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Bayesian concept learning cont'd
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Homework 2

Bring In a paper copy to class on Monday

If you can’t come to class, ask a friend to
bring It, or use dropbox #10.

If you use the dropbox, please email the
TAs to tell them to pick it up.

No need to use handin anymore!



Summary of the Bayesian approach

Examples

Hyp. space Size Hypothesis . :
[ + Prior principle averaging Generalize

1. Constrained hypothesis space H
2. Prior p(h)
3. Likelihood p(X]|h)

4. Hypothesis (model) averaging:

ply € C X)=> p(y € C|h)p(h|X)
h



Maximum likelithood

ML learning finds the most likely
hypothesis and then uses the plug-in
principle for prediction.

h = argmaxp(X|h)

pyeC|lX) = p(yeClh)

o Given X={16},» = "powers of 4", given
X={16,8,2,64}, i = "powers of 2".

» So predictive distribution gets broader as
we get more data, in contrast to bayes.



Maximum likelithood

* As the amount of data goes to oo, ML and

Bayes converge to the same solution, since
the likelihood overwhelms the prior, since
p(X]|h) grows with N, but p(h) Is constant.

o This 1s not true If we use weak sampling
model, p(X|h) = d(X € Hy)

o |f truth is in the hypothesis class, both
methods will find it; thus they are both
consistent estimators.



MAP (maximum a posterior) learning

* We find the mode of the posterior, and use It as a
plug-in.
h = argmi?xp(h|X) = arg mf?xp(X|h)p(h)
ply € C|X) = p(y € Clh)
 As N — oo, the posterior peaks around the mode,

so MAP/ML/Bayes solution converge

ply € C1X) =) ply € Clh)p(h|X) — > p(y € C|n)S(h, b)) = p(y € C|h)
h h

« Cannot explain transition from similarity-based
(broad posterior) to rule-based (narrow posterior)



Healthy levels game

P

insulin level

-

cholesterol level

"healthy levels"



Hypothesis space

(a) (b) (c)

-+

+ + _|-_|-
+

+ + +4

= ]

h = (41,42,51,52)

Healthy levels of insulin/ cholestrol must lie between a minimum
and maximum. Healthy levels of a chemical presumably lie between
Zero and a maximum.



Likelihood (strong sampling)

o p(X]h) =1/|h["if all x, € h,
where |h| =s, x s,

* p(X|h) =0 if any x; outside h



Prior p(h)

e Use uninformative, but location and scale-
Invariant, prior (Jeffrey’s principle)

1
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p(h) o

This also happens to be conjugate to p(X|h).
* \We will explain this later...



Posterior predictive

p(y € C|X) = /her(y c Clh)p(h|X)dh

Since the hypothesis space Is continuous, we must use an
Integral instead of a sum...



Insert hairy math

I —a < —r where 315 s1ze of the rectangle. Hence
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To compute the generalization fimction, let us suppese v 13 outside the range spammed by the examples (otherwisze
the probability of gensralization is 1). Without loss of zensrality assume 4 > (. Lat d be the distance from g to the
clozast obzerved example. Then we can compute the munsrator in Equation 1.33 by replacing » with v + o in the limits
of miegration (since we have expanded the range of the data by adding ), wielding
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And the answer Is...

N 1
ply € U|X) = = =
(1 +d1/r1)(1+do/r2).
dl—u
ry x
d; 0 if y € range of X; )

distance of y from closest X;

1Tn—1
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