
A non-myopic approach to visual search

Julia Vogel and Kevin Murphy
Department of Computer Science
University of British Columbia

Vancouver, Canada

Abstract

We show how a greedy approach to visual search
— i.e., directly moving to the most likely location of
the target — can be suboptimal, if the target object is
hard to detect. Instead it is more efficient and leads to
higher detection accuracy to first look for other related
objects, that are easier to detect. These provide contex-
tual priors for the target that make it easier to find. We
demonstrate this in simulation using POMDP models,
focussing on two special cases: where the target object
is contained within the related object, and where the
target object is spatially adjacent to the related object.

1 Introduction

Consider the problem of getting a robot to find your
keys which you lost somewhere in your office. Since
keys are small objects, which can be hard to find, the
robot will need to employ a high-resolution sensor in
order to detect them. However, exhaustively scan-
ning such a high-resolution sensor over the whole office
would take a long time. It seems much more reasonable
to first identify large regions of the office that are likely
to contain your keys (e.g., desktops) and then to start
a more detailed search. We provide experimental evi-
dence that this hierarchical approach to object search is
not only more efficient in time, but also results in lower
false positive rates, since by focusing attention on the
desk, other distractors can be ignored. Another ex-
ample of indirect object search is to first identify large
objects that tend to be nearby the keys (e.g., computer
monitors), and then to start a more detailed search in
the neighboring vicinity [26]. We provide experimental
evidence that this indirect approach outperforms more
greedy approaches that directly look for the target ob-
ject.

Our methodology is to build a simulated world,

containing objects at random locations, and then to
build various controllers which interact with the world
through a movable sensor. We consider two versions of
the problem. In the multi-resolution version, the sensor
can either operate at high resolution, but narrow field
of view (FOV), or at low resolution and wide FOV. In
the multi-object version, the sensor can detect several
different kinds of objects. The controller is told which
target object to look for, and then, at each step, it
must decide where to look next, and what detector to
use. When it is sufficiently confident it has found the
target object, the controller stops, and it receives a re-
ward, depending on whether it was right or wrong, and
depending on how many steps it took. The goal is to
design controllers that maximize the reward (i.e., find
the right object as quickly as possible). We show that
controllers that perform indirect object search (e.g.,
looking for the large object before the small target ob-
ject, or looking for the general region before zooming
in to the specific region) do better than controllers that
greedily look for the target object.

More precisely, we compare controllers that use a
fixed greedy policy (always look for the target ob-
ject using the high resolution sensor) with decision-
theoretic controllers that maintain a model of the
world, represented in terms of a partially observed
Markov decision process (POMDP) [11]. POMDPs are
a useful formalism because they can represent the fact
that the controller has uncertainty about the state of
the world (e.g., the object’s location), but can perform
information-gathering actions to reduce its uncertainty.

Standard approaches to building POMDP-based
controllers try to construct a policy offline that specifies
what actions to take for many possible belief states. At
run time, the action corresponding to the current belief
state is just looked up, the action executed, and then
the belief state updated based on the resulting observa-
tion from the simulator. In this paper, we consider an
alternative approach based on receding horizon control.
In this approach, we figure out at run time what action

to take by building a lookahead search tree based on
our current belief state. We then perform the optimal
action, update our belief state based on the resulting
observation, and then replan by building another tree.
(This process can be sped up over time by caching our
computations, a technique known as real-time dynamic
programming [1, 8].)

We study the performance of the controllers as a
function of the lookahead planning horizon h. We show
that myopic controllers (h = 1) do poorly, and do not
exhibit the indirect object search behavior mentioned
above. But by looking just 3 steps into the future, the
controller can “figure out” that the indirect approach
will result in higher expected reward. We show that
these non-greedy controllers find the target object more
often and more quickly.

The rest of the paper is structured as follows. In
the next section, we summarize related work in the
area of active reasoning for vision. Section 3 describes
our the multi-resolution simulator, and Section 4 our
multi-object simulator. The receding horizon controller
is explained in detail in Section 5. In Section 6, we
present our experimental results which show that hier-
archical and indirect object search results in better per-
formance. We discuss our findings and propose steps
for future work in Section 7.

2 Related work

The idea of employing active reasoning for object
recognition and scene understanding has been explored
previously. However, our method differs from most pre-
vious work in that the exploitation of hierarchical or
spatial scene context is combined with a non-myopic
planning engine.

Early work on selective vision includes the TEA-1
system by Rimey and Brown [22]. The system exploits
the spatial structure of a scene in order to support or
reject a hypothesis. Based on handcrafted goodness
functions, it sequentially collects visual evidence. Fu et
al. [7] utilize the regularities and the hierarchical orga-
nization of grocery stores within their planning system
SHOPPER to find items in a simulated grocery store.
Similarly, Wixson [26] exploits spatial relationships of
the target object with other objects to efficiently search
for objects in indoor scenes. However, the decision to
use an intermediate object in order to more efficiently
locate the target object is hand-coded while in our sys-
tem this decision is made based on the current belief
of the system.

Callari and Ferrie [2], Paletta and Pinz [19], and La-
porte and Arbel [13] explore decision making for active
object recognition and pose estimation. The task is

Figure 1. An image from the Caltech Office
DB [6], divided into 7 slices, each of which is
divided into 4 quadrants.

to select a viewpoint in 3D so as to decide on the ob-
ject label (and pose [13]) with as few views as possible.
To this end, several approaches based on probabilistic
evidence fusion, minimizing the expected loss or maxi-
mizing entropy or mutual information are proposed and
compared. Only the method of Paletta and Pinz [19]
is non-myopic in the sense that an approximate utility
table is learned offline and used for viewpoint selection.

Minut and Mahadevan [15] proposed a two-layered
architecture to simulate selective attention for visual
search tasks. The location of the next gaze is primed
coarsely using reinforcement learning and subsequently
more finely using bottom-up visual saliency. Oliver and
Horvitz [18] employ selective perception in a multi-
modal system for recognizing office activity. Actions
are selected myopically based on the expected value of
information.

Recently, Elder et al. [3] proposed a camera sys-
tem that combines a fixed, pre-attentive, low-resolution
wide-field camera with a shiftable, attentive, high-
resolution narrow-field camera. However, the current
stage of the work only implements methods for locat-
ing low-resolution faces from low-resolution images and
does not yet extend to making the decision to narrow
the view to the high-resolution camera.

3 Hierarchical search

For the experiments with hierarchical (multi-scale)
search, we simulate a robot with a pan-zoom camera,
which is in the middle of an office at a fixed distance
from the objects of interest (on the desk and walls). We
use panoramic (360◦) images of offices from the Caltech
Office database [6]. We divide each image into 7“slices”
(representing view points), and divide each slice into 4
“quadrants” (see Figure 1). The camera can look at
one slice at a time when zoomed out, or one quadrant
at a time when zoomed in. When it is looking at a
slice or quadrant, the controller can choose to run an

2

object detector, which responds with 0 or 1, depending
on whether the detector “fires” or not. If the camera
is in the same location as the object, the simulator re-
turns 1 with probability ptp (true positive); however, it
may also return 0 with probability pfn (false negative).
If the camera is in a different location to the object,
the simulator returns 0 with probability ptn (true neg-
ative); however, it may also return 1 with probability
pfp (false positive). These parameters also depend on
whether the camera is zoomed in or not. Specifically,
we assume the error rate is higher when the camera is
zoomed out, which reflects the fact that finding small
objects is harder when looking from a distance.

Although we have performed some preliminary ex-
periments using real object detectors1, in this paper,
we simulate the object detector. Specifically, we set
phi

tp = 0.95 and phi
fp = 0.05 for the high resolution de-

tector, and plo
tp = 0.85 and plo

fp = 0.15 for the low res-
olution detector. The reason we simulate the detector
is that our real detector is not yet good enough for the
system to be able to reliably find the object.

At every step, the controller must choose from 8
discrete actions: move to Q1, move to Q2, move to
Q3, move to Q4, move left one slice, move right one
slice, run the detector, and stop. If it chooses to move
to a quadrant, it automatically zooms in; if it chooses
to move to a slice, it automatically zooms out. We
assume that movements are noise-free, i.e. that they
have a deterministic effect on the camera location. The
controller should autonomously choose to stop when it
is confident enough that it has found the object. Once
the stop action has been taken, the simulator returns
the total reward for this run, depending on whether the
camera stopped in the right location or not.

3.1 POMDP model

We assume that the POMDP model of the world
used by the controller is an accurate model of the above
simulator. (Such models can be learned offline.) The
factored POMDP model we use for these experiments is
shown in Figure 2. St is the state of the system at time
t, Yt is the observation, Dt is the decision (action), and
Ut is the utility node that encodes the reward. The
belief state is bt = p(St|Y1:t, D1:t). We discuss these
components in more detail below.

The state of the system at time t contains the cam-
era’s location, Xt, the object’s location, Ot, and the

1We built a computer monitor detector using a binary clas-
sifier. At the low resolution level, we applied the classifier to
global image texture features (called the “visual gist” in [17]).
At the high resolution level, we applied the classifier to image
patch features, as in [17].

Figure 2. POMDP for the multi-resolution ex-
periments, unrolled for two time slices. See
text for details.

“world bit” Wt (this will be explained below). We
assume Xt is fully observed, but Ot is hidden. Fur-
thermore, we assume the target object does not move,
so Ot is a constant. (We propagate it over time just
for notational simplicity using P (Ohi

t+1|Ohi
t) = 1 and

P (Olo
t+1|Olo

t) = 1.) We represent locations at two levels
of resolution. Specifically, Olo

t ∈ {1, . . . , 7} represents
the slice, and Ohi

t ∈ {1, . . . , 4} represents the quadrant.
Similarly for X lo

t ∈ {1, . . . , 7} and Xhi
t ∈ {1, . . . , 4, Z}

where Xhi
t = Z means the camera is zoomed out, so the

quadrant location is undefined. (A similar hierarchical
representation of space was used in [25] for a POMDP
approach to robot navigation.) In total, the state space
for Ot ×Xt has size 7× 4× 7× 5 = 980. However, the
belief state p(Xt, Ot) will only be non-zero for those
values that are consistent with the current Xt (which
is observed).

The “stop bit” Wt ∈ {0, 1} is turned on once the
controller has executed the stop action. Thereafter, it
will receive no further reward. This is how the con-
troller knows that the simulator won’t keep rewarding
it for continually detecting the object. The stop bit
doubles the state space so in fact St ∈ {1, . . . , 1960}.
The transition functions P (Xhi

t+1|Xhi
t), P (X lo

t+1|X lo
t),

and P (Wt+1|Wt) depend deterministically on the cho-
sen action.

There is a single observable variable, Yt ∈ {0, 1},
which is on if the simulator says that the detector fired,
and off otherwise. We set p(Yt = 1|Xt, Ot) using the
known pfp etc values. In our current model, the detec-
tor is not running all the time, but must be explicitly
invoked (as indicated by the Dt → Yt arc). This is to

3

Figure 3. Relative spatial relationships be-
tween monitors (center of plot) and other ob-
jects in the manually labeled Caltech office
database.

simulate a robot that has limited computational (or
attentional) resources and decides consciously which
of its detectors to employ, and only runs its object
detection software some of the time. If the detec-
tor action is not taken, then the simulator returns no
observation and Yt is undefined (in this case, we set
p(Yt = 1|Xt, Ot) to be independent of Xt, Ot, so no
information is obtained).

Finally, the utility function Ut gives a reward of 200
if the system stops both in the right slice and the right
quadrant (i.e., Xt = Ot) and it gives a reward of 100
if it stops in the right slice but wrong quadrant (i.e.,
X lo

t = Olo
t but Xhi

t 6= Ohi
t). Note that if the system

happens to move to the right location (Xt = Ot), but
does not execute the stop action, it won’t get rewarded.
Otherwise it could continually rewarded for moving to
the right location. It only gets the reward if it“believes”
it is in the right location; it demonstrates this belief by
choosing the stop action. We give a penalty of −300
for stopping in the wrong slice. We give a cost of −1
to all movements and detection actions, in order to
encourage the system to find the object as quickly as
possible.

4 Indirect object search

In this section, we investigate the ability to exploit
spatial relationships between objects to help in visual
search. Spatial relationships between parts of objects
are widely used in passive object recognition systems
(see e.g., [5, 4]). However, spatial relations between
objects themselves are less commonly used, partly be-
cause they tend to be weaker (since objects can move)
and thus the predictive density p(x2|x1) for object 2’s

Figure 4. POMDP model for the multi-object
system.

location given object 1’s is more diffuse. Neverthe-
less, such relationships do exist (see Figure 3), and are
worth exploiting. Not exploiting spatial relationships
is equivalent to using a much less informed prior about
the target object’s location, and will result in inefficient
search behavior, and higher false positive rates.

If the target object is small, it seems intuitively rea-
sonable to first search for other bigger objects (that are
easier to detect from afar) that are spatially nearby.
This idea was formalized in [26], where it was proved
that two-stage, indirect object search, whereby one first
looks for the big (easy) object and then looks locally for
the small (hard) object, is more efficient than directly
looking for the small object. Here we wished to inves-
tigate if this behavior would “fall out” automatically
from a generic decision theoretic model.

The world simulator we used was similar to the
multi-resolution case, except now there are two objects,
“big”and“small”, which are always located next to each
other, but can occur in any of the 7 slices. (There are
no quadrants in this version of the model.) The con-
troller can choose from 5 actions: move left, move right,
run the big detector, run the small detector, and stop.
We set the parameters so that the big object detector is
more reliable than the small object detector, reflecting
the fact that big objects are easier to find.

4.1 POMDP model

The POMDP model we used is shown in Figure 4.
This is similar to the previous model except now we
have two objects, OBt (object big) and OSt (object
small), and we model location only at the slice level,
so Xt, OBt, OSt ∈ {1, . . . , 7}. Hence the state space is

4

now much smaller (2 × 73 = 686 states). The known
spatial relationship between the big and small object is
encoded in the p(Ct = 1|OSt, OBt) term, by enforcing
that OSt and OBt can only differ by one slice.

The utility function only rewards the system for lo-
calizing the small object. Nevertheless, the hope is
that the system can reason that it will “pay off” to
use the big detector because it will help reduce uncer-
tainty about the the big object’s location, and hence
indirectly reduce uncertainty about the small object’s
location. (For example, if the big detector were perfect,
the belief on the small object’s location would change
(in general) from uniform over 7 slices to uniform over 2
slices, namely the ones on either side of the big object.)

5 Solving the POMDP model

A controller must decide what action to take at every
time step. In return, the simulator returns an observa-
tion signal. The controller can maintain any internal
state that it likes. If it had unbounded memory, it could
memorize all previous actions and observations, which
is clearly the optimal thing to do; this is called the
no-forgetting assumption. This is indeed the standard
approach used for solving finite-horizon decision prob-
lems, as modeled using influence diagrams. However,
even in the finite horizon case, this can be expensive, so
recently methods have been developed for solving lim-
ited information influence diagrams (LIMIDs), which
relax the no-forgetting assumption [14]. We will use
these techniques below.

For unbounded horizon decision problems, the op-
timal approach is to compress the past history of ac-
tions and observations into a finite-sized belief state,
bt = p(St|y1:t, d1:t). This requires a model of the world.
One can then compute, offline, a mapping from bt to
actions for every possible belief state. This is known to
be NP-hard [11]. Recently, an approximate approach
called point-based value iteration has become popular
[20, 24, 9]. This works by sampling a set of possible be-
lief states (assuming a uniform or random controller),
and then computing the value function (and hence op-
timal action) for these sampled states.

A disadvantage of the point-based approach is that
they decide what actions to take for a large set of belief
states that might never actually occur. Conversely, if
something “unusual” should happen at run time, the
belief state may not be close to the ones considered
offline, and the resulting stored behavior could be far
from optimal. For example, suppose the system learns
that searching for the big object before the small ob-
ject is the right strategy. While this may be true on
average, it will not always be true. For example, if

we already have a strong prior belief about the small
object’s location (e.g., because we have been tracking
it), it makes more sense to directly look for the small
object and ignore the big object.

This suggests a more adaptive/situation-aware ap-
proach to decision making. In particular, instead of
computing what to do offline for many possible scenar-
ios (belief states), why not just figure out what to do
in the current scenario? To implement this, we use a
method called receding horizon control [23, p. 630]. In
this method, we consider all possible future actions we
can take, and all possible observations that might re-
sult, out to a search depth h (the look-ahead horizon).
This is a tree with |D|h|Y |h leaves. (If the observation
space is large, it is possible to approximate this by sam-
pling [12].) At the root of the tree is the current belief
state, bt, and at each leaf is the belief state that would
result if that sequence of actions and observations were
to occur. We evaluate the expected utility of each pos-
sible sequence of actions and then take the first step
of the optimal plan. Having taken action Dt+1 and
observed Yt+1, we update our belief state to bt+1 and
repeat the planning process. In the experiments below,
we study the effect of the horizon length h. A value of
h = 1 corresponds to a myopic (greedy) controller.

Rather than explicitly constructing this search tree,
we use the machinery of LIMIDs (as implemented in
the Bayes Net Toolbox [16]) to find the optimal h-
step sequence of actions given the current belief state.
Specifically, we unroll the POMDP model for h steps,
and set the prior on the first slice to be bt (see discus-
sion below for how to do this). We then compute the
best sequence of actions, Dt+1:t+h, and return Dt+1 to
the simulator. Within the lookahead tree, we make the
assumption of no-forgetting, so the action sequence we
compute would be optimal if we were to only“live”for h
more steps. We could use the limited memory approxi-
mation to reduce the branching factor of |D|h|Y |h, but
this would result in a locally optimal policy.

In order to be able to input the current belief state
bt into the POMDP model, we need to ensure there is
a clique in the graph that can “store” the p(Olo

t , Ohi
t)

potential. We could add an undirected edge between
Olo

0 and Ohi
0 in the first slice, but we are restricted to

work with directed models. However, we can simulate
the effect of this undirected edge by adding a dummy
binary child node, Ct, which is always on. We define
p(C0 = 1|Olo

0 , Ohi
0) = p(Olo

t , Ohi
t). Similarly, in the in-

direct object search, we define p(C0 = 1|OB0, OS0) =
p(OBt, OSt). This just copies the previous posterior
into the current prior. Using a dummy variable is a
standard trick for introducing undirected edges into di-
rected graphical models [10].

5

Figure 5. Typical action-observation se-
quence for the multi-resolution system when
looking for a computer monitor.

Obviously it is expensive to continually build this
lookahead tree. One improvement is to store the re-
sulting optimal action and the associated belief state
so that if it is encountered again, one can just look up
the answer. This approach is called “real time dynamic
programming” (RTDP) [1, 8]. By storing previously
computed results (learning from experience), the sys-
tem gets faster over time. However, we have not yet
implemented this.

6 Experiments

In our experiments, we create 20 different random
simulated worlds, and run the controllers in each one
for a maximum of 100 steps while measuring the aver-
age performance.

6.1 Hierarchical search

Qualitative experimental results Figure 5 shows
a typical action-observation sequence for the low-
res/high-res search for a monitor. The central part
of the figure displays the evolution of the belief state
about the object location on the slice level for each

action and time step. The simulation was randomly
started in slice 2, as shown on top of the figure. The
prior belief about the object location corresponds to
the first row of colored bars. We chose a non-uniform
initial prior in order to break symmetries. The current
visual input of the system is depicted at the bottom
part of the figure.

The system initially decides to use its low-res detec-
tor which does not detect the object. This leads to a
decreased belief in slice 2 and a slight increase in all
the other slices. The system then moves right and per-
forms several detections in slice 3. This finally leads to
the belief that the object is not present in slice 3 and
makes the system decide to move on to slice 4. Again,
the system uses its low-res detector several times, each
of which return positive detections. These positive de-
tections increase the belief in finding the object in slice
4 as the green bars in the bar plot show. The system
decides to “take a closer look” and zooms into quad-
rant 4. When zooming into the high-resolution level,
the reward is initially the same for all quadrants. The
decision to check Q4 instead of another quadrant is
thus chosen randomly. The next decision is to use the
high-res detector at Q4. It returns a positive detec-
tion that increases the belief both on quadrant level
(not displayed) and on slice level (displayed, see green
bars). Thus, the next decision of the system is to stop
and to return slice 4, quadrant 4 as the detected object
location, which in this case is correct.

Other experiments are qualitatively similar in that
the system first searches using the low-res detector un-
til it is sufficiently confident the object is present in
a given slice, and then it zooms in and uses the high-
res detector. If it fails to find the object in any of the
quadrants, it infers that its belief that the object is in
this slice was mistaken (due to a false positive by the
low-res detector). The belief in the other slices goes
up in response, and the system moves to the next most
promising candidate location.

One interesting aspect of the behavior is the re-
peated use of the same detector in the same location.
This is because we incorrectly model the noise as i.i.d.
In such a model, running the detector several times will
decrease the chance of an error. This pathological be-
havior is common to all standard POMDP models, and
has been seen before in real robots (Sebastian Thrun,
personal communication). One way to solve the prob-
lem is to model the noise as correlated, by introducing
extra latent factors. However, this approach increases
the state space so much that it makes the problem in-
tractable. We leave a more satisfactory solution to this
issue to future work.

6

Figure 6. Performance of the hierarchical sys-
tem vs planning horizon h. We also show re-
sults for the deterministic controller (DC).

Quantitative experimental results In addition to
the above qualitative experiments, we measured the
performance of the system quantitatively as a function
of the planning horizon h. We also compared perfor-
mance to a simple deterministic controller (DC) that
searches for the object in a fixed raster-scan order, al-
ways using the high-resolution detector, and stopping
as soon as the high-res detector fires. In each repetition
of the experiment, we randomized the starting location
of the robot and the true location of the object.

In Figure 6, we show four different performance mea-
sures. The top left is the average reward accumulated
en route to finding the object. Not surprisingly, the
systems with longer look ahead get higher reward, be-
cause (intuitively speaking) they think harder before
they act. All the POMDP systems get higher average
reward than the DC, since that is what they are trying
to optimize.

However, internal reward is just a proxy for ac-
tual task performance. A more relevant metric is the
fraction of times the object was successfully detected.
When the system stops and says “I’ve found it”, was it
in the right location? And if not, did it at least identify
the right slice? In the bottom left plot, the gray bar is
the fraction of times the object was located correctly
at the slice level; and the black bar is the fraction of
times the object was correctly located at the slice and
quadrant level. We see that for h = 1, the system iden-
tifies the right slice about 80% of the time (chance level
would be 1/7 = 15%), but does not get the quadrant
right. This is because it is too myopic to realize that
running the high-res detector one or more times would
help it localize the object more precisely, and thus get

Figure 7. Performance of the multi-Object
system vs planning horizon h. We also show
results for the deterministic controller (DC).

higher reward. However, as we increase h, the abil-
ity of the system to localize the object to the correct
slice and quadrant dramatically increases. For h = 3,
the system identifies the correct quadrant about 80%
of the time (chance level would be 1/28=3%), and the
correct slice 100% of the time. The DC is much better
than chance (since it is using the high-res detector),
but much worse than the h = 3 controller.

In addition to finding the object more often, increas-
ing the planning horizon reduces the number of actions
(steps) required. However, it also increases the compu-
tational cost. As shown in the bottom right, the aver-
age run time to locate the target object is exponential
in h. In practice, we find it takes 0.5 sec per decision
for the h = 1 controller to find the object, and 27 sec
per decision for the h = 3 controller. (In Matlab on a
2.8 MHz Linux PC with 1GB memory.)

6.2 Indirect object search

Similarly to the multi-resolution case, we evaluated
the performance of the system with different planning
horizons on 20 different randomly generated worlds.
We also compared to a deterministic controller that
only used the small detector, and performed a fixed
left-to-right sweep, stopping as soon as the detector
fired.

The results are shown in Figure 7 and are quali-
tatively similar to before, namely that increasing the
planning horizon increases all performance measures,
but also increases planning time. Note that now we
only count the number of correct localizations at the
slice level, since there is no quadrant level. Further-
more, informal observation of the system in action con-

7

firms that indeed it does look for the big object before
the small one.

7 Conclusions and future work

There is much evidence and theory from psychology
(e.g., [21]) that natural vision systems build up inter-
pretations of the scene in a sequential fashion, and that
what we look for next depends on what we expect to
see. In this paper, we have shown how such behavior
could arise out of a simple decision theoretic model,
provided one is not too myopic.

However, one of the major bottlenecks of our system
is the essentially symbolic representation of the world
that we use, with one discrete random variable per ob-
ject, etc. In addition, by reducing the output of the
detectors to a single bit, we throw away a lot of infor-
mation, and the result is a lot of perceptual ambiguity.
In the future, we hope to explore a more data-driven
approach, in which the belief state is represented in
terms of pieces of the image (or compressed versions
thereof), rather than in terms of things that we can
name. It might be that by bypassing the ”linguistic”
layer, and giving the decision making system “direct
access” to the lower level internal representation of the
scene (in terms of regions and surfaces etc.), that we
can reduce ambiguity and increase efficiency.

Acknowledgments We would like to thank Pantelis
Elinas, Per-Erik Forssen, Jim Little, and Rob Sim for
helpful comments on earlier drafts of the manuscript.

References

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act
using real-time dynammic programming. Artificial In-
telligence Journal, 72:81–138, 1995.

[2] F. Callari and F. Ferrie. Active object recognition:
looking for differences. Intl. J. Computer Vision,
43(3):189–204, 2001.

[3] J. Elder, S. Prince, Y. Hour, and E. Olevskiy. Pre-
attentive and attentive detection of humans in wide-
field scenes. Intl. J. Computer Vision, 2006.

[4] P. Felzenszwalb and D. Huttenlocher. Pictorial struc-
tures for object recognition. Intl. J. Computer Vision,
61(1), 2005.

[5] R. Fergus, P. Perona, and A. Zisserman. A sparse ob-
ject category model for efficient learning and exhaus-
tive recognition. In CVPR, 2005.

[6] M. Fink and P. Perona. The full images for natu-
ral knowledge, caltech office db. Technical Report
CSTR:2003.008, Caltech, 2003.

[7] D. Fu, K. Hammond, and M. Swain. Vision and navi-
gation in man-made environments: Looking for syrup

in all the right places. In Proc. of CVPR Workshop
on Visual Behaviors, 1994.

[8] H. Geffner and B. Bonet. Solving large POMDPs using
real time dynamic programming. In Fall AAAI Symp.
on POMDPs, 1998.

[9] J. Hoey and P. Poupart. Solving POMDPs with Con-
tinuous or Large Discrete Observation Spaces. In Intl.
Joint Conf. on AI, pages 1332–1338, 2005.

[10] F. V. Jensen. Bayesian Networks and Decision
Graphs. Springer-Verlag, 2001.

[11] L. P. Kaelbling, M. Littman, and A. Cassandra. Plan-
ning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101, 1998.

[12] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling
algorithm for near-optimal planning in large Markov
decision processes. In Intl. Joint Conf. on AI, 1999.

[13] C. Laporte and T. Arbel. Efficient discriminant view-
point selection for active bayesian recognition. Intl. J.
Computer Vision, 68(3):267–287, July 2006.

[14] S. Lauritzen and D. Nilsson. Representing and solving
decision problems with limited information. Manage-
ment Science, 47(9):1235–1251, 2001.

[15] S. Minut and S. Mahadevan. A reinforcement learning
model of selective visual attention. In Proc. 5th Intl.
Conf. on Autonomous Agents, pages 457–464, 2001.

[16] K. Murphy. The Bayes Net Toolbox for Matlab. In
Computing Science and Statistics: Proceedings of the
Interface, volume 33, 2001. www.ai.mit.edu/ mur-
phyk/Software/BNT/bnt.html.

[17] K. Murphy, A. Torralba, and W. Freeman. Using the
forest to see the trees: a graphical model relating fea-
tures, objects and scenes. In NIPS, 2003.

[18] N. Oliver and E. Horvitz. Selective perception policies
for guiding sensing and computation in multi-modal
systems: a comparative analysis. In Intl. Conf. on
Machine Learning, 2003.

[19] L. Paletta and A. Pinz. Active object recognition by
view integration and reinforcement learning. Robotics
and Autonomous Systems, 31(1-2):1–18, 2000.

[20] J. Pineau, G. Gordon, and S. Thrun. Point-based
value iteration: An anytime algorithm for pomdps. In
Intl. Joint Conf. on AI, 2003.

[21] R. Rensink. The dynamic representation of scenes.
Visual Cognition, 7(1/2/3):17–42, 2000.

[22] R. Rimey and C. Brown. Control of selective per-
ception using bayes nets and decision theory. Intl. J.
Computer Vision, 12(2/3):172–207, 1994.

[23] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2002. 2nd edition.

[24] M. Spaan and N. Vlassis. Perseus: Randomized Point-
based Value Iteration for POMDPs. J. of AI Research,
24:195–220, 2005.

[25] G. Theocharous, K. Murphy, and L. Kaelbling. Repre-
senting hierarchical POMDPs as DBNs for multi-scale
robot localization. In IEEE Intl. Conf. on Robotics
and Automation, 2004.

[26] L. Wixson and D. Ballard. Using intermediate ob-
jects to improve the efficiency of visual search. Intl. J.
Computer Vision, 12(2-3):209–230, 1994.

8

