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MODELING DISCRETE DATA

e Some data is discrete/ symbolic, e.g., words, DNA sequences, etc.

e We want to build probabilistic models of discrete data p(X |M) for
use in classification, clustering, segmentation, novelty detection,
etc.

e We will start with models (density functions) of a single
categorical random variable X € {1,..., K'}. (Categorical
means the values are unordered, not low/ medium/ high).

e Today we will focus on K = 2 states, i.e., binary data.

e Later we will build models for multiple discrete random variables.



BERNOULLI DISTRIBUTION

olLet X € {0,1} represent tails/ heads.
e Suppose P(X = 1) =6. Then
P(z]0) = Be(X ) = 6%(1 — 9)1 7
e It is easy to show that
E|X]=86, Var[X|=0(1—-20)
o Given D = (xl, ...,z ), the likelihood is

N
p(D|6) = H p(anlf) = ] 01— 0)! = = 0™M1(1 — 0)"™

where N| = Zn Ty, is the number of heads and Ny =>_ (1 — xp)
is the number of tails (sufficient statistics). Obviously N = Ny+ Vj.



BINOMIAL DISTRIBUTION

elet X € {1,..., N} represent the number of heads in N trials.
Then X has a binomial distribution

pXIN) = (1) 651 - )N
@ (N —N)!()!X!

is the number of ways to choose X items from V.

where

e We will rarely use this distribution.



PARAMETER ESTIMATION

e Suppose we have a coin with probability of heads 8. How do we
estimate 6 from a sequence of coin tosses D = (X1,..., Xy),

where X; € {0,1}7
e One approach is to find a maximum likelhood estimate

O = arg meaxp(D\H)

e The Bayesian approach is to treat 6 as a random variable and to

use Bayes rule Op(DI6)
__ DP\W)p
p(e’D) o fg/p<9,7D)

and then to return the posterior mean or mode.

e We will discuss both methods below.



MLE (MAXIMUM LIKELIHOOD ESTIMATE) FOR BERNOULLI

e Given D = (x1,...,x)), the likelihood is
p(D]0) = 671 (1 - 6)™
e [ he log-likelihood is
L(@) = logp(D|f) = Njlog6 + Nglog(1l — 0)

e Solving for & d@ = 0 yields
0. _ Ny
ML Ni1+Ny N




PROBLEMS WITH THE MLE

e Suppose we have seen N1 = 0 heads out of N = 3 trials. Then we
predict that heads are impossible!

Ny 0
9 = — = — = O
ML N 3
e This is an example of the sparse data problem: if we fail to see

something in the training set (e.g., an unknown word), we predict
that it can never happen in the future.

e \We will now see how to solve this pathology using Bayesian estima-
tion.



BAYESIAN PARAMETER ESTIMATION

e The Bayesian approach is to treat 6 as a random variable and to use

Bayes rule
p(0)p(D|0)
p(0|D) = ;
fg’p<9 ) D)
e We need to specify a prior p(f). This reflects our subjective beliefs

about what possible values of 6 are plausible, before we have seen
any data.

e We will discuss various “objective” priors below.



'THE BETA DISTRIBUTION

We will assume the prior distribution is a beta distribution,
p(0) = Be(Blay, ag) o [0 (1 — 6)*0 ]
This is also written as 6 ~ Be(aq, o) where aq, o are called hyper-

parameters, since they are parameters of the prior. This distribution
satisfies

BH = — 1
Q) + o
— 1
mode 0 = 4
oy + a1 — 2

a=0.10, b=0.10
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CONJUGATE PRIORS

e A prior p(f) is called conjugate if, when multiplied by the likelihood
p(D|0), the resulting posterior is in the same parametric family as
the prior. (Closed under Bayesian updating.)

e [ he Beta prior is conjugate to the Bernoulli likelihood
P(0|D) o< P(D|0)P(0) = p(D|0)Be(6]ou, o)
o [9V(1 — 9)M][9 (1 — 6) 0]
_ HNl—I-Ckl—l(l o Q)NQ—I-CY()—I
x Be(0|a1 + N1, ag + Np)
e c.g., start with Be(0|2,2) and observe x = 1 to get Be(0]3,2), so
the mean shifts from E|0]| = 2/4 to E[0|D] = 3/5.

e \We see that the hyperparameters a1, o act like “pseudo counts”,
and correspond to the number of “virtual” heads/tails.

e = o+ ay is called the effective sample size (strength) of the
prior, since it plays a role analogous to NV = Ny + Vj.
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BAYESIAN UPDATING IN PICTURES

e Start with Be(f|ag = 2, a1 = 2) and observe x = 1, so the posterior
is Be(f|lag = 3,a1 = 2).

thetas = 0:0.01:1;

alphal = 2; alphaO = 2; N1=1; NO=0; N = N1+NO;

prior = betapdf (thetas, alphal, alphal);

1ik = thetas. N1 .*x (1-thetas). NO;

post = betapdf (thetas, alphal+N1l, alphaO+NO);

subplot(1,3,1);plot(thetas, prior);

subplot(1,3,2);plot(thetas, 1ik);

subplot(1,3,3);plot(thetas, post);

p(8)=Be(2,2) p(x=18) p(BIx=1)=Be(3,2)
2 2 2
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SEQUENTIAL BAYESIAN UPDATING

p(B)=Be(2,2) p(x=1|6)
2 2
15 15
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p(8)=Be(3,2) p(x=1/6)
2 2
15 15
1 1
0.5 0.5
0 0
0 0.5 0 0.5
p(6)=Be(4,2) p(x=1/6)
2 2
15 15
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p(6)=Be(2,2) p(D=1,1,1|6)
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SEQUENTIAL BAYESIAN UPDATING

e Start with Be(f|aq, ag) and observe Ny, Nj to get
Be(8|ay + Ny, a9 + Np).

e [reat the posterior as a new prior: define 046 = ag + Ny, o/l =

aq + N1, so p(0| Ny, N1) = Be(0]af, o).
e Now see a new set of data, N(’), N{ to get get the new posterior
p(0]No, N1, N, N1) = Be(f]a + N1, oy + Np)
= Be(f|ay + Ny + NJ,ag+ Ny + N})

e This is equivalent to combining the two data sets into one big data
set with counts Vg + Né and Ny + N{.

e The advantage of sequential updating is that you can learn online,
and don't need to store the data.
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POINT ESTIMATES

e p(0| D) is the full posterior distribution. Sometimes we want to
collapse this to a single point. It is common to pick the posterior
mean or posterior mode.

o If 0 ~ Be(ay, ay), then £ ==L, mode 0 = 21.

O{ !

e Hence the MAP (maximum a posterior) estimate is
a1+ Ny — 1
a+ N —2

Orrap = arg mgXP(DW)p(Q) =

e [ he posterior mean is

é aq —+ N1
mean — ()4—|—N
e [ he maximum likelihood estimate is
N1

OvLE = ~
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POSTERIOR PREDICTIVE DISTRIBUTION

e [ he posterior predictive distribution is

1
p(X =1|D) = /O p(X = 110)p(6] D)d6

1
_/ 9 p(6|D)do = E[6| D)
0
N1+ aq B N1+ aq

N1+ Ny + a1 + ag N + «

e With a uniform prior ap = a1 = 1, we get Laplace’s rule of succes-

sion Ny +1
1
X =1|N1,Ng) =
p< ‘ 1 O) N1—|-N()-|—2

1,1,..., our predicted probability of heads

ecg. if we see D
steadily increases:
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PLUG-IN ESTIMATES

e Rather than integrating over the posterior, we can pick a single point
estimate of 6 and make predictions using that.

. N,
p(X =1|D,0y1) = ~
A N1+ «
P(X = 1D, bnean) = 7
A Ni+a;—1
X =1\|D.0 =

e In this case the full posterior predictive density p(X = 1|D) is the
same as the plug-in estimate using the posterior mean parameter

p(X — HD) émean)-
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POSTERIOR MEAN

e The posterior mean is a convex combination of the prior mean
oy = a1/a and the MLE Nj/N:

a1+ Ny

a+ N

oo N N

ct N af NN

Ni
— o+ (1 = \N)=—=
Ozl‘l‘( )N

emecm -

where
o

N+«
is the prior weight relative to the total weight.

\ —

e (We will derive a similar result later for Gaussians.)

17



EFFECT OF PRIOR STRENGTH

e Suppose we weakly believe in a fair coin, p(f) = Be(1,1).

olf Ny =3, Ny = 7 then p(0|D) = Be(4,8) so E|0|D| = 4/12 =
0.33.

e Suppose we strongly believe in a fair coin, p(6) = Be(10, 10).

o If Ny =3, Ng="7then p(0|D) = Be(13,17) so E|0|D] = 13/30 =
0.43.

e With a strong prior, we need a lot of data to move away from our
initial beliefs.
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UNINFORMATIVE/ OBJECTIVE/ REFERENCE PRIOR

o If oy = a1 = 1, then Be(f|aq, aq) is uniform, which seems like an
uninformative prior.

25
2
15
1
0.5
0

0 0.2 0.4 0.6 0.8 1

e But since the posterior predictive is

N1+ aq

N + «

a1 = ag = 0 is a better definition of uninformative, since then the
posterior mean is the MLE.

p(X = 1|Ny, Ny) =

e Note that as a, a1—0, the prior becomes bimodal.

e This shows that a uniform prior is not always uninformative.
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FROM COINS TO DICE: MULTINOMIAL DISTRIBUTION

elet X € {1,..., K} have distribution
[(X=1),1(X=2 I[( X=k
p(X = k9) = 6, = 0 “ o K= X
This is called a multinomial distribution. We require 0 < ;. <1
and 25:1 0. =1.

e [(¢) =1 if event e is true, and I(e) = 0 otherwise (the indicator
function).

e c.g., a fair dice has ;. = 1/6 for k =1 : 6.

e Sometimes instead of writing X = k£ we will use a one-of-K
encoding. Specifically, [z] € {0, 1} with the k'th bit on means
X =k. eg. ifx =3 and K =6, then x| = (0,0,1,0,0,0).
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MAXIMUM LIKELIHOOD ESTIMATION

e Suppose we observe N iid die rolls (K-sided): D=3,1,6,2,...
e The log likelihood of the data is given by

0(0; D) = logp(D|0) = long Tm|0)
= ZlogH@ =
—ZZ] 10g¢9k—ZNklog9k

e The sufficient statistics are the counts N;. = Zm I( Xy =k),

e \We need to maximize this subject to the constraint ) ;. 0. = 1, so
we use a Lagrange multiplier.
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MAXIMUM LIKELIHOOD ESTIMATION

e Constrained cost function:

[ =) Nplogp+A 1= 6
k k

e Take derivatives wrt 0.

ol Ny

It S Y
00, 0y
N = M0y,
Y Np=N=X> 6=
k k
~ Nk
H, — _F
RN

) ék is the fraction of times k occurs.
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MLE EXAMPLE

e Suppose K =6 and we see D = (1,6,1,2) so N = 4. Then
0= (2/4,1/4,0/4,0/4,0/4,1/4)
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BAYESIAN ESTIMATION

e We will now consider Bayesian estimates p(6|D).

e We just replace the bernoulli likelihood with a multinomial likelihood,
and replace the beta prior with a Dirichlet prior.
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DIRICHLET PRIORS

A Dirichlet prior generalizes the beta from binary variables to K-ary
variables.

p(0la) = D(Ola) oc 671 05210k

Hay

i

Ha
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PROPERTIES OF THE DIRICHLET DISTRIBUTION

olf 0 ~ Dir(f|lay,...,a), then

Q.
El;] = -
— 1
mode|f] = Uk e
& R

det : :
where a = Z?:l oy is the total strength of the prior.
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DIRICHLET-MULTINOMIAL MODEL

By analogy to the Beta-bernoulli case, we can just write down the
likelihood, prior, posterior and predictive as follows

K
_ HQZNZ
1

’L:

p(0la) = D(@la) oc M- 9527 0K
p(0|N,@) = D(ay + Ny, ..., ax + Ng)

Nk"'()‘k

p(X = kID) = E[fy| D) = ==
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