CS340 Machine learning

Lecture 5
| earning theorv cont'd

Some slides are borrowed from Stuart Russell and Thorsten Joachims



Inductive learning

« Simplest form: learn a function from examplesl]
fis the target function
An example is a pair (x, f(x))U

Problem: find a hypothesis h
such that h =f
given a training set of examples[]

(This is a highly simplified model of real learning:
— Ignores prior knowledge
— Assumes examples are given)[



Inductive learning method

« Construct/adjust h to agree with f on training set
* (his consistent if it agrees with fon all examples)[
 E.g., curve fitting:[

fix
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Ockham's razor

 Ockham'’s razor: prefer the simplest hypothesis consistent with data

« Why?
« A simpler hypothesis is less likely to be correct "by chance" and is
therefore more likely to generalize well

fix




Ockham's razor: why?

If we have 2 hypotheses with equally small training error,
how can we pick the right one?

If we pick the wrong one, with enough data, we will
eventually find out.

The amount of data we need (to be sure we pick the right
hypothesis) depends on the complexity of the hypothesis
class.

There are more ways to "accidently" fit the training data if
we have a very flexible hypothesis class.

If we want to avoid the possibility of overfitting, we should
restrict the complexity of the hypothesis class, or use a
larger training set.

(Of course, an overly simple hypothesis class may underfit.)



Empirical risk minimization

The ERM principle says to pick the hypothesis with
the lowest error on the training set.

When does low training error guarantee low
generalization error?

Equivalently, given an observed error rate on a
finite sample, can we bound the expected error rate
on future data? (Empirical process theory)

Bound will depend on size of the hypothesis class.

A very complex hypothesis class can fit anything,
so if it has low training error, this does not mean it
will have low generalization error.



Statistical learning theory

e SLT is concerned with establishing conditions
under which we can say

p(\er"“()?“tmm(h) — efrrortme(h)\ < e) >1—4

 We say that h Is probably approximately correct

e This statement holds if the hypothesis class Is

sufficiently constrained and/or the training set size
Is sufficiently large



Hoeffding/ Chernoff bound

e Imagine estimating the probability of heads
from m iid coin tosses Xy, ..., X, I2’{0 1}

* The probability of making an error of size € IS
bounded by
p < %ixz — 0

> 6) S 26—2m€2
1=1




Training vs generalization error

 Let S =training set, h(A(S)) be the hypothesis
earned by algorithm A on S

» Let errg(h) be error of h on sample S, and errp(h)
ne the true expected error on distribution P

 We want to be sure low training error will give rise
to low generalization error

p(lerrs(h(A(S)) —errp(h(A(S))Zz€e < 4

e We use the union and Chernoff bounds
p(miax lerrs(h;) —errp(h;)| >¢€) < |H|p(3i. lerrg(h;) —errp(h;)| > ¢€)

< 2|H‘6_2m€2



Bounds on err,,.i, - €Ifr,e

e Hence wp , 1-9,

log |H| + log 5

2m

ETTtrue < ETTtrain + \/

 The 2nd term on RHS is the growth function

log |H| + log +
d(m, | H], ) =\/ :

2m




Sample complexity

e TO ensure

p(lerrs(h(A(S)) — errp(h(A(S))| >€) < &

we need this many samples

1

1
m > — (log |H|+1
5o (og\ \+og5>



Finite H, zero training error

e Suppose H is finite, and there exists and h with
zero training error (“truth is in the hypothesis
space")

 We showed last time that prob. exists h 2 H with
high true error rate, but zero training error (i.e., his
consistent), is bounded by

p(3h € H.eerrg(h) =0, errp(h) > ¢) < |H|(1 — €)™ < |H|e™ "
which is tighter than
p(3h € H.lerrg(h) —errp(h)| > ¢€) < 2\H|e_2m62

* Tighter bounds means lower sample complexity.



PAC bounds for finite H, zero training error

 Partition H into H_, an ¢ "ball" around f"*¢, and
H.s=H\H,
 What is the prob. that a "seriously wrong"

hypothesis h, 2 H,.4 Is consistent with m examples

(so we are fooled)? We can use a union bound
error(hy) > €

1 —¢€

(1—¢)™

p(hy agrees with 1 example )

IA A

p(hy agrees with m examples )

The prob of finding such an h, is bounded by

| Hpaal(1 — €)™
[H|(1—¢)"

p(Hpqq contains a consistent hypothesis)

IA A



Infinite H

 What if H is infinite?
« Union bound no longer works.

e Also, many hypotheses may be very similar (eg
rectangles of slightly different size).

 Roughly speaking, we replace log |H| with VC(H).



 Consider a sample S of size m.

 The set of all possible binary labelings realizable by
hypothesis class Hon S is

g (S) = {(h(z1),..., h(zm)) : h € H)

 H shatters S if H can produce all possible labelings
g (S)] =2

 The VC dimensions of H is equal to the maximal
number d of examples that can be shattered

 Intuitively, VC = number free parameters.



VC bounds on err,,.i, - €rf,.

» Thm: wp , 1-8, with d=VCD(H)

eTTtrue < €TTirgin + CID(m, d, 5)

d (log 2™ + 1) +log 4
B d.8) — \/(ogd—l- ) + log 5

m




Structural risk minimization

Errp(h;)) <Erry(h;) + ®(VCdim(H).n, M)

Idea: Structure on

hypothesis space.

P

Goal: Minimize upper bound on \ “‘“H-x_____ ,// /
true error rate. . /
A | -

. EI‘FP(F?/

\ B O(VCdim(H).n.M)

T Errg(h))
opt VCdim(H)

Or use cross validation!



Data dependent bounds

 The bound ®(m,d,d) Is independent of the observed
data set, and is therefore very loose.

 More complex bounds can be derived.

 These depend on the margin, I.e., the degree of
overlap between positive and negative examples

—
-
-
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