CS340 Machine learning Lecture 4 Learning theory

Some slides are borrowed from Sebastian Thrun and Stuart Russell

Announcement

• What: Workshop on applying for NSERC scholarships and for entry to graduate school When: Thursday, Sept 14, 12:30-14:00 Where: DMP 110 Who: All Computer Science undergraduates expecting to graduate within the next 12 months who are interested in applying to graduate school

PAC Learning: intuition

- If we learn hypothesis h on the training data, how can be sure this is close to the true target function f if we don't know what f is?
- Any hypothesis that we learn but which is seriously wrong will almost certainly be "found out" with high probability after a small number of examples, because it will make an incorrect prediction.
- Thus any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong, i.e., it must be **probably approximately correct**.
- Learning theory is concerned with estimating the sample size needed to ensure good generalization performance.

PAC Learning

- PAC = Probably approximately correct
- Let f(x) be the true class, h(x) our guess, and $\pi(x)$ a distribution of examples. Define the error as

 $error(h) = p(h(x) \neq f(x) | x \text{ drawn from } \pi)$

- Define h as *approximately correct* if error(h) < ε .
- Goal: find sample size m s.t. for any distribution π

 $\forall \pi. \forall X \sim \pi: |X| = m. \ p(error(h) > \epsilon |X) < \delta$

- If Ntrain >= m, then with probability 1-δ, the hypothesis will be approximately correct.
- Test examples must be drawn from same distribution as training examples.
- We assume there is no label noise.

Derivation of PAC bounds for finite H

- Partition H into H_{ϵ}, an ϵ "ball" around f^{true}, and H_{bad} = H \ H_{$\epsilon}$ </sub>
- What is the prob. that a "seriously wrong" hypothesis $h_b \in H_{bad}$ is consistent with m examples

(so we are fooled)? We can use a union bound

 $error(h_b) > \epsilon$ $p(h_b \text{ agrees with 1 example }) \leq 1 - \epsilon$ $p(h_b \text{ agrees with m examples }) \leq (1 - \epsilon)^m$

The prob of finding such an h_b is bounded by

 $p(H_{bad} \text{ contains a consistent hypothesis}) \leq |H_{bad}|(1-\epsilon)^m \leq |H|(1-\epsilon)^n$

Derivation of PAC bounds for finite H

- We want to find m s.t. $|H|(1-\epsilon)^m \le \delta$
- This is called the sample complexity of H
- We use $1 x \le e^{-x}$ to derive

$$|H|e^{-m\epsilon} \leq \delta$$

$$\log H - \log \delta \leq m\epsilon$$

$$m \geq \frac{1}{\epsilon} \left(\log \frac{1}{\delta} + \log |H|\right)$$

• If |H| is larger, we need more training data to ensure we can choose the "right" hypothesis.

PAC Learnability

- Statistical learning theory is concerned with sample complexity.
- Computational learning theory is additionally concerned with computational (time) complexity.
- A concept class C is PAC learnable, if it can be learnt with probability δ and error ε in time polynomial in 1/δ, 1/ε, n, and size(c).
- Implies
 - Polynomial sample complexity
 - Polynomial computational time

H = any boolean function

 Consider all 2^{2²} = 16 possible binary functions on k=2 binary inputs

- If we observe (x₁=0, x₂=1, y=0), this removes h_5 , h_6 , h_7 , h_8 , h_{13} , h_{14} , h_{15} , h_{16}
- Each example halves the version space.
- Still leaves exponentially many hypotheses!

H = any boolean function

Unbiased Learner: |H|=2^{2^k}

$$m \ge \frac{1}{\varepsilon} (2^k \ln 2 + \ln(1/\delta))$$

- Needs exponentially large sample size to learn.
- Essentially has to learn whole lookup table, since for any unseen example, H contains as many consistent hypotheses that predict 1 as 0.

Making learning tractable

- To reduce the sample complexity, and allow generalization from a finite sample, there are two approaches
 - Restrict the hypothesis space to simpler functions
 - Put a prior that encourages simpler functions
- We will consider the latter (Bayesian) approach later

H = conjunction of boolean literals

• Conjunctions of Boolean literals:

$$h = x_1 \land \neg x_3 \land \cdots \land x_k$$

$$H|=3^{k}$$
$$m \ge \frac{1}{\varepsilon} (k \ln 3 + \ln(1/\delta))$$

H = decision lists

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

 $\forall x. WillWait(x) \Leftrightarrow Patrons(x, Some) \lor (Patrons(x, Full) \land Fri/Sat(x))$

H = decision lists

 $\forall x. \ WillWait(x) \Leftrightarrow Patrons(x, Some) \lor (Patrons(x, Full) \land Fri/Sat(x))$

k-DL(n) restricts each test to contain at most k literals chosen from n attributes k-DL(n) includes the set of all decision trees of depth at most k

$$\begin{aligned} k - DL(n) &|\leq 3^{|Conj(n,k)|} |Conj(n,k)|!\\ |Conj(n,k)| &= \sum_{i=0}^{k} C_i^{2n} = O(n^k)\\ |k - DL(n)| &= 2^{O(n^k \log_2(n^k))}\\ m &\geq \frac{1}{\epsilon} \left(\log \frac{1}{\delta} + O(n^k \log_2 n^k) \right) \end{aligned}$$

PAC bounds for rectangles

- Let us consider an infinite hypothesis space, for which |H| is not defined.
- Let h be the most specific hypothesis, so errors occur in the purple strips.
- Each strip is at most ε/4
- Pr that we miss a strip $1-\epsilon/4$
- Pr that *N* instances miss a strip $(1 \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 \epsilon/4)^N$
- $4(1 \epsilon/4)^N \le \delta$ and $(1 x) \le \exp(-x)$
- $4\exp(-\epsilon N/4) \le \delta$ and $N \ge (4/\epsilon)\log(4/\delta)$

VC Dimension

- We can generalize the rectangle example using the Vapnik-Chervonenkis dimension.
- VC(H) is the maximum number of points that can be shattered by H.
- A set of instances S is <u>shattered</u> by H if for every dichotomy (binary labeling) of S there is a consistent hypothesis in H.
- This is best explained by examples.

Shattering 3 points in R² with circles

0

0

0

Is this set of points shattered by the hypothesis space H of all circles?

Shattering 3 points in R² with circles

Every possible labeling can be covered by a circle, so we can shatter 3 points.

Is this set of points shattered by circles?

Is this set of points shattered by circles?

No, we cannot shatter any set of 4 points.

How About This One?

0 0 0

How About This One?

0 0 O

We cannot shatter this set of 3 points, but we *can* find *some* set of 3 points which we can shatter

VCD(Circles) = 3

 VC(H) = 3, since 3 points can be shattered but not 4

VCD(Axes-Parallel Rectangles) = 4

Can shatter at most 4 points in R² with a rectangle

Linear decision surface in 2D

VC(H) = 3, so xor problem is not linearly separable

Linear decision surface in n-d

Is there an H with $VC(H) = \infty$?

Yes! The space of all convex polygons

PAC-Learning with VC-dim.

• Theorem: After seeing

$$m \ge \frac{1}{\varepsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon))$$

random training examples the learner will with probability 1- δ generate a hypothesis with error at most ϵ .

Criticisms of PAC learning

- The bounds on the generalization error are very loose, because
 - they are distribution free/ worst case bounds, and do not depend on the actual observed data
 - they make various approximations
- Consequently the bounds are not very useful in practice.