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Learning to Track and Identify Players
from Broadcast Sports Videos

Wei-Lwun Lu, Jo-Anne Ting, James J. Little, Kevin P. Murphy

Abstract—
Tracking and identifying players in sports videos filmed with a single pan-tilt-zoom camera has many applications, but it is also a
challenging problem. This article introduces a system that tackles this difficult task. The system possesses the ability to detect and
track multiple players, estimates the homography between video frames and the court, and identifies the players. The identification
system combines three weak visual cues, and exploits both temporal and mutual exclusion constraints in a Conditional Random
Field. In addition, we propose a novel Linear Programming Relaxation algorithm for predicting the best player identification in a
video clip. In order to reduce the number of labeled training data required to learn the identification system, we make use of weakly
supervised learning with the assistance of play-by-play texts. Experiments show promising results in tracking, homography estimation,
and identification. Moreover, weakly supervised learning with play-by-play texts greatly reduces the number of labeled training examples
required. The identification system can achieve similar accuracies by using merely 200 labels in weakly supervised learning, while a
strongly supervised approach needs a least 20000 labels.

Index Terms—sports video analysis, identification, tracking, weakly supervised learning
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1 INTRODUCTION

1.1 Motivation

INtelligent sports video analysis systems have many
commercial applications and have spawned much

research in the past decade. Recently, with the emergence
of accurate object detection and tracking algorithms, the
focus is on a detailed analysis of sports videos, such as
player tracking and identification.

Automatic player tracking and identification has many
commercial applications. From the coaching staff’s point
of view, this technology can be used to gather game
statistics in order to analyze their competitors’ strength
and weakness. TV broadcasting companies also benefit
by using such systems to create star-camera views –
video streams that highlight star players. Since both
tasks are currently performed by human annotators,
automating these processes would significantly increase
the production speed and reduce cost.

This article is thus devoted to developing a system to
automatically track and identify players from a single
broadcast video taken from a pan-tilt-zoom camera. The
only input of the system is a single broadcast sports
video. The system will automatically localize and track
players, recognize the players’ identities, and estimate
their locations on the court. As opposed to most existing
techniques that utilize video streams taken by multiple
cameras [1], the proposed system has two advantages:
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(1) The system works with a single uncalibrated pan-
tilt-zoom camera. This avoids the expensive process of
installing a calibrated camera network in the stadium,
which is usually impractical for amateur sports fields.
(2) The system has the ability to analyse existing sports
video archive taken by uncalibrated moving cameras
(e.g. sports videos in YouTube). To the best of our knowl-
edge, the proposed system is the first one that is able to
track and identify players from a single video, and we
believe it could benefit a wider range of users.

1.2 Challenges
Tracking and identifying players in broadcast sports
videos is a difficult task. Tracking multiple players in
sports videos is challenging due to several reasons: (1)
The appearance of players is ambiguous – the players
of the same team wear uniforms of the same colors; (2)
Occlusions among players are frequent and sometimes
long; (3) Players have more complicated motion pattern,
and they do not have a fixed enter/exit locations, as
opposed to the pedestrians in surveillance videos.

Identifying players is even a harder problem. Most
existing systems can only recognize players in close-up
views, where facial features are clear, or jersey numbers
are visible. However, in frames taken from a court view,
faces become blurry and indistinguishable, and jersey
numbers are broken and deformed. In addition, since
players constantly change their poses and orientations,
both faces and jersey numbers are only visible in limited
cases. Colors are also weak cues because players on the
same team have identical jersey color, and many have
very similar hair and skin colors.

One possible solution for player identification is to
train a classifier that combines multiple weak cues, as we
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proposed in [2]. However, [2] requires a large amount
of labeled training data, and acquiring those labels is
time-consuming. A learning strategy that requires fewer
labeled examples is thus preferable.

1.3 Related work

Reviewing all relevant tracking literature is beyond the
scope of this article (see [3] for a survey). Here, we
discuss the most relevant ones for tracking sport players.
Single target trackers such as Boosted Particle Filter
(BPF) [4], [5] or mean-shift [6], [7] can be used to track
players. However, these trackers lack a global view of
the scene and thus usually fail to track players when oc-
clusion occurs. Another strategy is to first detect players
and then link detections into tracks. This technique re-
quires an affinity function between detections, which can
be defined by heuristics [8], [9], or learnt from training
data [10]. Then, one can use either Linear Programming
[11], or MCMC [12] to search for the best way to link
detections into tracks. The algorithm proposed in this
article resembles [5], but we also borrow ideas from [11].

Previous player identification systems in the sports
domain have focused on video streams filmed with
close-up cameras. These systems relied on recognizing
either frontal faces [13], [14] or jersey numbers [15], [16].
Unfortunately, these systems only apply to close-up and
frontal-view images where facial features are clear and
jersey numbers are visible. Recently, [1] introduced a sys-
tem that recognizes players from 8 stationary cameras,
but it still requires 2 cameras with close-up views. From
the best of our knowledge, our previous work [2] is the
first one that tracks and identifies players in a single
broadcast sports video filmed from the court view.

For learning a classifier with fewer numbers of labeled
data, a rich literature can be found in the field of semi-
supervised learning (see [17] for a complete survey). For
learning from video streams, one solution is the crowd-
sourced marketplace [18], but it still requires human
labour. An alternative solution is the use of weak labels. A
typical source of weak labels are the captions/subtitles
that come with movies, which specify what or who is
in the video frame. Such weakly labeled data is often
cheaply available in large quantities. However, a hard
correspondence problem between labels and objects has
to be solved. An early example of this approach is [19],
which learnt a correspondence between captions and
regions in a segmented image. [20], [21], [22], [23] learnt
a mapping between names in subtitles of movies to ap-
pearances of faces, extracted by face detection systems.
Others have also attempted to learn action recognition
systems from subtitles [24], [25], [26] or a storyline [27].
In this article, we adopt a similar approach that utilizes
the play-by-play text to train a player identification
system. Play-by-play text has been previous used as
features in sports tactic analysis [28], but this article is the
first attempt on using play-by-play text to train a player
identification system. In section 6.3.3, we also show that

Fig. 2. The play-by-play of a basketball game, which
shows the time and people involved in important events.

our proposed new method gives better results than using
one of the current best existing methods [20] for learning
from weak labels.

1.4 Contributions

This article introduces an intelligent system that tracks
and identifies players in broadcast sports videos filmed
by a single pan-tilt-zoom camera. The contribution of
this article is two-fold. Firstly, this article presents a
complete solution for tracking and identifying players in
broadcast sports videos. The system possesses the ability
to detect and track multiple players, recognizes players
by using weak visual cues, and estimates the homogra-
phy between video frames and the court. Secondly, the
article presents a weakly supervised learning algorithm
that greatly reduces the number of labeled data needed
to train an identification system. We also introduce a new
source of weak labels – the play-by-play text, which is
widely available in sports videos.

Compared to our previous work [2], the new system
has a better identification accuracy owing to a better
inference algorithm that relies on a Linear Programming
Relaxation formulation. In addition, the number of la-
beled images is also greatly reduced from 20000 to 200,
owing to weakly supervised learning and the use of the
play-by-play text as the weak labels.

2 VIDEO PRE-PROCESSING

2.1 Shot segmentation

A typical broadcast sports video consists of different
kinds of shots: close-ups, court views, and commercials.
Since this article focuses on video frames taken from the
court view (see Figure 1 for examples), the first step
is to segment videos into different shots. We achieve
this by utilizing the fact that different shots have dis-
tinctive color distributions. For example, close-up views
are dominated by jersey and skin colors, while in court
views, colors of court and spectators prevail. Specifically,
we train a Hidden Markov Model (HMM) [30] for shot
segmentation. The emission probability is modelled by
a Gaussian Mixture Model (GMM) where features are
RGB color histograms, and the transition probability is
formulated to encourage a smooth change of shots. We
then run the Viterbi algorithm [30] to find the optimal
configuration of the graphical model in order to segment
the video into different shots.
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(a) detection (b) team classification (c) tracking

Fig. 1. (a) Automatic player detection generated by the DPM detector [29]. (b) Automatic team classification. Celtics
are in green, and Lakers are in yellow. (c) Automatic tracking by associating detections into tracklets. Numbers
represent the track ID not player identities.

2.2 Play-by-play processing

People keep the logs of important events for most sports
games. The log is called the play-by-play, which is usually
available in real-time during professional games and can
be freely downloaded from the Internet. Figure 2 shows
an example of play-by-play text downloaded from the
NBA website. We see that it shows event types (e.g.,
“Dunk”, “Substitution”), player names (e.g., “Bryant”,
“Bynum”), and timestamps (e.g., “00:42.3”).

In this article, we only focus on player identities,
rather than actions. Since the play-by-play provides the
names of the starting players and the substitution events
(see the second log in Figure 2), we can use a finite-
state machine to estimate the players on the court at any
given time. To assign a game time-stamp to every video
frame, we run an optical character recognition (OCR)
system [31] to recognize the clock numbers showing on
the information bar overlaid on the videos. The OCR
system has nearly perfect accuracy because the clock
region has a fixed location, and the background of the
clock is homogeneous.

3 PLAYER TRACKING

This paper takes a tracking-by-detection approach to track
sports players in video streams. Specifically, we run an
player detector to locate players in every frame, and then
we associate detections over frames with player tracks.

3.1 Player detection

We use the Deformable Part Model (DPM) [29] to auto-
matically locate sport players in video frames. The DPM
consists of 6 parts and 3 aspect ratios and is able to
achieve a precision of 73% and a recall of 78% in the test
videos. Figure 1(a) shows some DPM detection results
in a sample basketball video. We observe that most false
positives are generated from the spectators and referees,
who have similar shapes to basketball players. Moreover,
since the DPM detector applies non-maximum suppres-
sion after detection, it may fail to detect players when
they are partially occluded by other players.

3.2 Team classification
In order to reduce the number of false positive detec-
tions, we use the fact that players of the same team wear
jerseys whose colors are different from the spectators,
referees, and the other team. Specifically, we train a
logistic regression classifier [32] that maps image patches
to team labels (Team A, Team B, and other), where image
patches are represented by RGB color histograms. We
can then filter out false positive detections (spectators
and referees) and, at the same time, group detections
into their respective teams. Notice that it is possible to
add color features to the DPM detector and train a player
detector for a specific team [33]. However, [33] requires a
larger labeled training data, while the proposed method
only needs a handful examples.

After performing this step, we significantly boost
precision to 97% while retaining a recall level of 74%.
Figure 1(b) shows some team classification results.

3.3 Player tracking
We perform tracking by associating detections with
tracks and use a one-pass approach similar to [5]. Start-
ing from the current frame, we assign detections to
existing tracks. To ensure the assignment is one-to-one,
we use bi-partite matching where the matching cost is
the Euclidean distances between centers of detections
and predictive locations of tracks. Specifically, let Ci,j be
the cost of associating the i-th track to the j-th detection.
We compute the cost function by Ci,j = ||̂si−dj ||, where
ŝi = [x̂i, ŷi, ŵi, ĥj ]

T is the predicted bounding box of the
i-th track, and dj = [xj , yj , wj , hj ]

T is the j-th bounding
box generated by the detector. As shown in Figure 3,
the relationship between time and player’s locations is
approximately linear in a short time interval. Therefore,
we compute the predictive bounding box at time t by
(we drop subscript i for simplicity): ŝ = tat + bt, where
both at and bt are both 4 × 1 vectors. We estimate
at and bt by utilizing the trajectory of the i-th track
in the previous T frames. Specifically, we optimize the
following least-square system with respect to at and bt:

min
at,bt

T∑
k=1

(1− α)k||(t− k)at + bt − st−k||2 (1)
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where st−k is the track’s estimated bounding box at time
t − k, and 0 < α < 1 is a small positive constant.
Equation 1 can be thought of fitting a linear function
to map time t to a bounding box st

1.
After assigning detections to existing tracks, the next

step is to update the state estimate of players. The state
vector we want to track at time t is a 4-dimensional
vector st = [x, y, w, h]T , where (x, y) represents the center
of the bounding box, and (w, h) are its width and height,
respectively. We use a linear-Gaussian transition model:
p(st|st−1) = N (st|st−1, σ2

dI), and a linear-Gaussian ob-
servation model: p(dt|st) = N (dt|st, σ2

eI), where I is a
4 × 4 identity matrix, and σd and σe is the variance for
the transition and observation model, respectively. Since
both the transition and observation models are linear-
Gaussians, we can update the current state st by using
a Kalman Filter [34]. If there is no associated detection,
we use Kalman Prediction [34] to fill the gap.

A new track is initialized for any unassigned detection.
However, the track is dropped if it fails to have a
sufficient number of detections associated with it after
a short time. Existing tracks are also removed if they are
close to the image boundaries, or if they fail to have any
detections associated with them for a sufficient period
of time (1 sec in our experiments).

Figure 3 shows results of tracking basketball play-
ers. Every dot in the graph represents the center of a
bounding box, where different colors represent different
tracklets. The tracking algorithm has a 98% precision
with an better recall of 82%. The recall improves because
the original detections are temporally sparse, and the
tracking bridges the gap between disjointed detections
by Kalman Prediction. For example, the tracking system
successfully locates track #2 in Figure 1(c), while DPM
fails to detect the players in Figure 1(a).

4 PLAYER IDENTIFICATION

The next step is to automatically identify sports players.
Face recognition is infeasible in this domain, because
image resolution is too low even for human to identify
players. Recognizing jersey numbers is possible, but still
very challenging. We tried to use image thresholding to
detect candidate regions of numbers, and run an OCR
[31] to recognize them, as in [1]. However, we got very
poor results because image thresholding cannot reliably
detect numbers, and the off-the-shelf OCR is unable to
recognize numbers on deformed jerseys. Frequent pose
and orientation changes of players further complicate the
problem, because frontal views of faces or numbers are
very rare from a single camera view, as opposed to [1]
that accessed to 8 cameras.

We adopt a different approach, ignoring face and num-
ber recognition, and instead focusing on identification
of players as entities. We extract several visual features

1. Notice that we fit a linear model only when we have a sufficient
number of training data. Otherwise, first-order auto-regression (i.e.,
ŝ = st−1) is used.

Fig. 3. The x-y-t graph of tracking results, where (x, y) is
the center of a bounding box, and t is the time. Every dot
in the graph represents a detected bounding box, where
different colors represent different tracklets.

from the entire body of players. These features can be
faces, numbers on the jersey, skin or hair colors. By
combining all these weak features together into a novel
Conditional Random Field (CRF), the system is able
to automatically identify sports players, even in video
frames taken from a single pan-tilt-zoom camera.

4.1 Graphical model
Given the tracking results, we construct a Conditional
Random Field (CRF) for the entire video clip, as shown
in Figure 4. The CRF consists of N feature nodes xt,d

that represent the observed feature vectors of the player
detection d at time t, where N is the number of detections
in a video clip. The CRF also has N identity nodes yt,d
that represent the player identity of detection d at time
t, whose values will be estimated given all observed x.
The feature node yt,d has |C| possible values, where C is
a set of all possible player classes.

We first connect identity nodes yt,d to corresponding
feature nodes xt,d. The node potential is defined as:

ψunary(yt,d,xt,d) = p(yt,d|xt,d,θ) · p(yt,d) (2)

where xt,d are feature vectors and θ are parameters. We
model p(yt,d|xt,d,θ) as multi-class logistic regression:

p(yt,d = k|xt,d,θ) =
exp(θT

k xt,d)∑
j exp(θ

T
j xt,d)

(3)

Parameters θ are trained in a discriminative way using
either fully-labeled or weakly-labeled training data.

The prior probability p(yt,d) expresses our initial belief
of the presenting players. During testing, p(yt,d) is set to
be a uniform distribution over all possible players and
hence this term can be ignored; that is, player identity
is estimated only from the visual features. However,
in training time, p(yt,d) can be adjusted if some prior
knowledge is available (see section 4.4 for details).

We then connect identity nodes yt,i and yt+1,j if they
belong to the same track, where tracking is done by
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using the algorithm in section 3. We use this edge to
encourage temporal smoothness of identities within a
track. The edge potential is defined as:

ψtime(yt,i, yt+1,j) =

{
1− ε if yt,i = yt+1,j

ε otherwise (4)

where 0 ≤ ε ≤ 1 is a fixed parameter that reflects the
tracking error. Setting ε to 0 forces all identity nodes y
within a track to have the same estimated value. On the
other hand, setting ε to a positive value allows identity
nodes y to change values within a track. In our previous
work [2], we set ε to a small positive value to account for
tracking errors. However, here we set ε = 0 because this
simplifies the optimization problem and does not affect
the identification accuracy in our experiments.

We also connect all pairs of identity nodes yt,i and yt,j
if they appear in the same time t. We then introduce an
edge potential that enforces mutual exclusion:

ψmutex(yt,i, yt,j) =

{
1 if yt,i 6= yt,j
0 otherwise (5)

This potential specifies the constraint that a player can
be appear only once in a frame. For example, if the i-th
detection yt,i has been assign to Bryant, yt,j cannot have
the same identity because Bryant is impossible to appear
twice in a frame.

The joint posterior of the entire CRF is then:

p(y|x,θ) =

 |T |∏
t=1

|Dt|∏
d=1

ψunary(yt,d,xt,d)


·

 |T |∏
t=1

|Dt|∏
d=1

ψtime(yt,d, yt+1,succ(t,d))


·

 |T |∏
t=1

|Dt|∏
d=1

∏
j 6=d

ψmutex(yt,d, yt,j)

 (6)

where succ(t, d) is the next node (if it exists) that is
connected to yt,d in the track, |Dt| is the number of
detections in frame t, and |T | is the total number of
frames in the video clip.

4.2 Visual Features
The feature vector xt,d consists of three different kinds of
visual cues: maximally stable extremal regions (MSER)
[35], SIFT features [36], and RGB color histograms. The
MSER regions [35] are those stable segments whose col-
ors are either darker or lighter than their surroundings.
They are useful for detecting texts in natural scenes
because text has often uniform color and high contrast.
We first detect the MSER regions [35] and normalize
them according to [37], as shown in Figure 5(b). For
every MSER region, a 128-dimensional SIFT descriptor
is computed and quantized into one of 300 visual words
using a learnt codebook (the codebook is learnt using k-
means clustering). The MSER representation of the im-
age is a 300-dimensional bag-of-words bit vector, where

Fig. 4. Graphical model for training clips. x are detections.
Mutex arcs exist between detection identities y in a frame.
Temporal arcs exist between y nodes across frames.

a value of 1 indicates presence of the corresponding
visual word and 0 otherwise.

The SIFT features [36] are stable local patches invariant
to scale and affine transformation. We first detect the
SIFT features, as shown in Figure 5(c). Then, we compute
the SIFT descriptors and quantize them into 500 visual
words. We use more visual words for SIFT because there
are more SIFT features than the MSER regions.

Although colors are weaker features (players of the
same team wear the same uniform), skin color may
provide some information for player identification. To
account for the colors of limbs, hair, etc., we also com-
pute RGB color histograms from the image. For the RGB
color histogram, we use 10 bins for each of the R, G and
B channels. We treat the three colors independently, so
the full histogram has in total 30 bins.

Figure 5 shows an example of the MSER and SIFT
features. We can see that faces are blurred, while num-
bers can only be clearly seen in the last frame. Since
we do not segment the player from the background,
some MSER and SIFT features may be generated from
the background. However, these features will not affect
identification results because they are assigned lower
weights in Equation 3 due to the use of L1 regularization.

4.3 Inference
We estimate the identities of players by maximizing the
log posterior in Equation 6 with respect to the identity
variables y. We first represent the identity variable y
by an auxiliary column vector z, and we have z =
[z1 . . . zC ]

T where zc = 1 if y = c, and 0 otherwise. Then,
we re-write the joint posterior as a Gibbs distribution:

p(z|x,θ) = 1

Z(θ)
exp(E(z,x)) (7)

where Z(θ) is the normalization constant. E(z,x) is a
log-linear energy function:

E(z,x) =

|T |∑
t=1

|Dt|∑
d=1

fTt,dzt,d + qT zt,d (8)

+

|T |∑
t=1

|Dt|∑
d=1

zTt,dG zt+1,succ(t,d) (9)
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(a) raw image (b) MSER visual words (c) SIFT visual words

Fig. 5. (a) Raw image patches extracted from the tracking system. (b) Green ellipses represent the detected MSER
regions [35]. (c) Red circles represent the detected SIFT interest points [36].

+

|T |∑
t=1

|Dt|∑
d=1

∑
j 6=d

zTt,dJ zt,j (10)

We represent the feature potentials by a vector f t,d =
[ft,d,1 . . . ft,d,C ]

T where ft,d,c = θT
c xt,d. The prior prob-

ability is represented by q where q(i) = log p(y = i).
The temporal constraints are encoded by a matrix G,
where G(i, i) = log(1 − ε) and G(i, j) = log(ε) if i 6= j.
The mutual exclusion constraints are represented by the
matrix J, where J(i, i) = − inf and J(i, j) = 0 if i 6= j.

We further simplified the problem by setting ε = 0,
and thus both Equation 9 and 10 become hard con-
straints. We then re-write the optimization problem as:

max
z

|T |∑
t=1

|Dt|∑
d=1

fTt,dzt,d + qT zt,d (11)

subject to the following constraints:

|C|∑
c=1

zt,d,c = 1 ∀t ∈ T , d ∈ Dt (12)

zt,d,c − zt+1,succ(t,d),c = 0 ∀t ∈ T , d ∈ Dt, c ∈ C (13)
zt,d,c + zt,j,c ≤ 1 ∀t ∈ T , c ∈ C, d 6= j (14)
zt,d,c ≥ 0 ∀t ∈ T , d ∈ Dt, c ∈ C (15)

where T is a set of frames, C is a set of all possible play-
ers, and Dt is a set of detections at time t. Equation 12
ensures that there is exactly one variable in zt,d being
1. Equation 13 ensures that both zt,d,c and zt+1,succ(t,d),c
have the same value, and thus it enforces the temporal
constraint. Equation 14 prevents both zt,d,c and zt,j,c
being 1, which violates the mutual exclusion constraint.
Equation 15 ensures that all z are non-negative.

Since solving the above optimization problem with
respective to binary variables z is hard, we relaxed the
problem and allowed z to take real values. We then
see that Equation 11 becomes a Linear Programming
(LP) problem with linear constraints in Equation 12–
15. This problem can be efficiently2 solved by standard
optimization algorithms [38]. After solving the problem
for real-valued z, the player identity yt,d can be obtained
by yt,d = argmaxczt,d,c.

2. In our Matlab implementation, it takes about 3 seconds to perform
inference for 1000 frames in a computer with four 2.8GHz CPUs. In the
same time, our Loopy BP implementation takes more than 100 seconds.

Other inference algorithms are also possible. For ex-
ample, in our previous work [2], we applied sum-
product Loopy Belief Propagation (LBP) [39] to compute
the marginal distribution p(yt,d|x), and then took the
maximum independently to every marginal to generate
a sub-optimal configuration. However, this approach
sometimes produces a configuration that violates mutual
exclusion constraints. One can also apply max-product
BP [39], but the speed is much slower than the proposed
LP formulation.

4.4 Learning
The goal of learning is to find the best parameters θ in
the feature potentials ψfeat. In other words, we want to
train a classifier p(yt,d|xt,d,θ) that maps feature vectors
xt,d to player class yt,d given some labeled training data.

If we can afford a large number of labeled training
data as in [2], the most straightforward approach is
supervised learning. We maximize the log-posterior of
labeled training data with a L1 regularizer as in [40]:

max
θ

∑
t

∑
d

log p(yt,d|xt,d,θ)− α||θ||1 (16)

where α is a constant. The above optimization problem
can be efficiently solved by the algorithm introduced by
Schmidt et al. [41]. Here, we assumed that all training
data is labeled, i.e., every detected player xt,d has a cor-
responding label yt,d. The major problem of supervised
learning is that it usually requires a large amount of
labeled training data. For example, in [2], more than
20000 labeled training data is needed in order to train
an accurate identification system. Unfortunately, labeled
training data is very expensive to acquire.

Here we take a different approach. Starting with a
small number of labeled training data, we use semi-
supervised learning to train the identification system.
We then take advantage of the play-by-play text that is
available for most professional sports games to further
reduce the number of labeled training data required.

The semi-supervised learning algorithm is a variant
of Expectation-Maximization (EM) [42]. We start with a
small number of randomly labeled training data. This is
achieved by presenting random image patches of players
to human annotators to label, where image patches
are generated from training clips by the DPM detector.
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Algorithm 1 EM for weakly supervised learning
1: estimate θ0 by using labeled data xL and yL
2: k = 0
3: repeat
4: k = k + 1
5: ŷU = LinearProgramming(xU , θk−1) . Eq. 11–15
6: θk = MultiLogitRegFit(yL, xL, ŷU , xU ) . Eq. 18
7: until convergence
8: return θk

We then compute the initial model parameters θ0 by
maximizing the log-posterior with a L1 regularizer, as in
Equation 16. Then, in the first iteration, we predict the
identities of the unlabeled training data by solving the LP
problem in Equation 11 with the initial parameters θ0.
This is called the E-step because we compute the expected
value of yt,d given the current model. Then, we optimize
the log-posterior with all training data:

max
θ

∑
u∈U

∑
yu

p(yu|xu,θold) [log p(yu|xu,θ)]

+
∑
l∈L

log p(yl|xl,θ)− α||θ||1
(17)

where L is the set of labeled data, U is the set of
unlabelled data, and θold are the parameters in the
previous iteration. We approximate the summation over
yu by using the prediction ŷu generated from LP, i.e.:

max
θ

∑
u∈U

log p(ŷu|xu,θ)+
∑
l∈L

log p(yl|xl,θ)−α||θ||1 (18)

Specifically, for labeled data, we use the groundtruth
labels y provided by human annotators. For unlabelled
data, we use the predicted label ŷ computed in the E-
step. The optimization problem can be efficiently solved
by [41]. This is called the M-step because we maximize the
log-posterior given expected labels generated from the E-
step. We repeat this process until convergence to obtain
the best parameters. Since our semi-supervised learning
algorithm is a coordinate ascent algorithm, it is guar-
anteed to monotonically converge to a local maximum.
Algorithm 1 summarizes the EM-based semi-supervised
learning algorithm.

In the standard semi-supervised learning, we set the
prior p(ŷt,d) = 1

|C| , where |C| is the number of all possible
players. This means that the predicted label ŷt,d has a
uniform probability to be any of the |C| possible players.
When the play-by-play text is available, we set:

p(ŷt,d = c) =


1

|Pt|
if c ∈ Pt

0 otherwise
(19)

where Pt is a set of player that appears in frame t, and
Pt ⊂ C. We call this strategy weakly supervised learning
because we are given additional constraints provided
by the play-by-play text. Notice that the majority of

data still remains unlabelled, i.e., there is no one-to-
one mapping between yu and xu. Taking professional
basketball games as an example, a team usually has 12
players in their roster, and therefore |C| = 12. However,
in any given time t, there are only 5 players on the court,
and thus |Pt| = 5. In the experiments, we will show that
this play-by-play prior is crucial to train the identification
system with very small number of labeled training data.

5 HOMOGRAPHY ESTIMATION

Knowing the players’ locations on the court coordinates
is needed for many applications such as the automatic
collection of player statistics. In order to achieve this,
a transformation between the image and court coor-
dinates is required. Unfortunately, camera calibration
algorithms [43], [44] are inapplicable due to the pan-tilt-
zoom camera and the lack of an auxiliary plane in sports
videos. We instead seek to compute the homography
transformation between the image and the court plane,
as in [45], [46], and [47].

The relationship between a point p = [x, y]T in
the court coordinate and its corresponding point p′ =
[x′, y′]T in the image coordinate can be specified by:

p′ =
1

h7x+ h8y + 1

[
h1x+ h2y + h3
h4x+ h5y + h6

]
= f(p;H) (20)

where f(p;H) is a nonlinear function, and H = [h1 . . . h8]
is the homography. In order to obtain the pairs of cor-
respondences (p,p′), the standard approach is to extract
and match interest points such as SIFT features [36] in
both images. However, in sports videos, most interest
points are generated from players and spectators, but
not from the court [47]. Using point correspondences
of players and spectators to estimate the homography
usually leads to unreliable results.

To tackle this problem, we apply a model-based ap-
proach inspired by [45]. Instead of matching interest
points of two images, we match the court model with
the edges of the video frames to establish correspon-
dences. As shown in Figure 6(d), we construct a court
model consisting of a point set M = [p1 . . .pn], where
pi = [x, y]

T is a 2D point. Since all professional courts
of the same sport have identical dimensions, this model
only has to be constructed once for a sport. The edges
of the video frames are computed by the Canny detector
[48], as shown in Figure 6(b). Since the edge detections
contain many false responses from non-court objects,
we further utilize the detection results in section 3.1 to
remove edges caused by players, as shown in Figure 6(c).

This article adopts a variant of the Iterated Closest
Points (ICP) [49] to estimate the homography. Firstly,
we manually specify the first-frame homography H1 and
transform the model such thatM1 = H1M (However, it
is possible to use a semi-automatic approach to initialize
the first-frame homography, as shown in [50]). Given the
second frame, we use ICP to compute the frame-to-frame
homography H12. Specifically, for every model point
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(a) raw (b) original edge map (c) filtered edge map

(d) model points (e) model and stable points (f) homography estimation

Fig. 6. Estimating the homography in basketball videos. (a) A raw video frame. (b) Canny edges [48] of the frame. (c)
Filtered Canny edges by dropping edges caused by players. (d) The original model points. (e) The original model point
set augmented by stable points. (f) Homography estimation results by a variant of Iterated Closest Point (ICP) [49].

p ∈ M1 that appears in the first frame, we search for
the closest edge point p′ in the second frame to establish
the correspondence (p,p′). We drop correspondences
with inconsistent edge normal directions to improve
the robustness, as suggested in [45]. The homography
is estimated by solving the following nonlinear least-
square system [51]:

min
H

∑
i

(f(pi;H)− p′i)
2 (21)

The optimization problem can be solved efficiently
by the Levenberg-Marquardt algorithm [38]. Then, we
transform the model points by the new homography.
We iterate the process of finding closest points and
least-square fitting until convergence to compute the fi-
nal frame-to-frame homography H12. The second-frame
homography can be thus derived by H2 = H12H1.
Since camera motion is minor in two consecutive frames,
ICP usually converges within 3-5 iterations. We repeat
this process for all subsequent frames in a video clip.
Figure 6(f) shows the homography estimation results,
where red lines represent the transformed basketball
model in a test video frame.

Sometimes, model points are sparse in video frames
due to the camera’s viewpoints or occlusions. To alle-
viate this problem, we augment the model point set
by stable points that have a consistent homography as
the court plane. These stable points are usually marks
or logos on the court, which vary in different stadi-
ums. Specifically, we construct an edge map Et where
Et(p̃) = 1, for p̃ = f−1(p′,Ht) where f−1(·) is the
inverse transformation that back-projects p′ in the image
coordinate to the court coordinate. If a point p′ lies on
the court plane, it will be always projected to the same

position, and therefore we will have Et(p̃) = 1 for many
frames. Utilizing this fact, we maintain a score map St
whose size is identical to Et, and update it according to:

St = αEt + (1− α)St−1 (22)

where 0 < α < 1 is a constant forgetting factor. A
point is considered as stable if its score is higher than
a threshold. Figure 6(e) shows the original model points
and stable points of a professional basketball court. The
stable points are automatically generated by Equation 22.

6 RESULTS

6.1 Data
We used videos from the 2010 NBA Championship series
(Los Angeles Lakers vs. Boston Celtics). The original
videos consist of different kind of shots, and we only
used the shots taken from the court view in this article.
The training set consists of 153160 detected bounding
boxes across 21306 frames. The test set has 20 video
clips, consisting of 13469 frames with 90001 detections.
The test clips varied in length, with the shortest at 300
frames and longest at 1400 frames. They also varied in
level of identification difficulty. Labelling both training
and test sets took us considerable effort (more than 300
hours). The size of this training data set is comparable
or larger than others in the weakly labeled learning liter-
ature. For example, in previous work on high-resolution
movies, [22] trained/tested on 49447 faces, and [20]
trained on about 100000 faces.

6.2 Tracking evaluation
We use precision and recall to evaluate the performance
of player detection, team classification, and multi-target
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tracking. The DPM detector [29] had a moderate preci-
sion 73% and recall 78% in the test basketball dataset.
DPM detected most players, but it also detected false
positives such as referees and spectators. After team
classification, the precision increases to 97% while it
retains a recall level of 74% in the basketball dataset. The
precision is significantly improved because we utilized
jersey colors to discard false positives generated from
referees and spectators, who wore clothes of different
colors. The tracking algorithm has a 98% precision with
an improved recall of 82% in the basketball dataset. This
is because the original detections are temporally sparse,
and tracking helps to bridge the temporal gap between
disjointed detections.

We compare the proposed tracking algorithm
(KF+DPM) with the Boosted Particle Filter (BPF) [4].
We use the same hockey dataset released by the authors
[4], which consists of 1000 frames of a broadcast hockey
game. Figure 7 shows the precision and recall of both
the proposed algorithm and the BPF. The BPF has an
average precision of 65.5% and an average recall of
50.8% over the 1000 frame hockey video (red lines). On
the other hand, the proposed algorithm has a higher
average precision of 91.8% and a higher average recall
of 79.7% (blue lines). We also compare the performance
by using the metrics proposed in [8]. As shown in
Table 1, we compare the tracking results of KF+DPM
and BPF by: Precision (PR), Recall (RC), False Alarm
(FA), Mostly Tracked (MT), Mostly Lost (ML), and ID
Switches (IDS). We can see that KF+DPM outperforms
BPF in all aspects except ML. This is partially due to
a better detector (DPM) which has a better precision
and recall, and a more sophisticated motion model
(Equation 1) that is able to resolve ID switches.

6.3 Identification evaluation
The identification system achieves an average accuracy
of 85% for Lakers players and 89% for Celtics players.
In addition, using weakly supervised learning greatly
reduces the number of labels required to train the iden-
tification system (from 20000 to mere 200 labels for all
players in a team). The following will provide a detailed
analysis.

6.3.1 Comparison of features
We first compare the effectiveness of different features
in Figure 8. In the experiments, we randomly choose
30000 labeled image patches, and then use the super-
vised learning approach in Equation 16 to train the
identification system. Inference is performed by solving
the linear programming problem in Equation 11–15.

Among the three appearance features, the SIFT bag of
words has the strongest discriminative power, followed
by the MSER bag of words and RGB color histograms.
Colors are weak in this domain because players of
the team wears uniforms of identical color, and many
players have very similar skin and hair colors.

Fig. 7. Precision and recall of the proposed KF+DPM and
BPF [4] on the hockey dataset (blue: KF+DPM, red: BPF).

method PR RC FA MT ML IDS
BPF [4] 65.5% 50.8% 2.3 16.0% 14.7% 37
KF+DPM 91.8% 79.7% 0.6 56.3% 20.8% 27

TABLE 1
Tracking results of the proposed KF+DPM tracker and
BPF [4] on the hockey dataset, using the metrics in [8].

Since these three visual cues complement each other,
combining the RGB color histograms, MSER, and SIFT
yields the best results. For Lakers, the accuracy achieves
85%, while in Celtics, the accuracy becomes 89%.

6.3.2 Comparison of graphical models
We then compare the effectiveness of the graphical
model in Figure 9. Similar to the previous experiments,
we randomly choose 30000 labeled image patches, and
then use the supervised learning to train the identifi-
cation system. The IID model assumes that there is no
connection between any identity nodes yt,d. In other
words, we identify players by only the feature potential
in Equation 2, but without using the temporal and
mutual exclusion potentials. The identification results
are poor, having an accuracy about 50% for Lakers
and 55% for Celtics. This demonstrates the challenges
of identifying players from a single-view camera. Since
players constantly change their poses and orientations, it
is very difficult to identify players from a single image.

Adding temporal potentials to the model significantly
boosts the performance. In Lakers, the accuracy increases
to 81%, while in Celtics, the accuracy increases to 85%.
Temporal edges in the graphical model are constructed
by the tracking system. If the identification system has
high confidence about the identity of even a single image
in a track (e.g., a frontal-view image of a player), this
information can be passed forward and backward to the
entire track, and helps identify images of obscure views.

Adding mutual exclusion potentials to the model
slightly improves the accuracy. In Lakers, the accuracy
increases to 85%, while in Celtics, the accuracy becomes
89%. Although the improvements are small, it is still
necessary to include mutual exclusion constraints in
order to prevent a duplicate of identities in a frame. In
applications such as automatic collection of statistics and
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Fig. 8. Player identification results of different features
for Lakers (yellow) and Celtics (green). We compare the
effectiveness of RGB color histograms, MSER bag of
words [35], SIFT bag of words [36], and a combination
of all features (ALL).

star-camera view, such duplications would significantly
reduce the quality, and thus they should be avoided.

6.3.3 Comparison of learning strategies
Figure 10 compares different learning strategies for
player identification. In the training dataset, we perform
supervised [2], semi-supervised, and weakly supervised
learning, with different number of labeled training data.
Then, we test the learnt classifiers in the testing dataset
while no labels (neither strong nor weak labels) are avail-
able. Since some algorithms have random initialization,
we repeat the experiments for 10 times to compute the
mean and standard deviation.

The supervised learning utilizes only labeled training
data yL and xL to train the model using Equation 16. We
can observe that the identification accuracy in the testing
dataset converges slowly with the increase of labeled
training data3. In both Celtics and Lakers, accuracies
converge after using more than 20000 labeled training
examples.

The semi-supervised approach uses both labeled train-
ing data yL and xL, and unlabelled training data yU
and xU . This approach uses the EM-based algorithm
(Algorithm 1) to train the model parameters θ. Since
play-by-play texts are not provided, we set the prior
to an uniform distribution over all possible players, i.e.,
p(ŷt,d) =

1
|C| . The accuracies of semi-supervised learning

converge faster than the supervised one. Using only 2000
labeled examples, semi-supervised learning can achieve
similar identification accuracies as the supervised one.

3. Since no strong/weak labels are used during testing, the accuracy
will not achieve 100%.

Fig. 9. Player identification results of different graphical
models for Lakers (yellow) and Celtics (green): feature
potentials only (IID), feature and mutex potentials (MU-
TEX), feature and temporal potentials (TEMP), and the
full graphical model (FULL).

The weakly supervised approach also uses both labeled
and unlabelled training data, and it also applies the EM-
based algorithm (Algorithm 1). However, the weakly
supervised approach takes advantages of additional con-
straints provided by the play-by-play texts, and it uses
the prior in Equation 19. We can observe that weakly su-
pervised learning converges much faster than the semi-
supervised one, and it can achieve similar accuracies by
using merely 200 labeled examples. This is a significant
reduction of labeled training data, compared with 2000
labels needed for semi-supervised learning, and 20000
labels required for supervised learning.

For comparison, we also show results of ambiguous
label learning [20]. Ambiguous label learning assumes
that every training image is associated with a set of
labels, one of which is the correct label for the image.
Since facial features in the original implementation of
[20] are not suitable in this case, we replace them by the
proposed visual features. We train the classifier using
all our training images, with corresponding label sets
provided by the play-by-play texts (the set size is 1 for
labeled images and 5 for unlabelled images). After train-
ing, we use the same LP inference algorithm to identify
players, instead of the IID approach used in [20]. We
can see that ambiguous label learning performs better
than the proposed EM-based algorithm while using a
very small amount of labeled data (10–30 labels, or 1–3
labeled images per player). This is because ambiguous
label learning has a more sophisticated mechanism to
deal with weakly labeled data. However, after giving 30–
50 labels (3–5 labeled images per player) to initialize the
model in EM, the proposed weakly supervised approach
quickly outperforms the ambiguous label learning. This
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(a) (b)

Fig. 10. Player identification results of different learning strategies. In both figures, we show identification results (mean
and standard deviation) of strongly supervised, semi-supervised, weakly supervised learning, and Cour et al. [20],
with different numbers of labeled training data. Notice that the x-axis is in log-scale. The strongly supervised approach
uses only labeled training data in Equation 16. The semi-supervised approach uses both labeled and unlabeled
data in Equation 17, but it uses an uniform prior over all possible players, i.e., p(ŷt,d) = 1

|C| . The weakly supervised
approach also uses both labeled and unlabeled data in Equation 17, but it uses the prior in Equation 19 provided by
the play-by-play texts. (a) Identification results for Celtics. (b) Identification results for Lakers.

is because the proposed EM algorithm utilizes the tem-
poral and mutual exclusion potentials to help deal with
ambiguous images (e.g., profile views), while the am-
biguous label learning classifies every image indepen-
dently in the learning phase4.

6.3.4 Comparison to the existing system [2]
Our previous work [2] reported a 85% identification
accuracy for Lakers and 82% identification accuracy for
Celtics players. Evaluating on the same dataset, the
proposed system improves the identification accuracy to
87% for Lakers and 92% for Celtics. Since both systems
use the same feature vectors, the boost is resulted from
a better inference algorithm introduced in section 4.3.
In addition, the proposed system also applies weakly
supervised learning to greatly reduce the number of
labelled training data required from 20000 to 200.

Figure 13 shows tracking and identification results on
a basketball video. We see that the proposed system is
able to track and identify multiple basketball players
effectively. Please go to our website5 for more results.

6.4 Homography evaluation
We measure the performance of homography estima-
tion by computing the average distance between points

4. [20] used tracking to reduce the number of training data, but they
did not utilize temporal consistency in their learning algorithm.

5. http://www.cs.ubc.ca/∼vailen/pami/

transformed by the annotated homographies and points
transformed by the estimated homographies. We test on
5969 frames with annotated homography.

The average error of homography is 7.32 pixels on
1280 × 720 images, or 13.65 cm on the basketball court
(23.65m × 15.24m), which is very small. Figure 11(a)
shows the estimation errors of one selected test clip.
We can see that errors are usually below 10 pixels,
except the region between 200-th to 400-th frame, which
have fast camera motion. Fast camera motions usually
happen during offensive-defensive changes, and they
cause significant motion blur that reduces the chance of
detecting edges of the court.

We compare our algorithm with [47] in their hockey
dataset of 1000 frames, as shown in Figure 11(b). [47]
uses a combination of SIFT matching and area mini-
mization to estimate the homography. Their method has
an average error of 20.21 pixels in the hockey video
(green line). In comparison, the average error of ICP is
only 13.35 pixels (blue line), which reduces the errors by
33%. Since the image resolution is 1920× 980 pixels, the
error is about 1.4% of the image size, which is similar to
the basketball case. This demonstrates that the proposed
algorithm is effective in different kinds of sports videos.
The speed of ICP is also much faster (2 seconds per
frame), while [47] runs in 60 seconds per frame.

http://www.cs.ubc.ca/~vailen/pami/
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(a) basketball

(b) hockey

Fig. 11. Homography estimation results in (a) basketball,
and (b) hockey, compared to [47]. Errors are measured by
the average distance between points transformed by the
annotated and estimated homography.

6.5 Automatic collection of player statistics
Statistics are very important for analyzing the perfor-
mance of sports players. However, these statistics are
recorded by human annotators during the game, which
is a very expensive and tedious process.

With the proposed tracking, identification, and ho-
mography estimation systems, it is possible to automat-
ically generate player statistics from a single video. In
Figure 12, we show the spatial histogram (heatmap) of a
player’s trajectory in the court coordinates. The heatmap
is generated by tracking and identifying a specific player
over 5000 frames, and project their foot locations from
the image to the court coordinates. Specifically, we di-
vide the court into grids of 1 × 1 meter. If the player
stands on top of the grid, its histogram value will be
increased by one. The heatmap represents the probability
of a player being in each grid cell.

Since different players possess different motion pat-
terns and playing styles, the heatmap might be used to
identify players. We tried adding the heatmap as features
to Equation 2, but we found that this had negligible
effect on performance. One possible reason is that there
are 12 players in a team, but only 3 distinctive playing
styles and heatmaps. We anticipate that the heatmap
would work better to identify players in sports such like
soccer, where players have more diverse motion patterns
and playing styles. Nevertheless, localizing players on
the court is a useful output of the system, even if it does
not help with player identification.

7 DISCUSSION

We introduce a novel system that tackles the challenging
problem of tracking and identification of players in
broadcast sports videos taken from a single pan-tilt-
zoom camera. The system possesses the ability to detect
and track multiple players, estimates the homography

(a) Bynum

(b) Vujacic

Fig. 12. The spatial histograms (heatmaps) of basketball
players. Players offend in the left-hand side while defend
in the right-hand side. In all images, lighter colors mean
higher values in the histogram. (a) Bynum: a center whose
job is to attack the basket from a short distance. (b)
Vujacic: a 3-point shooter whose job is to shoot from a
long distance.

between video frames and the court, and identifies
the players. The identification problem is formulated
as finding the maximum a posterior configuration in
a Conditional Random Field (CRF). The CRF combines
three weak visual cues, and exploits both temporal and
mutual exclusion constraints. We also propose a Linear
Programming Relaxation algorithm for predicting the
best player identification in a video clip. For learn-
ing the identification system, we introduce the use of
weakly supervised learning with the play-by-play texts.
Experiments show that the identification system can
achieve similar accuracies by using merely 200 labels in
weakly supervised learning, while a strongly supervised
approach needs a least 20000 labels.

Note that the identification system relies on the track-
ing system to construct the graphical model. When track-
ing results are unreliable, one may consider enabling
the weak interactions in Equation 4 (set ε > 0) in
order to split unreliable tracks [2], or adding another
weak interaction between the ends of two tracklets to
encourage merging [10]. In both cases, max-product or
sum-product BP can be used for the inference. Another
possibility is to improve tracking algorithm itself by
modelling the player’s motion in the court coordinates
instead of the image coordinates, as in [5]. This can be
achieved by using the estimated homography to project
players to the court coordinates.
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Fig. 13. Automatic tracking and identification results in a broadcast basketball video. Green boxes represent Celtics
players, and yellow boxes represent Lakers players. Text within boxes are identification results (player’s name), while
red boxes highlight misclassifications.
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