#### CS340: Machine Learning

#### ■URL: www.ugrad.cs.ubc.ca/~cs340

#### Instructors

#### This week only



#### Nando de Freitas

#### Rest of class:



Kevin Murphy

#### TAs

- TAs:
  - Hao (Victor) Ren
  - Erik Zawadzki
- Discussion section (optional, but recommended the TAs will go over homework problems, etc.)
  - T1A, 3:00 4:00pm Thursdays, DMP101
  - T1B, 8:30 9:30am Tuesdays, DMP201
- Office hours
  - Wed 3-4pm, CS 187

#### Textbook

 Required textbook (to arrive in UBC bookstore Friday Sep 8th) "Introduction to machine learning", Ethem Alpaydin



#### Other recommended books (more advanced)





# Reading

- Please read the sections of the book listed on the web page before class.
- Additional reading material will be put online; some optional, some required.
- Please keep up to date with reading!
- Lecture notes will be made available online after the class.

# Grading

- Grading
  - Midterm: 30%
  - Final: 45%
  - Weekly Assignments: 25%
- Collaboration policy:
  - You can collaborate on homeworks if you write the name of your collaborators on what you hand in; however, you must understand everything you write, and be able to do it on your own (eg. in the exam!)
- Sickness policy:
  - If you cannot do an assignment or an exam, you must come see me in person; a doctor's note (or equivalent) will be required.

#### Pre-requisites

• You should know (or be prepared to learn)

- Basic multivariate calculus e.g.,

$$\frac{\partial}{\partial x_j} \vec{x}^T \vec{x} = 2x_j$$

- Basic linear algebra e.g.,

$$A\vec{u}_i = \lambda_i \vec{u}_i$$

- Basic probability/ statistics e.g.

 $Cov(X,Y) = E\left[(X - EX)(Y - EY)\right] = E[XY] - E[X]E[Y]$ 

Basic data structures and algorithms (e.g., trees, lists, sorting, dynamic programming, etc)

### Matlab

- Everyone should have access to matlab on their CS account. If not, you can ask the TAs for a CS guest account.
- The TAs will hold a matlab tutorial session in Dmp 101.
- Various matlab tutorials on the class web-page. Best one is "Matlab for psychologists"
- The first homework is due in class on Monday 18th, and consists of some simple Matlab exercises.

MATH BY



#### What is machine learning?



#### Machine Learning

Learning is the process of automatically constructing abstractions of the real world from a set of observations and past experiences



#### Learning concepts and words

"tufa"



#### Information theory perspective

Data compression and transmission over a noisy channel provide some insight into the process of learning



Which compressions capture the essence of the image? Which one is best to recognize the same subject in a different photo?

### Why "Learn" ?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
  - Human expertise does not exist (navigating on Mars),
  - Humans are unable to explain their expertise (speech recognition)
  - Solution changes in time (routing on a computer network)
  - Solution needs to be adapted to particular cases (user biometrics)

#### Perception-action cycle



AI = designing intelligent agents ML = designing agents that learn to be intelligent

#### Agents



#### AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations



### More agents



# Electrolux Trilobite robot vacuum



mha fram iDahat



Friendly Robotics lawn mower

Roomba from iRobot

### Non-physical agents (chess)

#### May 11th, 1997 Computer won world champion of chess (Deep Blue) (Garry Kasparov)



(Reuters = Kyodo News)

### Non-physical agents (web-bots)



### Multiple agents (robocup)







#### Perception



#### Bayesian inference perspective



#### Vision = inverse graphics

• p(world | image)  $\alpha$  p(image |world) x p(world)

Final beliefs

Likelihood of data

Initial beliefs

Inverse probability theory

(Bayes rule)



World



Beliefs about world

#### People as Bayesian reasoners



### Speech recognition

• P(words | sound) P(sound | words) P(words)

(Bayes rule)



### Natural language understanding

- P(meaning | words)  $\mathcal{P}(words | meaning)$  P(meaning)
- We do not yet know good ways to represent "meaning" (this is called the knowledge representation problem in AI)
- Current approaches involve "shallow parsing", where the meaning of a sentence can be represented by fields in a database eg
  - "Microsoft acquired AOL for \$1M yesterday"
  - "Yahoo failed to avoid a hostile takeover from Google"

| Buyer  | Buyee | When      | Price |
|--------|-------|-----------|-------|
| MS     | AOL   | Yesterday | \$1M  |
| Google | Yahoo | ?         | ?     |

#### Decision making under uncertainty



#### Decision theory perspective

#### Utilitarian view: We need models to make the right decisions under uncertainty. Inference and decision making are intertwined

#### Population model

#### Reward model

| $p(\mathbf{x} = healthy) = 0.9$ |                        | $\mathbf{a} = no \ treatment$ | $\mathbf{a} = treatment$ |
|---------------------------------|------------------------|-------------------------------|--------------------------|
|                                 | $\mathbf{x} = healthy$ | 0                             | -30                      |
| $p(\mathbf{x} = cancer) = 0.1$  | $\mathbf{x} = cancer$  | -100                          | -20                      |
|                                 |                        |                               |                          |

#### We choose the action that maximizes the expected utility:

$$EU(\mathbf{a}) = \sum_{\mathbf{x} \in \{healthy, cancer\}} r(\mathbf{x}, \mathbf{a}) \; p(\mathbf{x})$$

$$\begin{split} EU(\mathbf{a} = treatment) = & \textbf{-27.2} \\ EU(\mathbf{a} = no \; treatment) = & \textbf{-10} \end{split}$$

### Mobile robot navigation





## Learning how to fly



#### Learning how to make money



- In full 10-player games Poki is better than a typical low-limit casino player and wins consistently; however, not as good as most experts
- New programs being developed for the 2-player game are quite a bit better, and we believe they will very soon surpass all human players