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Concept learning from positive 
and negative examples



Concept learning from positive 
only examples

How far out should
the rectangle go?
No negative examples
to act as an upper bound.

“Safe levels” of
toxins would
be in lower left



Human learning vs
machine learning/ statistics

• Most ML methods for learning "concepts" 
such as "dog" require a large number of 
positive and negative examples

• But people can learn from small numbers of 
positive only examples (look at the doggy!) 

• This is called "one shot learning"



Everyday inductive leaps
How can we learn so much about . . . 

– Meanings of words
– Properties of natural kinds
– Future outcomes of a dynamic process
– Hidden causal properties of an object
– Causes of a person’s action (beliefs, goals)
– Causal laws governing a domain

. . . from such limited data?



The Challenge
• How do we generalize successfully from very 

limited data?
– Just one or a few examples
– Often only positive examples

• Philosophy: 
– Induction called a “problem”, a “riddle”, a 

“paradox”, a “scandal”, or a “myth”. 
• Machine learning and statistics:

– Focus on generalization from many examples, 
both positive and negative. 



The solution: Bayes’ rule
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The origin of Bayes’ rule

• A simple consequence of using probability 
to represent degrees of belief

• For any two random variables:
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Bayesian inference

• Bayes’ rule:

• What makes a good scientific argument? 
P(H|D) is high if:
– Hypothesis is plausible: P(H) is high 
– Hypothesis strongly predicts the observed data:

P(D|H) is high
– Data are surprising: P(D) is low
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Bayesian inference: key ingredients

• Hypothesis space H
• Prior p(h)
• Likelihood p(D|h)
• Algorithm for computing posterior
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The number game

• Program input: number between 1 and 100
• Program output: “yes” or “no”



The number game

• Learning task:
– Observe one or more positive (“yes”) examples.
– Judge whether other numbers are “yes” or “no”.



The number game

Examples of
“yes” numbers Hypotheses

60

multiples of 10
even numbers

60  80  10  30

multiples of 10
even numbers
? ? ?

60  63  56  59 numbers “near” 60



60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance



Some phenomena to explain:
– People can generalize from just positive examples. 
– Generalization can appear either graded 

(uncertain) or all-or-none (confident).

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance



• H: Hypothesis space of possible concepts:
• X = {x1, . . . , xn}:  n examples of a concept C. 
• Evaluate hypotheses given data using Bayes’ rule:

– p(h) [“prior”]: domain knowledge, pre-existing biases 
– p(X|h) [“likelihood”]: statistical information in examples.
– p(h|X) [“posterior”]: degree of belief that h is the true extension of C.
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Bayesian model



Hypothesis space

• Mathematical properties (~50): 
– odd, even, square, cube, prime, …
– multiples of small integers
– powers of small integers
– same first (or last) digit

• Magnitude intervals (~5000): 
– all intervals of integers with endpoints between 

1 and 100



Likelihood p(X|h)
• Size principle: Smaller hypotheses receive greater 

likelihood, and exponentially more so as n increases.

• Follows from assumption of randomly sampled examples
(strong sampling).

• Captures the intuition of a representative sample. 
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Example of likelihood

• X={20,40,60}
• H1 = multiples of 10 = {10,20,…,100}
• H2 = even numbers = {2,4,…,100}
• H3 = odd numbers = {1,3,…,99}
• P(X|H1) = 1/10 * 1/10 * 1/10
• p(X|H2) = 1/50 * 1/50 * 1/50
• P(X|H3)   = 0



2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

h2

Illustrating the size principle

h1
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Data slightly more of a coincidence under h1
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Prior p(h)

• X={60,80,10,30}
• Why prefer “multiples of 10” over “even 

numbers”?
– Size principle (likelihood)

• Why prefer “multiples of 10” over
“multiples of 10 except 50 and 20”?
– Prior 

• Cannot learn efficiently if we have a uniform prior 
over all 2100 logically possible hypotheses



Need for prior (inductive bias)
• Alpaydin p33
• Consider all 222 = 16 possible

binary functions on 2 binary inputs

• If we observe (x1=0, x2=1, y=0), this 
removes h5, h6, h7, h8, h13, h14, h15, h16

• Still leaves exponentially many hypotheses!



Hierarchical prior



Computing the posterior

• In this talk, we will not worry about 
computational issues (we will perform brute 
force enumeration or derive analytical 
expressions).
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Bayesian Occam’s Razor
• Which hypothesis is better supported by the 

examples {54, 6, 22}?
– “even numbers”
– “numbers between 6 and 54”

• Intuition: simpler hypotheses come from smaller 
(more constrained) hypothesis spaces.
– “Entities should not be multiplied without necessity”
– Prefer models with fewer free parameters.

• Both prior and likelihood contribute to this, since 
p(h|X) \propto p(h) p(X|h) 



Minimum Description Length (MDL)

• Intuition: choose the hypothesis in terms of which 
the data is simplest/cheapest to encode.  

• Basic information theory:
– For a random variable X with distribution P(X = xi), the 

optimal code (shortest expected code length) uses 

bits to represent the proposition that X = xi.
– Examples:

• Coding a uniform distribution over 1, …, 2n

• Alternatively: optimal strategy for playing “Twenty 
Questions”.  

-log P(X = xi)



Relation between Bayes and MDL

• Bayesian inference:

• MDL inference:
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MDL principle

complexity
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