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Abstract

Object detection in images is a very active research topic in many
disciplines. Probabilistic methods have been applied to the problem
with varying degrees of success. A logistic classifier, Markov random
field (MRF), and discriminative Random Field (DRF) were used for
the detection of man-made structures in natural images. It was found
that the MRF and DRF models were often improvements over the
logistic model, but they introduced some false-positives. The Matlab
framework developed during the course of the investigation should
serve as an excellent staging ground for future explorations of many
sub-problems.

1 Introduction

Object detection in images a very active area of research in fields such
as computer vision, pattern recognition, machine learning, and image
processing. While many schemes exist, using Markov random fields
(MRFs) has been growing in popularity and effectiveness [5]. Varia-
tions on Markov random fields are also being investigated, discrimi-
native (or conditional) random field (DRFs)approaches have recently
been attempted with claims of success. This report will present an
attempt to reproduce the results of Kumar and in the detection of
man-made structures in natural images using MRFs and DRFs [2],
[4], and [1].

Image classification is an interesting study because it combines
so many challenging disciplines. Image processing techniques are re-
quired to extract features from images, probabilistic models are con-
structed to model spatial dependencies, machine learning and opti-
mization techniques are required for learning parameters of models,



and approximate inference strategies must be employed to utilize the
final result on test images.

A Matlab framework was developed to accomplish the task of man-
made structure detection in natural images. Specific details of the
implementation are not included here, but the source code is fully
available from www.cs.ubc.ca/ trees. This document will focus on the
methodology behind the development, how it might be improved, and
some of the results that were obtained. Each of the major tasks in-
volved will be discussed in detail.

2 Image Models

The description of an image will follow the notation and work of [1],
Images are composed of sites (not necessarily individual pixels), and
the classification of an image consists of determining the correct labels
of each site in an image. Letting xi denote the label of the ith image
site, then xi ∈ {−1, 1}, indicating a site is natural or man-made,
respectively. Observed data from an image site i is represented by yi,
and observed data is generated from the feature vectors of the image
sites.

Before proceeding to the model of an image the following definition
for a DRF (or CRF) is given (taken directly from [1]).

Definition of a CRF/DRF Let G=(S,E) be a graph such that
x is indexed by the vertices of G. Then (x,y) is said to be a condi-
tional random field if when conditioned on y, the random variables xi

obey the Markov property with respect to the graph: p(xi|y, xS−{i}) =
p(xi|y, xNi), where S−{i} is the set of all nodes in G except the node
i, Ni is the set of neighbours of the node i in G, and xΩ represents the
set of labels of the nodes in set Ω.

When modeling an image with a DRF, the vertex set corresponds
to the set of image sites, and the edge set corresponds to the con-
nections between neighbouring sites. In their DRF model for images,
Kumar and Hebert use the Hammersley-Clifford theorem and the as-
sumption that only pairwise clique potentials are non-zero, that is,
only immediate neighbours interact. From this they obtain a joint
distribution over the labels given observations y defined by:

p(x|y) =
1
Z

exp(
∑
i∈S

A(xi, y) +
∑
i∈S

∑
j∈Ni

I(xi, xj , y))) (1)

Here Z is a normalizing factor referred to as the partition function.
Kumar and Hebert refer to A(xi, y) and I(xi, xj , y) as the association
and interaction potentials, respectively. A(xi, y) = logσ(xiw

T hi(y)),
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where σ(α) = 1
1+e−α is chosen as the association potential. This is a

somewhat arbitrary choice, and future investigations should consider
alternatives.

The logistic classifier model of an image does not incorporate any
interaction between neighbouring image sites, therefore I(xi, xj , y) is
identically 0. This simplification results in an expression for the local
log-likelihood of an individual image site: p(xi|y) = log(σ(xiw

T hi(y))).
The only parameters of the model are the elements of the vector w.
The length of w must be the same as the transformed observed fea-
ture data (see section 3), which has a lead element of 1 to allow for a
constant w0 term.

The Ising MRF model is a simple extension of the logistic model
that has I(xi, xj , y) = vxixj , for some scalar parameter v. The param-
eters w and v must be determined for the model based on a training
data set. An Ising MRF model with v = 0 reduces to the logistic
model.

The full DRF model is an extension of the Ising MRF. Instead
of constant edge potentials between neighbours, the DRF computes
I(xi, xj , y) = xixjv

T µij(y), with the first element of µij(y) = 1 Note
that the edge potentials are not symmetric. The vector µij(y) is de-
fined in section 3, but note that if v’s elements are indexed from 0
to n − 1, and v1...vn−1 = 0, the DRF model degenerates to an Ising
MRF. For all three models the image sites consisted of 16×16 pixel
blocks.

3 Feature Extraction

The features used were a combination of single-scale and multi-scale
features (which are defined below), computed from orientation his-
tograms of the gradient. Before computing the different features the
magnitude and orientation of the gradient of the input image was
taken. Each image was segmented in 16×16 pixel blocks (the im-
age sites), and for each site single-scale and multi-scale features were
calculated.

3.1 Single-Scale Features

The orientation and magnitude of the image gradient at each image
site was used for feature extraction. A weighted histogram of the
gradient orientation was computed at each image site. The orientation
of the gradient of each pixel in a block was binned with a weight equal
to the magnitude of the gradient at that pixel. Once the weighted
histogram was computed, kernel smoothing was applied. With N
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being the total number of bins in the histogram, ni the count of the
ith bin, and a symmetric positive kernel smoothing function K(x) with
bandwidth bw, the smoothed bin counts were given by:

n′j =
∑N

i=1 K((nj − i)/bw)ni∑N
i=1 K((nj − i)/bw)

. (2)

K(x) = e−x2
was used, but it would be an interesting investigation

to see the impact of the smoothing function on the classifier perfor-
mances. The number of bins used was set to 50, another exploration
might involve finding the optimal number of bins to use.

From the smoothed bin counts the single-site features were ex-
tracted. The first three features were heaved central shift moments
where the pth moment is given by:

vp =

∑N
j=1 (n′j − v0)p+1H(n′j − v0)∑N

j=1 (n′j − v0)H(n′j − v0)
(3)

Here v0 was taken to be the mean histogram magnitude, v0 = 1
N

∑N
i=1 n′i,

and the Heavyside function was used for H. The first three features at
the single-scale were formed by v0, v1, and v2.

Two other orientation-based features were computed at the single-
scale. The first orientation feature used was the relative location of
the peak of the histogram (in radians). The second orientation based
feature was give by |sin(p1 − p2)|, where p1 is the relative location of
the peak of the orientation histogram, and p2 is the location of the
second-highest peak of the histogram. Passing the difference of the
angles through a sinusoid should favour the presence of right angles
(since sin(π/2) = 1.

3.2 Multi-Scale Features

The multi-scale features computed at each site were a simple extension
of the single-scale features. To get a measure of interaction between
sites and their neighbours, multi-scale features were extracted from
orientation histograms of block sizes 16×16, 32×32, and 64×64, about
the center of each image site (of course edge sites were exceptions). At
each scale, the same features were calculated as in the single-scale case.
This would lead to a total of 15 multi-scale features, but instead of
using the mean magnitude of the histogram in each scale, the difference
in magnitude was taken from the first scale to the second and third,
reducing the number of features at the multi-scale by one. A total of 14
mulit-scale features were computed at each image site. It is important
to note that the windows in the multiple scales do not perfectly align
with the divisions between sites.
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3.3 Computing hi(y) and µij(y)

As seen in the models of section 2, the feature data was not directly
used. Instead, for both the association and interaction potentials
transformed feature vectors were used. To compute the transformed
feature vector hi(y), the following was used:

hi(y) = [1, y, f(y)]T (4)

Where f(y) is the vector consisting of all cross-combinations of the
elements of y. That is, if there were n elements in y then f(y) would
have n(n+!)

2 elements yiyj .
The vector µij was computed by simply taking the absolute value

of the difference between the expanded multi-scale features of sites i
and j, and then resetting the lead element back to 1. Kumar and
Hebert suggest the concatenation of the expanded multi-scale feature
vectors of sites i and j, but this doubles the number of parameters
that must be learned for the DRF model, so it was not attempted.

3.4 Interpretation

Some of the features used are intuitively reasonable, for instance the
orientation features. The moment based features are not necessarily
obvious choices for features in the search for man-made structures.
Does the presence of high magnitude gradients in an image site indi-
cate a building? Certainly it might result from a lot of edges, butt
edges exist in nature too. The developed platform should be used as
a testing ground for feature selection in object specific detection.

The reasoning behind the expansion in of the feature vectors is not
entirely clear, other than to add some flexibility to the models.

4 Parameter Learning

In section 2 three models were given for the binary classification of
images. Each model featured parameters v and w, which were learned
from M training images (M = 108 was used).

In the case of the logistic classifier, no interactions between neigh-
bouring sites existed, so v was known to be zero. Learning the pa-
rameters w was fairly simple, the objective to maximize was convex
and simple enough to differentiate by hand, so the Hessian could be
constructed and Newton’s method was applied. The log classifier pa-
rameters were learned by maximizing the objective:
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L(w) =
M∑

m=1

∑
i∈S

logσ(xi(m)wT hi(y(m)))(5)

With Hessian (given in [4]):

∇2L(w) = −
M∑

m=1

∑
i∈S

{σ(wT hi(y))(1− σ(wT hi(y)))xihi(y)}. (6)

The logistic parameters computed for w served as an initial guess
for the optimal w in each of the MRF and DRF models. The optimal
parameters for the MRF and DRF models were found by optimizing:

θmax = arg max
θ

M∑
m=1

∑
i∈S

{log(σ(xiw
T hi(y))) +

∑
j∈Ni

xixjv
T µij(y)− log(zi)}.

(7)
With:

zi =
∑

xi∈{−1,1}

exp(log(σ(xiw
T hi(y))) +

∑
j∈Ni

xixjv
T µij(y)). (8)

Optimizing this objective function led to the values of the param-
eters that give the maximum likelihood for the known label configura-
tions of the training data. In the case of the MRF model, v was just a
scalar and µij = 1. To compute v, a gradient ascent method was used.
Such methods are much slower than Newton’s method, but when the
Hessian is unavailable they are necessary. Tests were conducted with
varying guesses for the initial value of v, and for the training data v
always converged to 0.5598.

Maximizing equation (7) for the DRF model was much slower be-
cause for the DRF v had a length of 120, matching the length of µij .
This significantly increased the solving time for the DRF parameters.
Alternative optimization techniques should be considered.

5 Inference

With model parameters learned, test image classification becomes pos-
sible. In the case of the logistic classifier, image segmentation was a
relatively easy task. The log-classifier does not take into account any
interactions between sites, so the optimal label configuration for an
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image was just the configuration where each site had been assigned
its most likely label.

Determining the most likely label configuration for models with
interactions between sites is an NP-hard problem. To label an image
with exact inference, the likelihood of all possible label configurations
would have to be computed, and from that the best configuration could
be chosen. Even with 256×384 images segmented into 16×16 blocks
this would required computing the likelihood of 216∗24 = 2384 config-
urations! To counter this problem, approximate inference techniques
were used.

The approximate inference portion of the project was done in col-
laboration with Sohrab Shah and Frank Hutter. It was a relatively
simple extension to make the projects compatible, and the work was
mutually beneficial. Various approximate schemes were used, loopy
belief propagation, generalized loopy belief propagation, Gibbs sam-
pling and other methods were tried. Generalized loopy belief prop-
agation generally tended to give good results and was used for both
the MRF and DRF. For specific details on the mechanics of the ap-
proximate inference work, please refer to the report by Hutter and
Shah.

6 Results

Figure 1: From left to right, the logistic, MRF, and DRF classification of a
sample image.

In some situations, the log classifier, MRF, and DRF models per-
formed quite well. In general, though, it was seen that the log clas-
sifier, while introducing very few false-positives, did not capture the
majority of the man-made structures in the images. The MRF model
on the other hand, often introduced a lot of false-positives, and seemed
to be too liberal in propagating similarity between neighbours. The
DRF model lay somewhere between the two, in some situations it did
an amazing job of capturing the man-made structures and identifying
very few false-positives. Figure 1 illustrate these observations. The
DRF model did not always beat the MRF, as is seen in figure 2. The
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tendency of neighbouurs to be similar in the MRF model was some-
times advantageous.

The presence of trees, tree-branches, and horizon lines tended to
spoil the performance of all classifiers, especially the MRF. This prob-
lem seems to indicate that the features chosen to distinguish man-
made structures were not selective enough. It is recommended that
the feature choices be revised.

Rooves were rarely detected by any of the three models. Generally
a roof blends in with the background more than the body of a struc-
ture, and Kumar and Hebert note that roof-top detection is unlikely
[2]. Introduction of additional feature to identify roof-tops should be
considered.

A full set of test results for each model along with the original
images can be found at http://www.cs.ubc.ca/ trees under the Cs532C
link.

Figure 2: An example of the MRF (left) outperforming the DRF (right).

7 Future Work

In some cases the success of the MRF and DRF models was impressive,
but the developments should only be considered a first step. A strong
foundation is now available to use in explorations of many of the major
disciplines within graphical models and machine learning research.
The Matlab implementation was made to be modular, so individual
processes can be interchanged and their impact studied immediately.

The feature extraction process should be re-evaluated and refined.
At present the features have been designed to help detect man-made
structures, but theoretically any object should be detectable if the
right features are extracted. An exploration of the methods in de-
tecting other objects should be conducted. The features used for
man-made structure detection could also be improved, colour features
could be added, and a study of features that distinguish man-made
structures from other structured objects (such as trees, horizon lines)
should be conducted.
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The current framework was also used as a testing ground for ap-
proximate inference techniques. The image classification problem could
help in the empirical analysis of the approximate inference routines.

Image model design and parameter learning could also be tested
on the current framework. In [3] approximate parameter learning
methods are described, it might be worthwhile studying the impacts
of an approximate learning approach.

8 Conclusion

A strong foundation for binary classification of natural images was
constructed in Matlab. A log classifier, Markov random field, and
discriminative random field were investigated for the task of detecting
man-made structures in images. Generally, the DRF provided the best
results followed by the MRF, but both techniques could be improved.
There Matlab framework that was developed should serve as an excel-
lent platform for testing the effectiveness of feature selection, model
design, parameter learning, and approximate inference techniques.
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