
CS340 Fall 2006: Homework 5

Out Wed 11 Oct, back Wed 18 Oct

1 Posterior predictive distribution for the Dirichlet-mul tinomial model

Let X ∼ Multinomial(θi) whereθi
def
= P (X = i) for i = 1 : K. We will use a conjugate (Dirichlet) prior with

θ1:K ∼ Dir(α1:K). Suppose we have seen a data setDold = (x1, . . . , xNold
) of iid data with sufficient statistics

(counts)Nold
k , and we want to predict the probability of seeing a future data setDnew = (x1, . . . , xNnew

) of iid data
with sufficient statistics (counts)Nnew

k . Compute

p(Dnew|Dold, ~α) =

∫
p(Dnew|~θ)p(~θ|Dold, ~α)d~θ (1)

Your answer should be a function of~α,Nold
k andNnew

k . Hint 1: recall that the marginal likelihood is given by

P (D|~α) =
Γ(

∑
k αk)

Γ(N +
∑

k αk)

K∏
k=1

Γ(Nk + αk)

Γ(αk)
(2)

where{Nk} are the sufficient statistics (counts) ofD.
Hint 2: Bayes rule saysp(Dnew|Dold) = p(Dnew, Dold)/p(Dold).
Hint 3: remember that Bayesian updating can be done recursively, so an old posterior can become a new prior.

2 Fun with entropy

Consider the joint distributionp(X, Y)
x

1 2 3 4
1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32
3 1/16 1/16 1/16 1/16
4 1/4 0 0 0

1. What is the joint entropyH(X, Y)?

2. What are the marginal entropiesH(X) andH(Y)?

3. The entropy ofX conditioned on a specific value ofy is defined as

H(X |Y = y) = −
∑

x

p(x|y) log p(x|y) (3)

ComputeH(X |y) for each value ofy. Does the posterior entropy onX ever increase given an observation of
Y ?

1

4. The conditional entropy is defined as

H(X |Y) =
∑

y

p(y)H(X |Y = y) (4)

Compute this. Does the posterior entropy onX increase or decrease when averaged over the possible valuesof
Y ?

5. What is the mutual information betweenX andY ?

3 Mutual information

Prove that
I(X, Y) = H(X) − H(X |Y) = H(Y) − H(Y |X) (5)

4 Conditioning reduces entropy

Prove
H(X |Y) ≤ H(X) (6)

with equality iff X andY are independent. Hint: use the fact thatI(X, Y) ≥ 0.

5 Language identification using Markov models

In this problem, we will will construct a language classifierby usingn’th order Markov models as class-conditional
distributions. In other words, we will train a separate Markov model to represent each of the chosen languages (En-
glish, German, Spanish, and Italian), and then compute the likelihood of a novel sentence under each of these models.
The training data is given in the filescnn.eng, cnn.ger, cnn.spa, cnn.ita, which contain several news
articles (same articles in different languages), one article per line.
We will compute the statistics of individual letters or sequences of letters for each language; these are calledn-gram
statistics. Ifn = 1, we are using unigrams (marginal letter frequencies), soc1(i) is the number of times letteri
appears; ifn = 2 (a first order Markov model), we are counting bigram frequencies, soc2(i, j) is the number of times
letteri is followed by letterj; and so on.
For simplicity, our representation of text will include only 27 symbols: the 26 letters of the Latin alphabet, and the
space symbol. Any accented letter is represented as a non-accented letter, non-Latin letters are converted to their
closest Latin letters, and punctuation is removed. This representation naturally looses quite a bit of information
compared to the original ASCII text. This ’handicap’ is in part intentional to make the classification task a bit more
challenging.
The following matlab functions are provided.

stream = text2stream(string) Converts a string (a line of text) into a row vector of numbersin the range{1, . . . , 27}.

streams = readlines(filename)Reads a named text file, returning a cell array of the lines in the file, with letters
converted to numbers as above.

t = totalcount(streams, n) Computes n-gram statistics from a cell array of streams, as returned by readlines. eg.
c1=totalcount(streams,1) gives the unigram statistics c1(i) and c2=totalcount(streams,2) gives the bigram statis-
tics c2(i,j).

counts1, counts2= getCounts()] Computes the unigram and bigram counts.counts1(i, c) is the number of times
word i occurs in languagec. counts2(i, j, c) is the number of times wordi is followed by wordj in languagec.

2

Now answer the following questions. (Note: the numbers you get may differ slightly from those below, because
different operating systems seem to treat the foreign characters differently.)

1. Write a functionll = naiveLL(stream, count1) which takes a text stream (represented as a vector
of numbers) and the unigram counts and evaluates the log-likelihood of the text stream using the maximum
likelihood estimateŝθi derived from the counts:

p(x1:T |θ̂) =
T∏

t=1

K∏
i=1

θ̂
I(xt=i)
i (7)

log p(x1:T |θ̂) =

T∑
t=1

K∑
i=1

I(xt = i) log θ̂i (8)

=

K∑
i=1

Mi(x1:T) log θ̂i (9)

wherex1:T is the test stream,Mi(x1:T) is the number of times symboli occurs in the test stream,K is the
number of symbols in the alphabet, and the MLE derived from counts1 is

θ̂i = Ni/N (10)

whereNi is the number of times symboli occurs in the training streams (i.e.,Ni = count1(i)). Turn in your
code.

As a check, if you evaluate the log-likelihood of ’This is an example sentence’ using the English 1-counts from
cnn.eng, you’ll get -76.5690, while the Spanish log-likelihood of the same sentence is -77.1211. You can test
as follows:

eng = 1; ger = 2; spa = 3; ita = 4;
ll = naiveLL(text2stream(’this is an example sentence’), counts1(:,eng))
ll = naiveLL(text2stream(’this is an example sentence’), counts1(:,spa))

2. Write a functionc=naiveC(stream, counts1)where stream is a numeric vector and counts1(:,l) are the
counts for language l. Return the most probable class (language) c, where 1=english, 2=german, 3=spanish,
4=italian. Turn in your code for naiveC. It should use naiveLL as a subroutine.

3. Now we want to apply the trained model to classify some novel text. The filessong.eng, song.ger,
song.spa, song.ita contain additional text in the four languages. We will use these as the test set:

test_sentences = [readlines(’song.eng’) ; ...
readlines(’song.ger’) ; ...
readlines(’song.spa’) ; ...
readlines(’song.ita’)] ;

test_labels = [ones(17,1) ; ones(17,1)*2 ; ones(17,1)*3 ; ones(17,1)*4]

We will study the performance of the classifier as a function of the length of test strings by classifying all
prefixes of the lines in the test files. The provided routinetestC.m calculates the success probability of the
classification, for each prefix length, over all the streams or strings in a given cell-array. You can call this
function as follows:

successprobs = testC(test_sentences, test_labels, ’naiveC’,counts1);

This calls your functionnaiveC with each line of testsentences and with thecounts1 argument, and com-
pares it to testlabels. Use this function to plot the success probability asa function of the length of the string.
It should look like Figure 1(left). Turn in your code and plot.

3

4. We will now move on to modeling the languages with first-order Markov models.
Write a functionmarkovLL(stream,count2,count1)which returns the log-likelihood of a stream under
a first-order Markov model of the language with the specifed bigram and unigram statistics i.e., convert the
bigram statistics count2(i,j) into conditional probabilities P (Xt = j|Xt−1 = i) and the unigram statstics1

count1(i) into marginal probabilitiesP (X1 = i), and use these MLEs as a plug-in to compute the log-likelihood.
The result should be an equation similar (but not identical!) to Equation 9. Hint: you make find the provided
function A = mk stochastic(M) useful; this converts a matrix of countsM(i, j) into a stochastic matrix
A(i, j), whereA(i, j) = M(i, j)/(

∑
j′ M(i, j′)).

Obviously if Nij = 0 in the training, then when estimatinglog θ̂ij you will get a “log of zero” warning. You
can usewarning off to turn off such messages; remember to putwarning on after the offending line. If ani→j
transition occurs in the test sentence, then the log likelihood will belog 0 = −∞. However, for the stream ’This
is an example sentence’ you should find the English log-likelihood is -63.0745, while its Spanish log-likelihood
is -65.6447:

ll = markovLL(text2stream(’this is an example sentence’), counts2(:,:,eng), counts1(:,eng));
ll = markovLL(text2stream(’this is an example sentence’), counts2(:,:,spa), counts1(:,spa));

(Your numbers might differ in the second or third decimal place, but should be basically the same.) Note that
these numbers are higher than the unigram model, indicatinga better fit to the training data. Turn in your code
for MarkovLL.

5. Write a functionc=markovC(stream, counts2, counts1) where stream is a numeric vector and
counts2(:,:,l) are the counts for language l. Return the most probable class (language) c, where 1=english,
2=german, 3=spanish, 4=italian. Turn in your code for MarkovC.

6. Try to classify the sentence ’Why is this an abnormal English sentence’. What is its log-likelihood under a
Markov model for each of the languages? Which language does it get classified as? Why does it not get
classified as English? (Your code may try to take log of 0; explain why it does this. We will fix this problem
below.)

7. As we discussed in class, it is common to use a Dirichlet prior to regularize the counts. The resulting posterior
predictive density estimate is

p(Xt = j|Xt = i) = θ̂j|i =
nj|i + αj|i∑m

j′=1(nj′|i + αj′|i)
(11)

whereθj|i is the probability of wordj after seeingi, andnj|i are the counts ofj following i. Add pseudocounts
of αj|i = 1 to the empirical bigram counts and reclassify the test sentence. (There is no need to add pseudocounts
to the unigram counts.) Which language does the sentence getclassified as now?

8. Use

probs = testC(test_sentences, test_labels, ’markovC’, counts2, counts1);

to test the performance of Markov-based classification (with the corrected counts) on the test set (this may take
a few seconds). testC calls your functionmarkovC with each line of testsentences and with thecounts2 and
counts1 arguments, and compares it to testlabels. (testC.m usesvarargin to handle a variable number
of arguments; this is standard matlab practice when passinga function to a function.) This returns the success
probability for each stream length. Plot the correct classification probability as a function of the text length. It
should look like Figure 1(right).

1You can derive the unigram counts from the bigram counts by marginalizing, but there is an ambiguity which arises depending on whether
you sum counts2 over the first or 2nd dimension. Example: 2-counts: ”ab”, ”ba”, each once. Was the sequence ”aba” or ”bab”?For the first,
counts1(a)=2, for the second, counts1(a)=1. Hence we require you pass in count1 as a separate argument.

4

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

text length

P
(c

or
re

ct
)

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

text length

P
(c

or
re

ct
)

Figure 1: Performance vs number of test symbols for (left) Naive Bayes model and (right) first order Markov model.
We see that the Markov model correctly classifies the document more quickly than the naive model (i.e., it needs to
see less data). For example, to reach 95% correct, the naive model needs about 55 characters, whereas the Markov
model nees only 18 characters.

5

