# CS340: MACHINE LEARNING

# Modelling discrete data with Bernoulli and multinomial distributions

KEVIN MURPHY

#### Modeling discrete data

- Some data is discrete/ symbolic, e.g., words, DNA sequences, etc.
- We want to build probabilistic models of discrete data p(X|M) for use in classification, clustering, segmentation, novelty detection, etc.
- We will start with models (density functions) of a single  $\mathbf{categorical}$  random variable  $X \in \{1, \dots, K\}$ . (Categorical means the values are unordered, not low/ medium/ high).
- ullet Today we will focus on K=2 states, i.e., binary data.
- Later we will build models for multiple discrete random variables.

## BERNOULLI DISTRIBUTION

- Let  $X \in \{0,1\}$  represent tails/ heads.
- Suppose  $P(X=1)=\theta$ . Then

$$P(x|\theta) = \mathsf{Be}(X|\theta) = \theta^x (1-\theta)^{1-x}$$

• It is easy to show that

$$E[X] = \theta, \quad Var[X] = \theta(1 - \theta)$$

• Given  $D = (x_1, \dots, x_N)$ , the likelihood is

$$p(D|\theta) = \prod_{n=1}^{N} p(x_n|\theta) = \prod_{n=1}^{N} \theta^{x_n} (1-\theta)^{1-x_n} = \theta^{N_1} (1-\theta)^{N_0}$$

where  $N_1 = \sum_n x_n$  is the number of heads and  $N_0 = \sum_n (1 - x_n)$  is the number of tails (sufficient statistics). Obviously  $N = N_0 + N_1$ .

#### BINOMIAL DISTRIBUTION

• Let  $X \in \{1, \dots, N\}$  represent the number of heads in N trials. Then X has a binomial distribution

$$p(X|N) = \left(X\right) \theta^X (1-\theta)^{N-X}$$

where

$$\binom{N}{X} = \frac{N!}{(N-X)!X!}$$

is the number of ways to choose X items from N.

We will rarely use this distribution.

#### PARAMETER ESTIMATION

- Suppose we have a coin with probability of heads  $\theta$ . How do we estimate  $\theta$  from a sequence of coin tosses  $D=(X_1,\ldots,X_n)$ , where  $X_i\in\{0,1\}$ ?
- One approach is to find a maximum likelhood estimate

$$\hat{\theta}_{ML} = \arg\max_{\theta} p(D|\theta)$$

ullet The Bayesian approach is to treat heta as a random variable and to use Bayes rule

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{\int_{\theta'} p(\theta', D)}$$

and then to return the posterior mean or mode.

We will discuss both methods below.

# MLE (MAXIMUM LIKELIHOOD ESTIMATE) FOR BERNOULLI

ullet Given  $D=(x_1,\ldots,x_N)$ , the likelihood is

$$p(D|\theta) = \theta^{N_1} (1 - \theta)^{N_0}$$

The log-likelihood is

$$L(\theta) = \log p(D|\theta) = N_1 \log \theta + N_0 \log(1 - \theta)$$

• Solving for  $\frac{dL}{d\theta} = 0$  yields

$$\theta_{ML} = \frac{N_1}{N_1 + N_0} = \frac{N_1}{N}$$

#### PROBLEMS WITH THE MLE

• Suppose we have seen  $N_1 = 0$  heads out of N = 3 trials. Then we predict that heads are impossible!

$$\theta_{ML} = \frac{N_1}{N} = \frac{0}{3} = 0$$

- This is an example of the *sparse data problem*: if we fail to see something in the training set (e.g., an unknown word), we predict that it can never happen in the future.
- We will now see how to solve this pathology using Bayesian estimation.

#### BAYESIAN PARAMETER ESTIMATION

ullet The Bayesian approach is to treat heta as a random variable and to use Bayes rule

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{\int_{\theta'} p(\theta', D)}$$

- We need to specify a prior  $p(\theta)$ . This reflects our subjective beliefs about what possible values of  $\theta$  are plausible, before we have seen any data.
- We will discuss various "objective" priors below.

#### THE BETA DISTRIBUTION

We will assume the prior distribution is a beta distribution,

$$p(\theta) = Be(\theta|\alpha_1, \alpha_0) \propto [\theta^{\alpha_1 - 1}(1 - \theta)^{\alpha_0 - 1}]$$

This is also written as  $\theta \sim Be(\alpha_1, \alpha_0)$  where  $\alpha_0, \alpha_1$  are called **hyper-**parameters, since they are parameters of the prior. This distribution satisfies

$$E\theta = \frac{\alpha_1}{\alpha_0 + \alpha_1}$$
 
$$\text{mode } \theta = \frac{\alpha_1 - 1}{\alpha_0 + \alpha_1 - 2}$$



#### Conjugate priors

- ullet A prior  $p(\theta)$  is called conjugate if, when multiplied by the likelihood  $p(D|\theta)$ , the resulting posterior is in the same parametric family as the prior. (Closed under Bayesian updating.)
- The Beta prior is conjugate to the Bernoulli likelihood

$$P(\theta|D) \propto P(D|\theta)P(\theta) = p(D|\theta)Be(\theta|\alpha_1, \alpha_0)$$

$$\propto [\theta^{N_1}(1-\theta)^{N_0}][\theta^{\alpha_1-1}(1-\theta)^{\alpha_0-1}]$$

$$= \theta^{N_1+\alpha_1-1}(1-\theta)^{N_0+\alpha_0-1}$$

$$\propto Be(\theta|\alpha_1+N_1, \alpha_0+N_0)$$

- ullet e.g., start with  $Be(\theta|2,2)$  and observe x=1 to get  $Be(\theta|3,2)$ , so the mean shifts from  $E[\theta]=2/4$  to  $E[\theta|D]=3/5$ .
- We see that the hyperparameters  $\alpha_1$ ,  $\alpha_0$  act like "pseudo counts", and correspond to the number of "virtual" heads/tails.
- $\alpha = \alpha_0 + \alpha_1$  is called the effective sample size (strength) of the prior, since it plays a role analogous to  $N = N_0 + N_1$ .

#### Bayesian updating in pictures

• Start with  $Be(\theta|\alpha_0=2,\alpha_1=2)$  and observe x=1, so the posterior is  $Be(\theta|\alpha_0=3,\alpha_1=2)$ .

```
thetas = 0:0.01:1;
alpha1 = 2; alpha0 = 2; N1=1; N0=0; N = N1+N0;
prior = betapdf(thetas, alpha1, alpha1);
lik = thetas.^N1 .* (1-thetas).^N0;
post = betapdf(thetas, alpha1+N1, alpha0+N0);
subplot(1,3,1);plot(thetas, prior);
subplot(1,3,2);plot(thetas, lik);
subplot(1,3,3);plot(thetas, post);
```



# SEQUENTIAL BAYESIAN UPDATING



# SEQUENTIAL BAYESIAN UPDATING

- Start with  $Be(\theta|\alpha_1,\alpha_0)$  and observe  $N_0,N_1$  to get  $Be(\theta|\alpha_1+N_1,\alpha_0+N_0)$ .
- Treat the posterior as a new prior: define  $\alpha_0' = \alpha_0 + N_0$ ,  $\alpha_1' = \alpha_1 + N_1$ , so  $p(\theta|N_0, N_1) = Be(\theta|\alpha_1', \alpha_0')$ .
- ullet Now see a new set of data,  $N_0', N_1'$  to get get the new posterior

$$p(\theta|N_0, N_1, N_0', N_1') = Be(\theta|\alpha_1' + N_1', \alpha_0' + N_0')$$
  
=  $Be(\theta|\alpha_1 + N_1 + N_1', \alpha_0 + N_0 + N_0')$ 

- This is equivalent to combining the two data sets into one big data set with counts  $N_0 + N_0'$  and  $N_1 + N_1'$ .
- The advantage of sequential updating is that you can learn online, and don't need to store the data.

#### Point estimates

- $p(\theta|D)$  is the full posterior distribution. Sometimes we want to collapse this to a single point. It is common to pick the posterior mean or posterior mode.
- If  $\theta \sim Be(\alpha_1, \alpha_0)$ , then  $E\theta = \frac{\alpha_1}{\alpha}$ , mode  $\theta = \frac{\alpha_1 1}{\alpha 2}$ .
- Hence the MAP (maximum a posterior) estimate is

$$\hat{\theta}_{MAP} = \arg\max_{\theta} p(D|\theta)p(\theta) = \frac{\alpha_1 + N_1 - 1}{\alpha + N - 2}$$

The posterior mean is

$$\hat{\theta}_{mean} = \frac{\alpha_1 + N_1}{\alpha + N}$$

The maximum likelihood estimate is

$$\hat{\theta}_{MLE} = \frac{N_1}{N}$$

#### Posterior predictive distribution

• The posterior predictive distribution is

$$p(X = 1|D) = \int_{0}^{1} p(X = 1|\theta)p(\theta|D)d\theta$$

$$= \int_{0}^{1} \theta \ p(\theta|D)d\theta = E[\theta|D]$$

$$= \frac{N_{1} + \alpha_{1}}{N_{1} + N_{0} + \alpha_{1} + \alpha_{0}} = \frac{N_{1} + \alpha_{1}}{N + \alpha_{1}}$$

ullet With a uniform prior  $lpha_0=lpha_1=1$ , we get Laplace's rule of succession

$$p(X = 1|N_1, N_0) = \frac{N_1 + 1}{N_1 + N_0 + 2}$$

• eg. if we see  $D=1,1,1,\ldots$ , our predicted probability of heads steadily increases:  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...

#### PLUG-IN ESTIMATES

ullet Rather than integrating over the posterior, we can pick a single point estimate of heta and make predictions using that.

$$p(X = 1|D, \hat{\theta}_{ML}) = \frac{N_1}{N}$$

$$p(X = 1|D, \hat{\theta}_{mean}) = \frac{N_1 + \alpha_1}{N + \alpha}$$

$$p(X = 1|D, \hat{\theta}_{MAP}) = \frac{N_1 + \alpha_1 - 1}{N + \alpha - 2}$$

• In this case the full posterior predictive density p(X=1|D) is the same as the plug-in estimate using the posterior mean parameter  $p(X=1|D,\hat{\theta}_{mean})$ .

#### Posterior mean

• The posterior mean is a convex combination of the prior mean  $\alpha_1' = \alpha_1/\alpha$  and the MLE  $N_1/N$ :

$$\hat{\theta}_{mean} = \frac{\alpha_1 + N_1}{\alpha + N}$$

$$= \frac{\alpha'_1 \alpha}{\alpha + N} + \frac{N}{\alpha + N} \frac{N_1}{N}$$

$$= \lambda \alpha'_1 + (1 - \lambda) \frac{N_1}{N}$$

where

$$\lambda = \frac{\alpha}{N + \alpha}$$

is the prior weight relative to the total weight.

• (We will derive a similar result later for Gaussians.)

## Effect of prior strength

- ullet Suppose we weakly believe in a fair coin,  $p(\theta) = Be(1,1)$ .
- If  $N_1 = 3, N_0 = 7$  then  $p(\theta|D) = Be(4,8)$  so  $E[\theta|D] = 4/12 = 0.33$ .
- Suppose we strongly believe in a fair coin,  $p(\theta) = Be(10, 10)$ .
- If  $N_1 = 3$ ,  $N_0 = 7$  then  $p(\theta|D) = Be(13, 17)$  so  $E[\theta|D] = 13/30 = 0.43$ .
- With a strong prior, we need a lot of data to move away from our initial beliefs.

# Uninformative/ objective/ reference prior

• If  $\alpha_0 = \alpha_1 = 1$ , then  $Be(\theta | \alpha_1, \alpha_0)$  is uniform, which seems like an uninformative prior.



But since the posterior predictive is

$$p(X = 1|N_1, N_0) = \frac{N_1 + \alpha_1}{N + \alpha}$$

 $\alpha_1 = \alpha_0 = 0$  is a better definition of uninformative, since then the posterior mean is the MLE.

- Note that as  $\alpha_0, \alpha_1 \rightarrow 0$ , the prior becomes bimodal.
- This shows that a uniform prior is not always uninformative.

# From coins to dice: multinomial distribution

• Let  $X \in \{1, \dots, K\}$  have distribution

$$p(X = k | \theta) = \theta_k = \theta_1^{I(X=1)} \theta_2^{I(X=2)} \cdots \theta_K^{I(X=k)}$$

This is called a multinomial distribution. We require  $0 \le \theta_k \le 1$  and  $\sum_{k=1}^K \theta_k = 1$ .

- $\bullet$  I(e)=1 if event e is true, and I(e)=0 otherwise (the indicator function).
- $\bullet$  e.g., a fair dice has  $\theta_k = 1/6$  for k = 1:6.
- ullet Sometimes instead of writing X=k we will use a one-of-K encoding. Specifically,  $[x]\in\{0,1\}^K$  with the k'th bit on means X=k. eg. if x=3 and K=6, then [x]=(0,0,1,0,0,0).

## MAXIMUM LIKELIHOOD ESTIMATION

- Suppose we observe N iid die rolls (K-sided): D=3,1,6,2,...
- The log likelihood of the data is given by

$$\ell(\theta; D) = \log p(D|\theta) = \log \prod_{m} p(x_m|\theta)$$

$$= \sum_{m} \log \prod_{k} \theta_k^{I(x^m = k)}$$

$$= \sum_{m} \sum_{k} I(x^m = k) \log \theta_k = \sum_{k} N_k \log \theta_k$$

- ullet The sufficient statistics are the counts  $N_k = \sum_m I(X_m = k)$ ,
- We need to maximize this subject to the constraint  $\sum_k \theta_k = 1$ , so we use a Lagrange multiplier.

# MAXIMUM LIKELIHOOD ESTIMATION

• Constrained cost function:

$$\tilde{l} = \sum_{k} N_k \log \theta_k + \lambda \left( 1 - \sum_{k} \theta_k \right)$$

• Take derivatives wrt  $\theta_k$ :

$$\frac{\partial \hat{l}}{\partial \theta_k} = \frac{N_k}{\theta_k} - \lambda = 0$$

$$N_k = \lambda \theta_k$$

$$\sum_k N_k = N = \lambda \sum_k \theta_k = \lambda$$

$$\hat{\theta}_k = \frac{N_k}{N}$$

ullet  $\hat{\theta}_k$  is the fraction of times k occurs.

# MLE EXAMPLE

• Suppose K=6 and we see D=(1,6,1,2) so N=4. Then  $\hat{\theta} = (2/4,1/4,0/4,0/4,0/4,1/4)$ 

## BAYESIAN ESTIMATION

- ullet We will now consider Bayesian estimates  $p(\theta|D)$ .
- We just replace the bernoulli likelihood with a multinomial likelihood, and replace the beta prior with a Dirichlet prior.

#### DIRICHLET PRIORS

A Dirichlet prior generalizes the beta from binary variables to K-ary variables.

$$p(\theta|\alpha) = \mathcal{D}(\theta|\alpha) \propto \theta_1^{\alpha_1 - 1} \cdot \theta_2^{\alpha_2 - 1} \cdots \theta_K^{\alpha_K - 1}$$





## Properties of the Dirichlet distribution

• If  $\theta \sim Dir(\theta | \alpha_1, \dots, \alpha_K)$ , then

$$E[\theta_k] = \frac{\alpha_k}{\alpha}$$
 
$$\mathsf{mode}[\theta_k] = \frac{\alpha_k - 1}{\alpha - K}$$

where  $\alpha \stackrel{\text{def}}{=} \sum_{k=1}^{K} \alpha_k$  is the total strength of the prior.

## DIRICHLET-MULTINOMIAL MODEL

By analogy to the Beta-bernoulli case, we can just write down the likelihood, prior, posterior and predictive as follows

$$P(\vec{N}|\vec{\theta}) = \prod_{i=1}^{K} \theta_i^{N_i}$$

$$p(\theta|\alpha) = \mathcal{D}(\theta|\alpha) \propto \theta_1^{\alpha_1 - 1} \cdot \theta_2^{\alpha_2 - 1} \cdots \theta_K^{\alpha_K - 1}$$

$$p(\theta|\vec{N}, \vec{\alpha}) = \mathcal{D}(\alpha_1 + N_1, \dots, \alpha_K + N_K)$$

$$p(X = k|D) = E[\theta_k|D] = \frac{N_k + \alpha_k}{N + \alpha}$$