
CS340 Machine learning
Lecture 5

Learning theory cont'd

Some slides are borrowed from Stuart Russell and Thorsten Joachims



Inductive learning
• Simplest form: learn a function from examples�

f is the target function

An example is a pair (x, f(x))�

Problem: find a hypothesis h
such that h ≈ f
given a training set of examples�

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes examples are given)�



Inductive learning method
• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)�
• E.g., curve fitting:�
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• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)�
• E.g., curve fitting:



Ockham's razor

• Ockham’s razor: prefer the simplest hypothesis consistent with data
• Why?
• A simpler hypothesis is less likely to be correct "by chance" and is 

therefore more likely to generalize well



• If we have 2 hypotheses with equally small training error, 
how can we pick the right one?

• If we pick the wrong one, with enough data, we will 
eventually find out.

• The amount of data we need (to be sure we pick the right 
hypothesis) depends on the complexity of the hypothesis 
class.

• There are more ways to "accidently" fit the training data if 
we have a very flexible hypothesis class.

• If we want to avoid the possibility of overfitting, we should 
restrict the complexity of the hypothesis class, or use a 
larger training set.

• (Of course, an overly simple hypothesis class may underfit.)

Ockham's razor: why?



Empirical risk minimization
• The ERM principle says to pick the hypothesis with 

the lowest error on the training set.
• When does low training error guarantee low 

generalization error?
• Equivalently, given an observed error rate on a 

finite sample, can we bound the expected error rate 
on future data? (Empirical process theory)

• Bound will depend on size of the hypothesis class.
• A very complex hypothesis class can fit anything, 

so if it has low training error, this does not mean it 
will have low generalization error.



Statistical learning theory
• SLT is concerned with establishing conditions  

under which we can say

• We say that h is probably approximately correct
• This statement holds if the hypothesis class is 

sufficiently constrained and/or the training set size 
is sufficiently large



Hoeffding/ Chernoff bound
• Imagine estimating the probability of heads 

from m iid coin tosses x1, ..., xm, xi 2 {0,1}
• The probability of making an error of size ε is 

bounded by



Training vs generalization error
• Let S = training set,  h(A(S)) be the hypothesis 

learned by algorithm A on S
• Let errS(h) be error of h on sample S, and errP(h) 

be the true expected error on distribution P
• We want to be sure low training error will give rise 

to low generalization error

• We use the union and Chernoff bounds



Bounds on errtrain - errtrue

• Hence wp ¸ 1-δ, 

• The 2nd term on RHS is the growth function



Sample complexity
• To ensure

we need this many samples



Finite H, zero training error
• Suppose H is finite, and there exists and h with 

zero training error ("truth is in the hypothesis 
space")

• We showed last time that prob. exists h 2 H with 
high true error rate, but zero training error (i.e., h is 
consistent), is bounded by

which is tighter than

• Tighter bounds means lower sample complexity.



PAC bounds for finite H, zero training error

• Partition H into Hε, an ε "ball" around ftrue, and
Hbad = H \ H ε

• What is the prob. that a "seriously wrong" 
hypothesis hb 2 Hbad is consistent with m examples 
(so we are fooled)? We can use a union bound

The prob of finding such an hb is bounded by



Infinite H
• What if H is infinite?
• Union bound no longer works.
• Also, many hypotheses may be very similar (eg

rectangles of slightly different size).
• Roughly speaking, we replace log |H| with VC(H). 



VC dimension
• Consider a sample S of size m.
• The set of all possible binary labelings realizable by 

hypothesis class H on S is

• H shatters S if H can produce all possible labelings

• The VC dimensions of H is equal to the maximal 
number d of examples that can be shattered

• Intuitively, VC = number free parameters.



VC bounds on errtrain - errtrue

• Thm: wp ¸ 1-δ, with d=VCD(H)



Structural risk minimization

Or use cross validation!



Data dependent bounds

• The bound Φ(m,d,δ) is independent of the observed 
data set, and is therefore very loose.

• More complex bounds can be derived.
• These depend on the margin, i.e., the degree of 

overlap between positive and negative examples
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