CS340 Machine learning Lecture 5 Learning theory cont'd

Some slides are borrowed from Stuart Russell and Thorsten Joachims

Inductive learning

• Simplest form: learn a function from examples

f is the target function

An example is a pair (*x*, *f*(*x*))

Problem: find a hypothesis hsuch that $h \approx f$ given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes examples are given)

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

Ockham's razor

- Ockham's razor: prefer the simplest hypothesis consistent with data
- Why?
- A simpler hypothesis is less likely to be correct "by chance" and is therefore more likely to generalize well

Ockham's razor: why?

- If we have 2 hypotheses with equally small training error, how can we pick the right one?
- If we pick the wrong one, with enough data, we will eventually find out.
- The amount of data we need (to be sure we pick the right hypothesis) depends on the complexity of the hypothesis class.
- There are more ways to "accidently" fit the training data if we have a very flexible hypothesis class.
- If we want to avoid the possibility of overfitting, we should restrict the complexity of the hypothesis class, or use a larger training set.
- (Of course, an overly simple hypothesis class may underfit.)

Empirical risk minimization

- The ERM principle says to pick the hypothesis with the lowest error on the training set.
- When does low training error guarantee low generalization error?
- Equivalently, given an observed error rate on a finite sample, can we bound the expected error rate on future data? (Empirical process theory)
- Bound will depend on size of the hypothesis class.
- A very complex hypothesis class can fit anything, so if it has low training error, this does not mean it will have low generalization error.

Statistical learning theory

 SLT is concerned with establishing conditions under which we can say

 $p(|error_{train}(h) - error_{true}(h)| \le \epsilon) \ge 1 - \delta$

- We say that h is probably approximately correct
- This statement holds if the hypothesis class is sufficiently constrained and/or the training set size is sufficiently large

Hoeffding/ Chernoff bound

- Imagine estimating the probability of heads from m iid coin tosses x₁, ..., x_m, x_i ¿ {0,1}
 The probability of making an error of size ε is
- The probability of making an error of size ϵ is bounded by

$$p\left(\left|\frac{1}{m}\sum_{i=1}^{m}x_{i}-\theta\right| > \epsilon\right) \le 2e^{-2m\epsilon^{2}}$$

Training vs generalization error

- Let S = training set, h(A(S)) be the hypothesis learned by algorithm A on S
- Let err_S(h) be error of h on sample S, and err_P(h) be the true expected error on distribution P
- We want to be sure low training error will give rise to low generalization error

 $p(|err_S(h(A(S)) - err_P(h(A(S)))| \ge \epsilon \le \delta)$

• We use the union and Chernoff bounds $p(\max_{i} |err_{S}(h_{i}) - err_{P}(h_{i})| \ge \epsilon) \le |H| p(\exists i. |err_{S}(h_{i}) - err_{P}(h_{i})| \ge \epsilon)$

$$\leq 2|H|e^{-2m\epsilon^2}$$

Bounds on err_{train} - err_{true}

• Hence wp $_{J}$ 1- δ ,

$$err_{true} < err_{train} + \sqrt{\frac{\log|H| + \log\frac{1}{\delta}}{2m}}$$

• The 2nd term on RHS is the growth function

$$\phi(m, |H|, \delta) = \sqrt{\frac{\log|H| + \log\frac{1}{\delta}}{2m}}$$

Sample complexity

• To ensure

$$p(|err_S(h(A(S)) - err_P(h(A(S)))| \ge \epsilon) \le \delta$$

we need this many samples

$$m \ge \frac{1}{2\epsilon^2} \left(\log |H| + \log \frac{1}{\delta} \right)$$

Finite H, zero training error

- Suppose H is finite, and there exists and h with zero training error ("truth is in the hypothesis space")
- We showed last time that prob. exists h 2 H with high true error rate, but zero training error (i.e., h is consistent), is bounded by

 $p(\exists h \in H.err_S(h) = 0, \ err_P(h) > \epsilon) \le |H|(1-\epsilon)^m \le |H|e^{-\epsilon m}$

which is tighter than

 $p(\exists h \in H. |err_S(h) - err_P(h)| > \epsilon) \le 2|H|e^{-2m\epsilon^2}$

• Tighter bounds means lower sample complexity.

PAC bounds for finite H, zero training error

- Partition H into H_{ϵ}, an ϵ "ball" around f^{true}, and H_{bad} = H \ H_{$\epsilon}$ </sub>
- What is the prob. that a "seriously wrong" hypothesis h_b 2 H_{bad} is consistent with m examples (so we are fooled)? We can use a union bound

 $error(h_b) > \epsilon$ $p(h_b \text{ agrees with 1 example }) \leq 1 - \epsilon$ $p(h_b \text{ agrees with m examples }) \leq (1 - \epsilon)^m$

The prob of finding such an h_b is bounded by

 $p(H_{bad} \text{ contains a consistent hypothesis}) \leq |H_{bad}|(1-\epsilon)^m \leq |H|(1-\epsilon)^n$

Infinite H

- What if H is infinite?
- Union bound no longer works.
- Also, many hypotheses may be very similar (eg rectangles of slightly different size).
- Roughly speaking, we replace log |H| with VC(H).

VC dimension

- Consider a sample S of size m.
- The set of all possible binary labelings realizable by hypothesis class H on S is

 $\Pi_H(S) = \{ (h(x_1), \dots, h(x_m)) : h \in H \}$

- H shatters S if H can produce all possible labelings $|\Pi_H(S)| = 2^m$
- The VC dimensions of H is equal to the maximal number d of examples that can be shattered
- Intuitively, VC = number free parameters.

VC bounds on err_{train} - err_{true}

• Thm: wp $\int 1-\delta$, with d=VCD(H)

$$err_{true} \leq err_{train} + \Phi(m, d, \delta)$$
$$\Phi(m, d, \delta) = \sqrt{\frac{d\left(\log\frac{2m}{d} + 1\right) + \log\frac{4}{\delta}}{m}}$$

Structural risk minimization

Or use cross validation!

Data dependent bounds

- The bound Φ(m,d,δ) is independent of the observed data set, and is therefore very loose.
- More complex bounds can be derived.
- These depend on the **margin**, i.e., the degree of overlap between positive and negative examples

