There is also a closely related technique called backoff smoothing.)
See [MP95] for a Bayesian version.

5 Stationary distribution of a Markov chain

Besides their use in language modeling, Markov chains have many other applications as models of stochastic
processes. Often we are interested in the long run behavior of such systems. We study this below.

Consider a random walk on the integers 0..20. Imagine starting the chain in state 10, so p(0)(x) =
[0, . . . , 1, 0, . . . 0], and then iterating πt(x

′) =
∑

x πt−1(x)T (x → x′). The distribution we end up with as
t→∞ is called the stationary (invariant) distribution of the chain. Such a distribution π satisfies

π(x) =
∑

x′

T (x′→x)π(x′) (28)

or, equivalently,

π = πT (29)

Hence π is a left eigenvector of T with eigenvalue 1 (since
∑

x π(x) = 1). We can compute π by the power
method: simply start with an arbitrary distribution π0 and then iteratively compute

πt = Tπt−1 (30)

This will converge to the principal eigenvector. See Figure 4 for an example.

5.1 Example

Consider a simple two-state chain with transition matrix

T =

(

1 − α α
β 1 − β

)

(31)

The stationary distribution π can be found by computing the eigenvector. More intuitively, we must have
that the net probability flow across any cut-set in the state transition diagram is 0. Applying this to Figure 5
we have

π1α = π2β (32)

Since π1 + π2 = 1, we have

π1 =
β

α + β
, π2 =

α

α + β
, (33)

5.2 Conditions under which a stationary distribution exists *

Not all Markov chains have stationary distributions, or they may have more than one (eg if T = I). We
say that a chain has a limiting distribution if there exists a π such that πk = limn→∞ T n

jk exists and is
independent of j. The precise theorem that specifies when this exists is as follows:

Theorem 1 A Markov chain has a unique stationary distribution π iff it is irreducible and ergodic. In this

case the limiting distribution exists and is equal to π.

Defining all these terms precisely is beyond the scope of this chapter (see [Was04] for an excellent treatment).
But intuitively, they mean the following. An irreducible chain is one in which the state transition diagram
is a singly connected component. An ergodic chain is one all of whose states are ergodic. A state is ergodic
if it is recurrent, non-null and aperiodic. A state is recurrent (persisent) if you will return to it with
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Figure 4: Starting with two different initial distributions and iterating the chain results in the same (uniform)
stationary distribution. We assume the transition matrix is a symmetric random walk on the integers 1:20,
with reflecting boundary conditions. Source: [Mac03].

Figure 5: A simple two state Markov chain.
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probability 1; otherwise it is called transient. A recurrent (persistent) state is non-null (positive) if the
expected time to return is finite; otherwise it is called null. A state is aperiodic if it is possible to return
to it in one step; otherwise it is called periodic.

For example, consider a random walk on the integers, where we move left with probability p and right
with probability q = 1 − p. Clearly the chain is irreducible, since we can reach any states from any other
state. If p 6= q, then all states are transient, and the system shoots off to +∞ or −∞; hence the chain does
not have a stationary distribution. If p = q = 0.5, then all states are null1 recurrent (persistent) with period
2; hence the chain still does not have a stationary distribution.

However, in a finite state Markov chain, one can show that all recurrent (persistent) states are positive
(non-null). It is easy to make all states recurrent, by ensuring the transition diagram is a single connected
component. And it is easy to ensure all states are aperiodic, by adding self loops. Hence for finite state
spaces, we can always ensure a stationary distribution will exist (such a chain will be ergodic).

Sometimes we want to design a markov chain to have a desired stationary distribution. We can do this
using the following concept. π satisfies detailed balance for T (i.e., the chain is reversible) if

π(x)T (x→x′) = π(x′)T (x′→x) (34)

Theorem 2 If π satisfies detailed balance for T , then π is a stationary distribution of T .

Proof:
∑

x′

π(x′)T (x′→x) =
∑

x′

π(x)T (x→x′) = π(x)
∑

x′

π(x′|x) = π(x) (35)

Hence if we can construct a chain with detailed balance, we can ensure that by simulating the chain, we
can draw samples from π. This is the basis of Monte Carlo Markov chain (MCMC) methods.

5.3 Finding the stationary distribution

Since the stationary distribution satisfies
π = πT (36)

or, assuming (as is more conventional) that π is a column vector,

T ′π′ = π′ (37)

we can solve for the stationary distribution in Matlab by finding the principal eigenvector and renormalizing:

[evecs,evals]=eig(T’);

pi=evecs(:,1) ./ sum(evecs(:,1))

Unfortunately this can be numerically unstable, since it does not explicitly take the constraint
∑

k πk = 1
into account. An alternative method exploits the fact [Res92, p138] that π1K×K = 11×K , since the rows
sum to one. Hence

π(I − T + 1K×K) = 11×K (38)

We can solve this in Matlab as follows.

pi = ones(1,K) / (eye(K)-T+ones(K,K));

Alternatively, since we have K constraints from π(I − T ) = ~0, and 1 constraint from π1K×1 = 0, but only
K unknowns, we can replace any column (e.g., the last) of I − T with 1, and set the corresponding (last)
element of ~0 to 1:

1It is intuitively obvious that all states are recurrent (persistent), since we can always “walk backwards” to undo any
trajectory, but why does it take an infinite amount of time to return on average? One can prove that a persistent state is null
iff pii(n)→0 as n→∞. So when we power up the matrix and look at the diaognal entries, we see that they tend to 0 and hence
all states are null.
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Figure 6: A very small world wide web. The boxes, which are states in the Markov chain, represent web
pages that contain various words.

tmp = eye(K)-T;

tmp(:,K) = 1;

pi = [zeros(K-1,1); 0] / tmp;

Another closely related approach is to solve π(I − T ) = 0 using Gaussian elimination (see [GTH85] for
details).

Finally, we can use the power method to solve for π. We simply start with a random vector and pass
it through the transition matrix a large number of times. Eventually this will converge to the stationary
distribution. If T is a sparse matrix, this only takes O(IK) time, where K is the number of states and I is
the number of iterations. For example, in Matlab with K = 4 and I = 20, we have

x=[.5 .3 .1 .1 0]; % arbitrary

pi = x*(T^20)

5.4 Application: Google’s PageRank algorithm

Consider the 5 web pages linked together as shown in Figure 6.2 The weight on edge j→k represents the
number of hyperlinks from page j to page k; the words in each node represent the words that appear on
that page. We can convert this graph into a transition matrix, where T (j, k) represnets the probability of

jumping from page j to k, simply by normalizing the counts: T (j, k) = N(j,k)
P

k′ N(j,k′) . (Note that each row of

T sums to one, so T is called a stochastic matrix.) We get

T = [1/4 2/4 0 0 1/4

1/6 0 2/6 1/6 2/6

0 0 0 2/4 2/4

1/8 0 0 4/8 3/8

0 1/2 0 1/2 0];

2Thanks to Nando de Freitas for this example.
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It is easy to find all pages that contain a given word3; the problem is to determine the order to return them
to the user. Google uses the Page Rank algorithm, which (roughly speaking) determines the “authority”
of a page by the number of times it is linked to (directly or indirectly). More precisely, Google treats the
web as a Markov chain, and solves for its stationary distribution π (the principal eigenvector of T ) using the
power method. The authority of page i is then πi; Google returns answers to queries in order of decreasing
probability under the distribution π.

Since the web is a finite state Markov chain, we can guarantee the existence of a unique stationary
distribution by ensuring that the graph is irreducible; this will ensure that all states are (non-null) recurrent.
We can do this by connecting each node to every other node with a small probability ε. (This simulates
jumping to a random web page.) Finally we need to ensure all states are aperiodic; we do this by adding a
self-loop with small probability ε. The remaining probability mass is divided evenly amongst all the original
outgoing hyperlinks.

In the example in Figure 6, we find that the stationary distribution is

π = (0.1053, 0.1842, 0.0614, 0.3860, 0.2632) (39)

so the pages are ranked by authority as follows:

π4 > π5 > π2 > π1 > π3 (40)

Hence when we search for “book”, we return the following pages in order: 5 (“The magical mystery book”),
2 (“book sense”), and 1 (“Jungle book: bear necessities”). We do not return pages 3 or 4 since they do not
contain the word “book”.

Note that, when the web changes its structure slightly, from T to T ′, we can efficiently compute π′ from
the old values rather than starting from scratch: see [LM06] for details.
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