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Abstract
We show how to apply the efficient Bayesian
changepoint detection techniques of Fearnhead
in the multivariate setting. We model the joint
density of vector-valued observations using undi-
rected Gaussian graphical models, whose struc-
ture we estimate. We show how we can ex-
actly compute the MAP segmentation, as well
as how to draw perfect samples from the poste-
rior over segmentations, simultaneously account-
ing for uncertainty about the number and location
of changepoints, as well as uncertainty about the
covariance structure. We illustrate the technique
by applying it to financial data and to bee track-
ing data.

1. Introduction
Time series segmentation (also known as changepoint de-
tection) has many applications, and a large number of tech-
niques have been proposed to tackle this problem. One
of the most difficult issues is estimating the number of
segments. As in other examples of model selection, the
Bayesian approach is particularly appealing, since it au-
tomatically captures a tradeoff between model complexity
(number of segments) and model fit. It also allows one
to express uncertainty about the number, and location, of
changepoints.

In a series of papers (Fearnhead, 2004; Fearnhead & Liu,
2005; Fearnhead, 2006), Fearnhead developed efficient dy-
namic programming algorithms for exactly computing the
posterior over the number and location of changepoints in
time series. This improved upon earlier approaches, such
as (Punskaya et al., 2002), which relied on reversible jump
MCMC.

All of the examples that Fearnhead considered were uni-
variate (one-dimensional) time series. In this paper, we
show how to apply Fearnhead’s algorithms to multidimen-
sional time series. Specifically, we model the correlation
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structure of the vector-valued observations using sparse
Gaussian graphical models, which scale to high dimensions
better than full covariance matrices. We estimate the struc-
tures and the segmentation jointly. This allows us to seg-
ment based on a changing correlation structure, as well as
changing mean, variance, etc, which is particularly useful
in financial applications (Talih & Hengartner, 2005; Car-
valho & West, 2006). Furthermore, the sparse structure
within each segment is often interpretable.

Figure 1 illustrates the basic problem we are trying to solve.
In the case of 1D time series, a segmentation might be in-
duced by a change of mean or variance or model order (in
the case of an autoregressive process). But in the case of
multidimensional time series, we can additionally segment
if the correlation structure changes. Such changes are often
much harder to detect (see Figure 1(b) for example), but
oftem arise in practice, especially in areas such as finance.
Our model can segment data based on all of these kinds of
changes, as we will see.

2. Previous work
A product partition model (PPM) (Barry & Hartigan, 1992;
Barry & Hartigan, 1993; Denison et al., 2002) is a density
model in which we assume we can partition the data into
an unknown number K of partitions, π1, . . . , πK , such that
the data is independent across segments:

p(y1:T |π) =
K∏

k=1

p(yπk
).

(A dirichlet process mixture model is a special case of
a PPM, in which we assume a specific form for p(π)
(Dahl, 2003).) If we assume that the partitions are non-
overlapping partitions of the interval 1 : T , then we can
efficiently compute the posterior over K and π using dy-
namic programming, as Fearnhead showed; we shall call
such a partitioning a segmentation.

The marginal likelihood that data from s to t is produced
by a single model m is given by

p(ys:t|m) =
∫

[
t∏

i=s

p(yi|y1:i−1, θ, m)]p(θ|m)p(m)dθ
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Figure 1. Some examples of changepoint detection. (a) Top Left: changing AR model order. Top right: changing regression slope.
Bottom left: changing noise variance. Bottom right: changing correlation. (b) Changing correlation structure between two time series.
In the first segment the components are positively correlated; in the middle segment, they are uncorrelated; in the final segment they
are anti correlated. We visualize the empirical covariance matrix of each segment by plotting contours of constant probability density,
assuming a Gaussian model.

Intuitively, if the segment grows to include data generated
from different parameter regimes and/or different model
types, the marginal likelihood will drop, and this will sug-
gest that we should introduce a changepoint, and use two
models. We will give some specific forms for the likelihood
below. We shall assume that the prior p(θ) is conjugate,
so that we can compute the marginal likelihood in closed
form.

In addition to the data likelihood, we need to specify a prior
on segment lengths, p(`), which implicitly defines a prior
on segmentations p(π). Following Fearnhead, we shall as-
sume a geometric distribution with parameter λ, so that the
probability of a segment of length ` is p(`) = λ(1−λ)`−1.
The number of segments depends on λ, but also on the
hyper-parameters α of p(θ), as we shall see below. We
use λ = 0.01.

In (Fearnhead, 2004; Fearnhead, 2006), Fearnhead pro-
posed a dynamic programming algorithm to compute the
MAP segmentation

(K∗, π∗) = arg max
K,π1:K

p(y|π1:K)p(π1:K)

as well as a way to draw perfect samples from this poste-
rior. (Conditioned on any segmentation, it is of course pos-
sible to compute the posterior over models and parameters
in each segment, p(m, θ|ys:t).) The algorithm is very simi-
lar to the forwards-filtering backwards-sampling algorithm
(Scott, 2002) for HMMs, except the “hidden variable” is
not a discrete state index, but rather a time index encod-
ing where the last change point occurred. Hence the algo-
rithm takes O(T 2) time and O(T ) space. In (Fearnhead
& Liu, 2005), Fearnhead and Liu present an on-line algo-

rithm that takes O(T 2) time and space if solved exactly, but
O(T ) time and space if solved approximately (by pruning
hypotheses whose probability falls below a threshold, and
only keeping the most probable hypotheses).

The input to all three algorithms is λ (or more generally
p(`)), and a function that can compute the marginal likeli-
hood p(ys:t|m) for any data segment ys:t given a model m;
we shall denote this function by obslik(ys:t,m, α), where
α are hyper-parameters used by the observation model m.
In addition, we need to specify the class of possible models
M, and a prior over models, p(m), for m ∈ M. Finally,
for the approximate on-line algorithm, we need to specify
a pruning threshold φ and a number of particles Np (we
use φ = 10−40 and Np = 50). Hence the interface to the
segmentation function is

(K, π) = segment(y1:T , λ, p(m), obslik(·, ·, α), φ,Np)

Unfortunately we do not have the space to explain how this
function works; see (Fearnhead & Liu, 2005) for details.

In this paper, we focus on the problems of specifying suit-
able observation likelihood functions obslik(), and of cre-
ating suitable hypothesis spaces M. In particular, we pro-
pose to use Gaussian graphical models (GGMs) to repre-
sent p(yi|θ, m), where yi ∈ IRd and m is the graph struc-
ture, as we explain in Section 3 below. We estimate the
graph structure using L1-penalized maximum likelihood
(see Section 4).

A closely related paper by Talih and Hengartner (2005)
also uses GGMs to segment multivariate time series, but
they cannot use dynamic programming, since their model
is not a PPM. Specifically, they assume that the graph struc-
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ture changes slowly over time (one arc addition or deletion
at each segment boundary), which violates the assumption
that the parameters of each model in each segment are inde-
pendent. They then use reversible jump MCMC to estimate
the segmentation and the (non-decomposable) structures.
Our technique is much faster and can draw perfect samples
from the posterior (given M). Also, we estimate the num-
ber of segments, whereas Talih and Hengartner assume this
is known.

It is interesting to compare the product partition model
(PPM) to a hidden Markov model (HMM) and an “infinite
HMM” (IHMM) (Beal et al., 2002). In an HMM, we have
a fixed number of states S; we label each time step with a
state, which specifies which parameters to use to generate
an observation. In a PPM, we have an unbounded number
of states; we label each time step with the corresponding
parameter to use, but we can never re-use an old state la-
bel once we have left a segment, so the label sequence is
strictly increasing. An infinite HMM is a blend between
these two models: we have an unbounded number of states/
parameters, but we can revisit an old state at any time.

Given these distinctions, it should be clear when to use —
and when not to use — a PPM. In particular, if we think
each segment is generated from a “fresh” set of parameters
that we have not used before, a PPM is appropriate, but if
we expect to return to an old parameter regime, an HMM or
IHMM may be more appropriate. If the number of regimes
is known, we can use an HMM, which supports dynamic
programming for inference, but if the number of regimes is
unknown, we have to use an IHMM, for which more ex-
pensive techniques such as Gibbs sampling must be used
for inference. The GGM version of the PPM presented in
this paper is an interesting compromise between these ex-
tremes, since it assumes you can “revisit” old structures,
but you cannot revisit old parameters (since they are inte-
grated out of each segment). This is possible because we
condition on M, and thus can share structures across time.
We give more details below.

3. Observation likelihood models
We now discuss several approaches for modeling p(ys:t)
when yi ∈ IRd is the d-dimensional observation at time i.
We will compare their performance below.

3.1. Independent features model

When modeling multivariate time series, a simple ap-
proach is to assume each feature is independent (as in naive
Bayes):

p(ys:t) =
d∏

j=1

p(ys:t,j) =
d∏

j=1

(∫
[

t∏

i=s

p(yi,j |θj)]p(θj)dθj

)

Suppose yij ∼ N (0, σ2
j ) (we consider the case of

non zero mean below) and σ2
j ∼ χ−2(N0, V0j) =

IG(N0/2, V0j/2), where V0j is our prior variance and N0

is the strength of this prior. Then we can compute the inner
integral to give

p(ys:t,j) = π−n/2
V

N0/2
0j

V
(N0+n)/2
nj

Γ(N0/2)−1

Γ((N0 + n)/2)−1

where n = t − s + 1 is the length of the segment, Vnj =
V0j +

∑t
i=s y2

ij , and Γ is the gamma function. We call
this the “independent features model”. Unfortunately, this
cannot capture correlations between the features, which is
crucial for certain domains such as finance.

3.2. Full covariance model

A more expressive choice is to model yi with a multivariate
Gaussian, yi ∼ N (0, Σ). We will use an inverse Wishart
prior, Σ ∼ IW (N0, V0) which is a generalization of in-
verse chi-squared. Here N0 > d− 1 is the degrees of free-
dom and V0 is the scale matrix. The marginal likelihood is
as follows

p(ys:t) = π−
nd
2

|V0|N0/2

|Vn|(N0+n)/2

Γd(N0/2)−1

Γd((N0 + n)/2)−1

Vn = V0 + S, S =
t∑

i=s

yiy
T
i ,

Γd(n) = πd(d−1)/4
n−1∏

i=0

Γ(n− i

2
)

where Γd(n) is the multivariate gamma function (so
Γ1(n) = Γ(n)). When we increase/decrease the segment
by one time step (as required by Fearnhead’s algorithm),
we can perform a rank-one update/downdate of S, so over-
all the cost is dominated by computing the matrix deter-
minant |Vn|. We typically use the relatively uninformative
hyper parameter values of N0 = d and V0 = σ̂2I , where
σ̂2 is the mean of the empirical variance pooled across all
the data. (Using this data-dependent prior is similar to pre-
processing the data by scaling.) Note that N0 = d is the
smallest value (weakest prior) we can use if the prior is to
remain proper. We discuss the issue of hyperparameters in
more detail in Section 5.2.

3.3. Gaussian graphical model

Although the full-covariance model works quite well
for low-dimensional problems, the number of parameters
needed by this model is O(d2). A fully diagonal approx-
imation to Σ results in the independent features model.
Gaussian graphical models provide a good compromise
between these two extremes. We can either use directed
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graphs (i.e., Bayes nets; see e.g., (Geiger & Heckerman,
1994)) or undirected models (see e.g., (Lauritzen, 1996;
Giudici & Green, 1999; Carvalho & West, 2006)). In this
paper, we use undirected graphs, since there are very effi-
cient procedures for estimating undirected graph structures
(see Section 4), which is needed to compute the model
space M.

Computing the marginal likelihood for non decomposable
graphical models cannot be done in closed form. Vari-
ous approximations have been proposed (Roverato, 2002),
but these are slow. So we shall assume that the graph
structure is decomposable. Give a decomposable graph
structure G, and assuming a hyper-inverse Wishart prior
Σ ∼ HIWG(b0, V0) (Dawid & Lauritzen, 1993), where
b0 = N0 +1−d > 0 is the degree of freedom and V0 is the
location parameter, the marginal likelihood can be written
as follows (Dawid & Lauritzen, 1993; Giudici & Green,
1999; Carvalho & West, 2006):

p(ys:t|G) = (2π)−nd/2 h(G, b0, V0)
h(G, b0 + n, Vn)

(1)

where

h(G, b, V ) =
∏

c∈C | |Vc

2 |bc/2Γ|c|(bc/2)−1

∏
s∈S | |Vs

2 |bs/2Γ|s|(bs/2)−1
(2)

where C are the cliques and S are the separators, and bc =
b + |c| − 1, bs = b + |s| − 1. (If we use C = {{1, . . . , d}}
and S = {∅}, then Equation 1 reduces to Equation 1.) The
cost of computing this equation is O(w3), where w is the
treewidth of the graph. This can be much less than the
O(d3) required by the full covariance model. We typically
use the relatively uninformative hyperparameters b0 = 1
(i.e., N0 = d) and V0 = σ̂2I , as in the full covariance case.

If the structure of the graph is not known, we can marginal-
ize it out, using

p(ys:t) =
∑

g∈M
p(ys:t|g)p(g) (3)

where M is the space of possible models (graph struc-
tures). We discuss how to compute M in Section 4 be-
low. Although computing this expression looks expensive,
p(ys:t|g) decomposes into a sum of local terms (since the
graphs are decomposable), so much of the computation can
be shared across graphs.

3.4. Linear regression for the mean

So far we have assumed that each segment is zero mean,
yi ∼ N (0, Σ), and have concentrated on modelling the
covariance Σ. However, we can also model the mean µ us-
ing multivariate linear regression. Specifically, we assume
ys:t = Hβ + ε, where H is a n × q design matrix (n is

the length of the segment, q is the number of input features
per time slice), β is a q × d matrix of regression parame-
ters, and ε ∼ N (0, In, Σ), where N(M, V,Σ) is the matrix
Gaussian distribution (Dawid, 1981)

N(A; M, V, Σ) =
|Σ|n/2

|2πV |d/2

× exp(−1
2
tr((A−M)T V −1(A−M)Σ)) (4)

where M is a n × d matrix representing the means, V is
a n × n matrix representing covariance amongst the rows
(time slices), and Σ is a d × d matrix representing co-
variance amongst the columns (features). If we assume
β|Σ ∼ N (0, D,Σ) where D = diag(δ2

1 , . . . , δ2
q ), and

Σ ∼ IW (N0, V0), then the marginal likelihood is given
by (Minka, 2000)

p(ys:t) = π−
nd
2

( |M |
|D|

) d
2 |V0|N0/2

|Vn|(n+N0)/2

Γd(N0/2)−1

Γd((N0 + n)/2)−1

M = (HT H + D−1)−1, P = (I −HMHT )
Vn = V0 + Y T PY

Using this framework, we can model multivariate auto-
regressive processes. It is straightforward to combine this
approach of modeling the mean with the earlier methods
for graphical modeling of Σ, by multiplying Equation 1 by
(|M |/|D|)d/2.

4. Estimating graph structures
How do we generate the hypothesis space M? We face a
chicken and egg situation: if we knew the segmentation, we
could run a standard structure learning algorithm on each
segment, but we need to know the structures in order to
compute the segmentation.

We propose the following iterative solution. First we cre-
ateM using a heuristic approach described below; we then
perform a segmentation using Fearnhead’s algorithm; we
then re-compute M, by applying the same structure learn-
ing algorithm used in initialization, but to the top N seg-
mentations, as opposed to the heuristically chosen segmen-
tations. This is summarized in Algorithm 1. The whole
algorithm can be thought of as approximate inference in a
hierarchical Bayesian model, where M is at the top of the
hierarchy. The marginal likelihood of each segment is then
given by integrating over the parameters and by marginal-
izing over all the models in M.

To estimate a graph structure from a segment ys:t, we use
the fact that absent edges correspond to zeros in the preci-
sion matrix Λ (Lauritzen, 1996). We therefore compute the
MAP estimate for Λ under a prior that encourages many
entries to go to zero. We can pose this as the following
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Algorithm 1 Sketch of overall algorithm
1: Input: data y1:T , changepoint rate λ, pruning thresh-

old φ, number of particles Np, regularization penalty
ρ, observation model obslik(), observation hyper-
parameters α

2: Output: (K, π1:K ,m1:K).
3: Algorithm:
4: S = make overlapping segments from y1:T

5: M = {estG(ys, ρ) : s ∈ S}
6: while not converged do
7: (K, π) = segment(y1:T , λ, 1/|M|, obslik(), φ, Np)
8: M = {estG(yπi

, ρ) : πi ∈ π}
9: end while

10: mi = arg maxm p(m|yπi) for i = 1 : K

convex optimization problem:

max
ΛÂ0

log detΛ− trace(Σ̂Λ)− ρ||Λ||1 (5)

where Σ̂ is the empirical covariance matrix derived from
ys:t, ||Λ||1 =

∑
ij |Λij |, and ρ > 0 is a regularization pa-

rameter which controls the sparsity of the graph. (We set
ρ = 0.2.) We solve this using the block coordinate descent
algorithm of (Banerjee et al., 2006), and denote this proce-
dure by G = estG(ys:t, ρ). This takes O(Id4) time, where
I is the number of iterations.

Other, faster methods exist for estimating sparse undirected
GGMs. One method that we tried is the following: com-
pute a shrinkage estimate of Σ̂, using the technique pf
(Schaefer & Strimmer, 2005). From this, compute the pre-
cision K̂ = Σ̂−1 and the partial correlation coefficients

ρij = − Kij√
KiiKjj

(6)

Then set edge Gij = 0 if |ρij | < θ, where θ is some thresh-
old (we use 0.2); otherwise set Gij = 1. A more prin-
ciple approach would use a local false discovery rate crite-
rion to pick the threshold adaptively (Schaefer & Strimmer,
2005). However, we have not yet tried this. Note that this
thresholding-based approach takes O(d3) time, so scales
much better than the block coordinate descent method. In
the future, we would also like to try L1-based regression
methods (Meinshausen & Buhlmann, 2006) for estimating
K, which are also O(d3).

The above methods can learn arbitrary graph structures.
Since our computation of the marginal likelihood as-
sumes the graph is decomposable, we convert each non-
decomposable graph in our set M into its “closest” de-
composable approximation by computing a min-fill trian-
gulation (Cowell et al., 1999).

To get the process started, we use the following heuristic.
We slide a window of width w = 0.2T across the data,

shifting by σ = 0.1w at each step, to create a set candidate
segmentations. We then repeat this for different window
sizes w and shifts σ. The hope is that this oversegmenta-
tion will contain the “true” segments, or at least something
similar. We then apply the structure learning algorithm to
all of these windows and use this as our initial guess ofM.

There is an obvious tradeoff between accuracy and speed.
We set the w and σ parameters so that they generate about
100 segments; the number of unique graphs that results
(and hence the size of M) obviously depends on the data,
but in our experiments is about 20–40. If the true struc-
ture is not in the initial model set because we did not guess
the correct segmentation boundary, it is possible that the
first iteration of the Fearnhead algorithm will nevertheless
recover a good segmentation, and that the true model will
be recovered in the second iteration. However, a limiting
factor is the ability to detect the true structure even given
the correct segmentation. Obviously we could consider
other methods for structure learning besides MAP estima-
tion with an L1 prior, and we could lift the decomposable
graph assumption, but that is beyond the scope of this pa-
per.

We use a uniform prior on structures, p(g) = 1/|M|. Nev-
ertheless, due to the Bayesian Occam’s razor effect, the
method will not always pick the most complex graph for
each segment.

5. Experimental results
In the experiments below, we only performed one iteration
of the algorithm, for simplicity. Preliminary results sug-
gest that re-estimating the structures after segmentation did
not improve results significantly, suggesting that our initial
heuristic oversegmentation is adequate for recovering M.

5.1. Bee data

We first applied our method to a 3 dimensional data set used
in (Oh et al., 2006). This consists of the x and y coordinates
of a honeybee, and its head angle θ, as it moves around an
enclosure, as observed by an overhead camera.1 Some ex-
amples of the data, together with a ground truth segmenta-
tion (created by human experts), are shown in Figure 2. We
also show the results of segmenting this using a first-order
auto-regressive AR(1) model, using independent features
or with a full covariance model. (Using a GGM gives simi-
lar results to the full model in this low dimensional setting.)
We see that the independent features model oversegments,

1We preprocessed the data by replacing θ with sin θ and cos θ;
this improves the results considerably, since there is no longer a
discontinuity as the bee moves between −π and π. Surprisingly,
we found it slightly better to include both sin θ and cos θ than to
include either one alone.
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Figure 2. Bee sequence fit with AR(1) model. The intermittent high frequency oscillations correspond to the bees’ “waggle dance”.
“Truth” refers to manual segmentation. “Indep” refers to the independent features model. “Full” refers to the full covariance model. The
histogram on the right is an estimate of the number of segments.

because each signal has too many small changes, whereas
what matters is the coordinated change.

Note that other techniques also perform well on this data.
In particular, (Oh et al., 2006) use a switching latent state
space model. This has the additional advantage that the
posterior over the discrete switch states can be used to clas-
sify (label) each segment. This model assumes that param-
eters are stationary over time, so whenever a bee enters the
“waggle” state, its waggle parameters are the same as the
last time it entered that state. This seems like a reasonable
assumption for this domain. In contrast, the PPM will use
new parameters for each regime, which would be more ap-
propriate in a non-stationary environment.

5.2. Synthetic data

To test the ability of the method to recover structure, as
well as its ability to scale to larger dimensions, we applied
it to a synthetic 20-dimensional dataset. The advantage of
using synthetic data is that we know the ground truth about
the location of the changepoints and the structure of the
generating model. We sample n = 100 data points from
3 different sparse decomposable Gaussian graphical mod-
els, and then concatenate the data: see Figure 3. We then
attempt to segment this data using Fearnhead’s algorithm
and 3 different likelihood models: the independent features
model, the full covariance model, and the GGM, where the
set of possible M is generated using the sliding window
heuristic. As can be seen from Figure 3, the independent
features model does very poorly (in this case, it thinks all
the data comes from one segment), as does the full covari-
ance model (which heavily oversegments the data) but the

GGM model correctly identifies the three segments. Fur-
thermore, the posterior over graph structures has very low
entropy, and the resulting MAP graphs have structures that
are reasonably close to the truth (in terms of number of cor-
rect/ incorrect edges).

We obtained similar results with other experiments of this
kind. The full covariance method works for low dimen-
sions (up to say d = 5), but in higher dimensions, it per-
forms poorly, because there is not enough data to estimate a
full Σ in each segment (unless each segment is very long).
Note that by performing Bayesian estimation, we avoid the
numerical problems encountered with a maximum likeli-
hood estimate of a full Σ; however, the relatively uninfor-
mative prior we use does not overcome the statistical prob-
lem. The GGM approach is a more structured hypothesis
space, which is helped by the fact that our heuristic way of
creating M gets to look at the data first. In addition, we
have found, in informal experiments, that the full covari-
ance model is much more sensitive to the hyperparameter
V0 than the GGM approach. (Setting priors for variance
parameters is known to be a delicate issue (Gelman, 2006),
especially when considering model uncertainty.) In all the
experiments, we used V0 = σ̂2I as a reasonable default
prior.

5.3. Financial data

Finally we applied the method to some financial data, the
“30 industry portfolios” dataset.2 This consists of the

2The data is available from http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/
data_library.html.
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Figure 3. Results on synthetic 20 dimensional data. To save space, we only plot the first two variables, y1,1:T and y2,1:T . We then show,
in order, the true segmentation boundaries (at t = 100 and t = 200), and samples from the posterior over segmentations generated using
the independent model, the full covariance model, and the Gaussian graphical model (GGM). To the right of each segmentation we plot
the posterior over the number of segments, p(K|y). We can see that the independence model thinks there is 1 segment (so no ’spikes’
occur on the plot on the left); the full covariance thinks there are many segments, and the GGM (correctly) thinks there are 3 segments.
For each of the three segments (as estimated by the GGM), we plot (clockwise from top left) the posterior over the |M| = 40 possible
model structures, p(G|ys:t), the true structure (shown as an adjacency matrix), the MAP structure GMAP = arg maxG p(G|ys:t), and
the marginal edge probabilities, p(Gij = 1|ys:t), computed using Bayesian model averaging. (Gray squares represent edges about
which we are uncertain.)

valued-weighted monthly returns of 30 different industry
sectors over the period 1927-2006. (A similar, but smaller
(5 dimensional) dataset was analysed in (Talih & Hengart-
ner, 2005).) The data is already approximately zero mean,
but we take a log transform, to make the Gaussian assump-
tion more reasonable. The results are shown in Figure 4,
and take about 10 minutes to generate. (For this problem,
we use the threshold method to generate the list of can-
didate models M.) In this problem, we do not know the
ground truth segmentation, let alone the true graph struc-
ture (if there is such a thing!). Nevertheless, our results
seem qualitatively reasonable, although there is no obvious
correspondence to known events of historical importance.

Since the truth is unknown, it is hard to assess the quality
of these results. Ultimately the validity of a model is de-
termined by its usefulness. Recent work by Carvahlo and
West (Carvalho & West, 2006) has shown that using sparse

GGMs for portfolio design can result in increased profits.
They assumed the structure of the graph was constant over
time, and they estimate it offline using all the data. It is
possible that the techniques in this paper would provide a
way to extend their results to non-stationary environments.
However, we leave this to future work.

6. Discussion
We have shown how to apply Fearnhead’s algorithms to
multivariate time series, and also how to perform graphical
model selection in each segment. In the future, we would
like to investigate better ways to create the hypothesis space
M, as well as ways to make the techniques work in an
online setting, which is required for financial (and other)
applications.
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Figure 4. The portfolios data for 30 industry types. We only show the data for 2 industries, for clarity. We show the estimated graph
structures for 3 of the segments, to illustrate their sparsity. The x-axis labels are in the form YYYYMM, for year and month.
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