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Modeling discrete data

• Some data is discrete/ symbolic, e.g., words, DNA sequences, etc.

•We want to build probabilistic models of discrete data p(X|M ) for
use in classification, clustering, segmentation, novelty detection,
etc.

•We will start with models (density functions) of a single
categorical random variable X ∈ {1, . . . ,K}. (Categorical
means the values are unordered, not low/ medium/ high).

• Today we will focus on K = 2 states, i.e., binary data.

• Later we will build models for multiple discrete random variables.
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Bernoulli distribution

• Let X ∈ {0, 1} represent tails/ heads.

• Suppose P (X = 1) = θ. Then

P (x|θ) = Be(X|θ) = θx(1 − θ)1−x

• It is easy to show that

E[X ] = θ, Var[X ] = θ(1 − θ)

• Given D = (x1, . . . , xN ), the likelihood is

p(D|θ) =

N
∏

n=1

p(xn|θ) =

N
∏

n=1

θxn(1 − θ)1−xn = θN1(1 − θ)N0

where N1 =
∑

n xn is the number of heads and N0 =
∑

n(1 − xn)
is the number of tails (sufficient statistics). Obviously N = N0+N1.
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Binomial distribution

• Let X ∈ {1, . . . , N} represent the number of heads in N trials.
Then X has a binomial distribution

p(X|N ) =

(

N
X

)

θX(1 − θ)N−X

where
(

N
X

)

=
N !

(N − X)!X !
is the number of ways to choose X items from N .

•We will rarely use this distribution.
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Parameter estimation

• Suppose we have a coin with probability of heads θ. How do we
estimate θ from a sequence of coin tosses D = (X1, . . . , Xn),
where Xi ∈ {0, 1}?

•One approach is to find a maximum likelhood estimate

θ̂ML = arg max
θ

p(D|θ)

• The Bayesian approach is to treat θ as a random variable and to
use Bayes rule

p(θ|D) =
p(θ)p(D|θ)
∫

θ′ p(θ′, D)

and then to return the posterior mean or mode.

•We will discuss both methods below.
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MLE (maximum likelihood estimate) for bernoulli

• Given D = (x1, . . . , xN ), the likelihood is

p(D|θ) = θN1(1 − θ)N0

• The log-likelihood is

L(θ) = log p(D|θ) = N1 log θ + N0 log(1 − θ)

• Solving for dL
dθ = 0 yields

θML =
N1

N1 + N0
=

N1

N
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Problems with the MLE

• Suppose we have seen N1 = 0 heads out of N = 3 trials. Then we
predict that heads are impossible!

θML =
N1

N
=

0

3
= 0

• This is an example of the sparse data problem: if we fail to see
something in the training set (e.g., an unknown word), we predict
that it can never happen in the future.

•We will now see how to solve this pathology using Bayesian estima-
tion.

7



Bayesian parameter estimation

• The Bayesian approach is to treat θ as a random variable and to use
Bayes rule

p(θ|D) =
p(θ)p(D|θ)
∫

θ′ p(θ′, D)

•We need to specify a prior p(θ). This reflects our subjective beliefs
about what possible values of θ are plausible, before we have seen
any data.

•We will discuss various “objective” priors below.
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The beta distribution

We will assume the prior distribution is a beta distribution,

p(θ) = Be(θ|α1, α0) ∝ [θα1−1(1 − θ)α0−1]

This is also written as θ ∼ Be(α1, α0) where α0, α1 are called hyper-

parameters, since they are parameters of the prior. This distribution
satisfies

Eθ =
α1

α0 + α1

mode θ =
α1 − 1

α0 + α1 − 2
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Conjugate priors

• A prior p(θ) is called conjugate if, when multiplied by the likelihood
p(D|θ), the resulting posterior is in the same parametric family as
the prior. (Closed under Bayesian updating.)

• The Beta prior is conjugate to the Bernoulli likelihood

P (θ|D) ∝ P (D|θ)P (θ) = p(D|θ)Be(θ|α1, α0)

∝ [θN1(1 − θ)N0][θα1−1(1 − θ)α0−1]

= θN1+α1−1(1 − θ)N0+α0−1

∝ Be(θ|α1 + N1, α0 + N0)

• e.g., start with Be(θ|2, 2) and observe x = 1 to get Be(θ|3, 2), so
the mean shifts from E[θ] = 2/4 to E[θ|D] = 3/5.

•We see that the hyperparameters α1, α0 act like “pseudo counts”,
and correspond to the number of “virtual” heads/tails.

• α = α0 + α1 is called the effective sample size (strength) of the
prior, since it plays a role analogous to N = N0 + N1.
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Bayesian updating in pictures

• Start with Be(θ|α0 = 2, α1 = 2) and observe x = 1, so the posterior
is Be(θ|α0 = 3, α1 = 2).

thetas = 0:0.01:1;

alpha1 = 2; alpha0 = 2; N1=1; N0=0; N = N1+N0;

prior = betapdf(thetas, alpha1, alpha1);

lik = thetas.^N1 .* (1-thetas).^N0;

post = betapdf(thetas, alpha1+N1, alpha0+N0);

subplot(1,3,1);plot(thetas, prior);

subplot(1,3,2);plot(thetas, lik);

subplot(1,3,3);plot(thetas, post);
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Sequential Bayesian updating
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Sequential Bayesian updating

• Start with Be(θ|α1, α0) and observe N0, N1 to get
Be(θ|α1 + N1, α0 + N0).

• Treat the posterior as a new prior: define α′
0 = α0 + N0, α′

1 =
α1 + N1, so p(θ|N0, N1) = Be(θ|α′

1, α
′
0).

• Now see a new set of data, N ′
0, N

′
1 to get get the new posterior

p(θ|N0, N1, N
′
0, N

′
1) = Be(θ|α′

1 + N ′
1, α

′
0 + N ′

0)

= Be(θ|α1 + N1 + N ′
1, α0 + N0 + N ′

0)

• This is equivalent to combining the two data sets into one big data
set with counts N0 + N ′

0 and N1 + N ′
1.

• The advantage of sequential updating is that you can learn online,
and don’t need to store the data.
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Point estimates

• p(θ|D) is the full posterior distribution. Sometimes we want to
collapse this to a single point. It is common to pick the posterior
mean or posterior mode.

• If θ ∼ Be(α1, α0), then Eθ = α1
α , mode θ = α1−1

α−2 .

• Hence the MAP (maximum a posterior) estimate is

θ̂MAP = arg max
θ

p(D|θ)p(θ) =
α1 + N1 − 1

α + N − 2

• The posterior mean is

θ̂mean =
α1 + N1

α + N

• The maximum likelihood estimate is

θ̂MLE =
N1

N
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Posterior predictive distribution

• The posterior predictive distribution is

p(X = 1|D) =

∫ 1

0
p(X = 1|θ)p(θ|D)dθ

=

∫ 1

0
θ p(θ|D)dθ = E[θ|D]

=
N1 + α1

N1 + N0 + α1 + α0
=

N1 + α1

N + α

•With a uniform prior α0 = α1 = 1, we get Laplace’s rule of succes-
sion

p(X = 1|N1, N0) =
N1 + 1

N1 + N0 + 2

• eg. if we see D = 1, 1, 1, . . ., our predicted probability of heads
steadily increases: 1

2,
2
3,

3
4, ...
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Plug-in estimates

• Rather than integrating over the posterior, we can pick a single point
estimate of θ and make predictions using that.

p(X = 1|D, θ̂ML) =
N1

N

p(X = 1|D, θ̂mean) =
N1 + α1

N + α

p(X = 1|D, θ̂MAP ) =
N1 + α1 − 1

N + α − 2

• In this case the full posterior predictive density p(X = 1|D) is the
same as the plug-in estimate using the posterior mean parameter
p(X = 1|D, θ̂mean).
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Posterior mean

• The posterior mean is a convex combination of the prior mean
α′

1 = α1/α and the MLE N1/N :

θ̂mean =
α1 + N1

α + N

=
α′

1α

α + N
+

N

α + N

N1

N

= λα′
1 + (1 − λ)

N1

N
where

λ =
α

N + α
is the prior weight relative to the total weight.

• (We will derive a similar result later for Gaussians.)
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Effect of prior strength

• Suppose we weakly believe in a fair coin, p(θ) = Be(1, 1).

• If N1 = 3, N0 = 7 then p(θ|D) = Be(4, 8) so E[θ|D] = 4/12 =
0.33.

• Suppose we strongly believe in a fair coin, p(θ) = Be(10, 10).

• If N1 = 3, N0 = 7 then p(θ|D) = Be(13, 17) so E[θ|D] = 13/30 =
0.43.

•With a strong prior, we need a lot of data to move away from our
initial beliefs.
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Uninformative/ objective/ reference prior

• If α0 = α1 = 1, then Be(θ|α1, α0) is uniform, which seems like an
uninformative prior.
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• But since the posterior predictive is

p(X = 1|N1, N0) =
N1 + α1

N + α
α1 = α0 = 0 is a better definition of uninformative, since then the
posterior mean is the MLE.

• Note that as α0, α1→0, the prior becomes bimodal.

• This shows that a uniform prior is not always uninformative.
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From coins to dice: multinomial distribution

• Let X ∈ {1, . . . ,K} have distribution

p(X = k|θ) = θk = θ
I(X=1)
1 θ

I(X=2)
2 · · · θ

I(X=k)
K

This is called a multinomial distribution. We require 0 ≤ θk ≤ 1

and
∑K

k=1 θk = 1.

• I(e) = 1 if event e is true, and I(e) = 0 otherwise (the indicator
function).

• e.g., a fair dice has θk = 1/6 for k = 1 : 6.

• Sometimes instead of writing X = k we will use a one-of-K
encoding. Specifically, [x] ∈ {0, 1}K with the k’th bit on means
X = k. eg. if x = 3 and K = 6, then [x] = (0, 0, 1, 0, 0, 0).
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Maximum likelihood estimation

• Suppose we observe N iid die rolls (K-sided): D=3,1,6,2,. . .

• The log likelihood of the data is given by

`(θ; D) = log p(D|θ) = log
∏

m

p(xm|θ)

=
∑

m

log
∏

k

θ
I(xm=k)
k

=
∑

m

∑

k

I(xm = k) log θk =
∑

k

Nk log θk

• The sufficient statistics are the counts Nk =
∑

m I(Xm = k),

•We need to maximize this subject to the constraint
∑

k θk = 1, so
we use a Lagrange multiplier.
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Maximum likelihood estimation

• Constrained cost function:

l̃ =
∑

k

Nk log θk + λ



1 −
∑

k

θk





• Take derivatives wrt θk:

∂l̃

∂θk
=

Nk

θk
− λ = 0

Nk = λθk
∑

k

Nk = N = λ
∑

k

θk = λ

θ̂k =
Nk

N

• θ̂k is the fraction of times k occurs.
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MLE Example

• Suppose K = 6 and we see D = (1, 6, 1, 2) so N = 4. Then

θ̂ = (2/4, 1/4, 0/4, 0/4, 0/4, 1/4)
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Bayesian estimation

•We will now consider Bayesian estimates p(θ|D).

•We just replace the bernoulli likelihood with a multinomial likelihood,
and replace the beta prior with a Dirichlet prior.
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Dirichlet priors

A Dirichlet prior generalizes the beta from binary variables to K-ary
variables.

p(θ|α) = D(θ|α) ∝ θ
α1−1
1 · θ

α2−1
2 · · · θ

αK−1
K
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Properties of the Dirichlet distribution

• If θ ∼ Dir(θ|α1, . . . , αK), then

E[θk] =
αk

α

mode[θk] =
αk − 1

α − K

where α
def
=

∑K
k=1 αk is the total strength of the prior.
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Dirichlet-multinomial model

By analogy to the Beta-bernoulli case, we can just write down the
likelihood, prior, posterior and predictive as follows

P ( ~N |~θ) =

K
∏

i=1

θ
Ni
i

p(θ|α) = D(θ|α) ∝ θ
α1−1
1 · θ

α2−1
2 · · · θ

αK−1
K

p(θ| ~N, ~α) = D(α1 + N1, . . . , αK + NK)

p(X = k|D) = E[θk|D] =
Nk + αk

N + α
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