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Announcement

 What: Workshop on applying for NSERC
scholarships and for entry to
graduate school
When: Thursday, Sept 14, 12:30-14:00
Where: DMP 110
Who: All Computer Science undergraduates
expecting to graduate within
the next 12 months who are interested in
applying to graduate school




PAC Learning: intuition

 If we learn hypothesis h on the training data, how can be
sure this is close to the true target function f if we don't know
what f is?

* Any hypothesis that we learn but which is seriously wrong
will almost certainly be "found out" with high probability after
a small number of examples, because it will make an
incorrect prediction.

« Thus any hypothesis that is consistent with a sufficiently
large set of training examples is unlikely to be seriously
wrong, i.e., it must be probably approximately correct.

* Learning theory is concerned with estimating the sample
size needed to ensure good generalization performance.



PAC Learning

« PAC = Probably approximately correct

« Let f(x) be the true class, h(x) our guess, and #(x) a
distribution of examples. Define the error as

error(h) = p(h(x) # f(x)|zr drawn from )
* Define h as approximately correct if error(h) < €.
« (Goal: find sample size m s.t. for any distribution =
Vr VX ~x:|X|=m. plerror(h) > ¢l X) <§

 If Ntrain >= m, then with probability 1-5, the hypothesis will
be approximately correct.

« Test examples must be drawn from same distribution as
training examples.

« \We assume there is no label noise.



Derivation of PAC bounds for finite H

» Partition H into H_, an ¢ "ball" around f"'“¢, and
Hpag =H\H

 What is the prob. that a "seriously wrong"
hypothesis h, € H, 4 Is consistent with m examples

(so we are fooled)? We can use a union bound
error(hy) > €

1 —e€

(1—¢)™

p(hy agrees with 1 example ) <
<

p(hy agrees with m examples )

The prob of finding such an h, is bounded by

| Hpaa|(1 — €)™
[H[(1—¢€)"

p(Hpeq contains a consistent hypothesis)
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Derivation of PAC bounds for finite H

« We want to find m s.t.|H|(1—¢)™ <6
This is called the sample complexity of H
We use 1 -z <e to derive
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 If |H| is larger, we need more training data to
ensure we can choose the "right" hypothesis.
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PAC Learnability

« Statistical learning theory is concerned with sample
complexity.

« Computational learning theory is additionally
concerned with computational (time) complexity.

« A concept class C is PAC learnable, if it can be
learnt with probability 6 and error ¢ in time
polynomial in 1/9, 1/¢, n, and size(c).

* Implies
— Polynomial sample complexity
— Polynomial computational time



H = any boolean function

. Consider all 22° = 16 possible
binary functions on k=2 binary inputs
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* If we observe (x,=0, x,=1, y=0), this removes
h5’ h6’ h7’ h8’ h13’ h14’ h15’ h16

 Each example halves the version space.
« Still leaves exponentially many hypotheses!



H = any boolean function

Unbiased Learner: |H|=22"

m > i(2k In2+In(1/ 5))
E

* Needs exponentially large sample size to learn.
 Essentially has to learn whole lookup table, since for any

unseen example, H contains as many consistent hypotheses
that predict 1 as 0.



Making learning tractable

» To reduce the sample complexity, and allow
generalization from a finite sample, there are two
approaches
— Restrict the hypothesis space to simpler functions
— Put a prior that encourages simpler functions

* We will consider the latter (Bayesian) approach
later



H = conjunction of boolean literals

« Conjunctions of Boolean literals:

hZLUlA—IﬂigA"'/\CUk
H|=3%

m > E(k In3+In(1/ o))
E



H = decision lists

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, [ T]TF|F ] T [Some| 85 | F | T [French[0-10] T
Ao T F F T Full $ F F Thai [30-60 F
X3 F| T F F |Some $ F F [Burger| 0-10 T
Xy T F T T Full $ F F Thai |10-30 T
X5 T F T F Full | $$% F T |French| =60 F
Xg F| T |F T |Some| %% T T | ltalian | 0-10 T
X7 F| T F F | None $ T F [Burger| 0-10 F
X3 F| F F T |Some| %% T T | Thai | 0-10 T
Xo F| T | T F | Full $ T F [Burger| =60 F
X0 T | T T T Full | $$% F T | ltalian | 10-30 F
X1 F | F F F | None| $ . F | Thai | 0-10 F
X1z T T T T Full $ F F | Burger [ 30-60 T

Vr. WillWait(x) & Patrons(z,Some) V (Patrons(z, Full) A Fri/Sat(x))

Pairanmax, Same) = Parronsix, Full) A FridSarxo) 4“

Yas Yeqg




H = decision lists

Ve, WillWait(x) < Patrons(x, Some) V (Patrons(x, Full) A Fri/Sat(z))

Paironsx, Some) 1 Parronsic Full) A FridfSaro 4“
‘ Yes “fes

k-DL(n) restricts each test to contain at most k literals chosen from n attributes
k-DL(n) includes the set of all decision trees of depth at most k

k — DL(n)| < 31€°1 R Cong(n, k)|!
k
[Conj(n, k)| =) C" = 0(n¥)

1=0

k — DL(n)| = 20" log2(n"))

1 1
m > - (log = + O(n*log, nk)>

€ )



PAC bounds for rectangles

« Let us consider an infinite hypothesis space, for which
|H| is not defined.

« Let h be the most specific hypothesis, so errors occur in the
purple strips.

« [Each strip is at most €/4

* Prthat we miss a strip 1- €/4

« Prthat N instances miss a strip (1 — €/4)N
 Prthat Ninstances miss 4 strips 4(1 - ¢/4)V | .
e 4(1-¢€/4)N <8 and (1 - x)<exp( - x) g
 4dexp(—eN/4)<d and N = (4/¢)log(4/d)

q
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)]




 We can generalize the rectangle example using the
Vapnik-Chervonenkis dimension.

« VC(H) is the maximum number of points that can
be shattered by H.

* A set of instances S is shattered by H if for every
dichotomy (binary labeling) of S there is a
consistent hypothesis in H.

* This is best explained by examples.




Shattering 3 points in R? with circles

° Is this set of points
shattered by the
hypothesis space H
of all circles?



Shattering 3 points in R? with circles

Every possible labeling can be covered by a circle, so we can shatter
3 points.




Is this set of points shattered by circles?



Is this set of points shattered by circles?

No, we cannot shatter any set of 4 points.



How About This One?



How About This One?

We cannot shatter this set of 3 points,
but we can find some set of 3 points which we can shatter



VCD(Circles)=3

o
o

 VC(H) = 3, since 3 points can be
shattered but not 4




VCD(Axes-Parallel Rectangles) = 4

Can shatter at most 4 points in R2 with a rectangle



Linear decision surface in 2D

VC(H) = 3, so xor problem is not
linearly separable



L inear decision surface in n-d

VC(H) = n+1



Is there an H with VC(H)=c ?

Yes! The space of all convex polygons



PAC-Learning with VC-dim.

« Theorem: After seeing

m> 2 (4log2(2/5) +8VC(H)log2(13/ £))
E

random training examples the learner will with

probability 1-6 generate a hypothesis with
error at most ¢.



Criticisms of PAC learning

* The bounds on the generalization error are very
loose, because

— they are distribution free/ worst case bounds, and do not
depend on the actual observed data

— they make various approximations

« Consequently the bounds are not very useful in
practice.
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