
Switching Kalman FiltersKevin P. Murphy21 August 1998AbstractWe show how many di�erent variants of Switching Kalman Filter models can be represented in auni�ed way, leading to a single, general-purpose inference algorithm. We then show how to �nd approx-imate Maximum Likelihood Estimates of the parameters using the EM algorithm, extending previousresults on learning using EM in the non-switching case [DRO93, GH96a] and in the switching, but fullyobserved, case [Ham90].1 IntroductionDynamical systems are often assumed to be linear and subject to Gaussian noise. This model, called theLinear Dynamical System (LDS) model, can be de�ned asxt = Atxt�1 + vtyt = Ctxt +wtwhere xt is the hidden state variable at time t, yt is the observation at time t, and vt � N (0; Qt) andwt � N (0; Rt) are independent Gaussian noise sources. Typically the parameters of the model � = f(At; Ct; Qt; Rt)gare assumed to be time-invariant, so that they can be estimated from data using e.g., EM [GH96a]. Oneof the main advantages of this model is that there is an e�cient algorithm for performing inference (i.e.,computing the belief state P (Xtjy1:t)), the well-known Kalman �lter, and its generalization to the o�inecase, the Rauch-Tung-Strieber smoother (for computing P (Xtjy1:T ), where y1:T is all the observed data).Unfortunately, most systems are not linear and are subject to non-Gaussian noise. One approach to thisproblem is to discretize the (hidden) state variables, resulting in Dynamic Bayesian Networks [DW91, Gha97],of which the Hidden Markov Model (HMM) [Rab89] is the simplest example. However, the resulting systemwill in general have a belief state that is exponential in the number of hidden state variables, resulting inintractable inference. In addition, it may also have a large number of parameters, resulting in ine�cientlearning (i.e., a lot of data is needed).Another approach, and the one we take in this paper, is to have a bank of M di�erent linear models, and toswitch between them or take some linear combination of them.Let us �rst consider the case where the dynamics are piecewise linear. We have a discrete switch variable Stwhich speci�es which A=Q matrix to use at time t. We assume St has Markovian dynamics (with transitionmatrix Z and initial distribution � 1). This model is shown in Figure 1(a).1Thus 1=Z(i; i) is the expected time we spend in state/mode i before switching. We can change the distribution on thelength of each linear segment by explicitely modeling how long we spend in each state [Rab89, KRHE96].1
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Figure 1: Some switching Kalman �lter models represented as Bayesian networks [Pea88]. Square nodes arediscrete, oval ones are Gaussian. Shaded nodes are observed, clear nodes are hidden.If St were observed, we would know when to apply each submodel (i.e., the segmentation would be known),but since St is hidden, we use a weighted combination of each sub-model, where the weights are given byPr(St = ijy1:t). This is called \soft switching". Hence the resulting system can be thought of as a mixtureof Kalman �lters. For example, we might be interested in tracking a maneuvering airplane. If the twobasic models cover horizontal and vertical motion, then we can represent turns using a convex combination.SKF's have been shown [BSL93] to give superior performance to online adapative methods (such as InputEstimation) for problems such as these.Let us now consider the case where St speci�es which observation matrices C=R to use at time t. This can beused to model non-Gaussian observation noise, by approximating it as a mixture of Gaussians. For example,we might take Q1 to be the covariance of the observation process, and Q2 to be a very broad covariance(e.g., approximately uniform). The prior probability of St reects how often we expect outliers to occur.This is a widely used technique for making linear regression more robust, see e.g., [PG88], and for modellingsensor failure [Wil76].Recently, Ghahrhamani et al. [GH96b] have proposed the model shown in Figure 1(c). This also hasswitching observations, but the interpretation is di�erent. The switch variable in this case can be thought ofas \selecting" one of the sub-processes to pass through to the output variable or as choosing a permutationmatrix Ct to apply, to model the fact that we are uncertain about which process causes which observation[SS91]; this is called data association ambiguity [BSF88].2Of course, we can make both the dynamics and the observation model dependent on St (or on two separateMarkov chains). This is the most general case that we will assume for the rest of this paper. We will also beconcerned with the special case in which C = I, so we get to observe X directly (see Figure 1(d)). This iscalled a Switching Auto Regression model. SAR models are computationally much simpler than SKFs (noapproximations are necessary to do inference, as we will see), since the only hidden node is discrete.2Of course, in practice, we need to deal with the fact that the number of objects we are tracking, and the number ofmeasurements we receive at each time step, is not constant. 2



2 InferenceThe fundamental problem with SKFs is that the belief state grows exponentially with time. To see this,suppose that the initial distribution p(X1) is a mixture of M Gaussians, one for each value of S1. Theneach of these must be propogated through M di�erent equations (one for each value of S2), so that p(X2)will be a mixture of M2 Gaussians. In general, at time t, the belief state p(Xtjy1:t) will be a mixture of M tGaussians, one for each possible model history S1; : : : ; St. There are several general approaches to dealingwith this exponential growth [SM80]:� Collapsing: approximate the mixture of M t Gaussians with a mixture of r Gaussians. This is calledthe Generalized Pseudo Bayesian algorithm of order r (GPB(r)) (see e.g., [BSL93, Kim94]). Whenr = 1, we approximate a mixture of Gaussians with a single Gaussian using moment matching; thiscan be shown (e.g., [Lau96]) to be the best (in the KL sense) single Gaussian approximation. Whenr = 2, we \collapse" Gaussians which di�er in their history two steps ago; in general, these will bemore similar than Gaussians that di�er in their more recent history. The Interacting Multiple Models(IMM) algorithm [BSL93] is a good approximation to GPB2 at the cost of only M (instead of M2)�lters (see Figure 2), although it cannot be used for smoothing. Not surprisingly, the more history wekeep, the better the approximation [SM80]. See Figure 2 for a comparison of GPB1, GPB2, and theIMM �ltering algorithms.� Selection: only keep the high-probability paths in the tree of model histories. This technique is widelyused for �ltering when there is data association ambiguity, when it is called Multiple HypothesisTracking [BSF88].� Iterative: we can sample the missing values using MCMC methods and collect averaged statistics[CK96, BMR98]. More simply, we can alternate between picking good segmentations (i.e., the mostlikely sequence of St's, c.f. the Viterbi algorithm for HMMs) and doing inference using a �xed segmen-tation. Alternatively, we could use weighted combinations of the matrices instead of the \best" matrixat each step [SM80].� Variational: essentially we break all the vertical links in the model, but introduce new variationalparameters to couple them together in as tight a way as possible. Using EM with such a model willmaximize a lower bound on the likelihood: see [GH96b] for details.In this paper, we focus on the collapsing approximation. One worry is that the errors introduced at eachtime step by approximating the posterior might accumulate over time, leading to very poor performance.However, as shown in [BK98b, BK98a], the stochasticity of the process ensures that the true distribution\spreads out" and (with high probability) \overlaps" the approximate distribution; hence they are able toprove that the error remains bounded.Before delving into the SKF case, we \warm up" by considering the simpler case of the SAR model, forwhich we can perform exact inference.2.1 Switching AR modelWe de�ne inference as computing the posterior probabilities Pr(St = jjx1:T ), where x1:T = y1:T is thesequence of observations. We do this in two passes. In the forwards pass we proceed as follows.Pr(St = jjxt;x1:t�1) = 1c Pr(xtjSt = j;x1:t�1) Pr(St = jjx1:t�1)3



= 1c Pr(xtjSt = j;xt�1)Xi Pr(St = jjSt�1 = i;x1:t�1) Pr(St�1 = ijx1:t�1)= 1c Lt(j)Xi Z(i; j) Pr(St�1 = ijx1:t�1)where c is the normalization constantc = Pr(xtjx1:t�1) =Xj Lt(j)Xi Z(i; j)Mt�1jt�1(i)and Lt(j) = N (xt;Ajxt�1; Qj)is the likelihood of the innovation (prediction error) at time t given model j. On the backwards pass, wehave Pr(St = jjx1:T ) = Xk Pr(St = jjSt+1 = k;x1:T ) Pr(St+1 = kjx1:T )= Xk Pr(St = jjSt+1 = k;x1:t) Pr(St+1 = kjx1:T ) �= Xk Pr(St = jjx1:t) Pr(St+1 = kjSt = j)Pr(St+1 = kjx1:t) Pr(St+1 = kjx1:T )where the line marked * follows since the e�ect of future evidence on St is blocked by observing all its children(St+1 and Xt). On a practical note, we remark that, since we are computing the conditional probabilityPr(Stjx1:t), as opposed to the joint probability Pr(St;x1:t) as in an HMM, we do not need to worry aboutunderow and hence do not need scaling [Rab89].2.2 Switching Kalman �lter modelIn what follows, we review the GPB2 algorithm; GPB1 and IMM cannot be used since we need to reasonabout two consecutive time steps to calculate the cross-variance term needed for EM.Let us start by de�ning some notation.xi(j)tj� = E [Xtjy1:� ; St�1 = i; St = j]x(j)ktj� = E [Xtjy1:� ; St = j; St+1 = k]xjtj� = E [Xtjy1:� ; St = j]If � = t, these are called �ltered statistics; if � > t, they are called smoothed statistics; and if � < t, theyare called predicted statistics. Notice how the superscript inside the brackets is the value of the switch nodeat time t (the subscript value); the superscript to the left is the value of St�1, and to the right, St+1. Weneed these subtle distinctions to handle the cross-variance terms correctly. We also de�ne the following.V jtj� = Cov [Xtjy1:� ; St = j]V jt;t�1j� = Cov [Xt;Xt�1jy1:� ; St = j]V i(j)t;t�1j� = Cov [Xt;Xt�1jy1:� ; St�1 = i; St = j]Mt�1;tj�(i; j) = Pr(St�1 = i; St = jjy1:� )Mtj� (j) = Pr(St = jjy1:� )Ljt = Pr(ytjy1:t�1; St = j)4
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(Ljt is the likelihood of the innovation at time t, given that the current model is j.)2.3 FilteringWe perform the following steps in sequence.(xi(j)tjt ; V i(j)tjt ; V i(j)t;t�1jt; Li(j)t ) = Filter(xit�1jt�1; V it�1jt�1;yt;Fj;Hj; Qj; Rj)Mt�1;tjt(i; j) = Pr(St�1 = i; St = jjy1:t) = Lt(i; j)Z(i; j)Mt�1jt�1(i)PiPj Lt(i; j)Z(i; j)Mt�1jt�1(i)Mtjt(j) = Xi Mt�1;tjt(i; j)W ijj = Pr(St�1 = ijSt = j;y1:t) = Mt�1;tjt(i; j)=Mtjt(j)(xjtjt; V jtjt) = Collapse(xi(j)tjt ; V i(j)tjt ;W ijjt )The de�nitions of the �lter, smoother and collapse operators are given in Appendix A; for a derivation, seee.g., [BSL93]; for the derivation of the cross-variance term, see [DRO93]; the deriviation of the mode updateequation is as follows.Pr(St�1 = i; St = jjyt;y1:t�1) = 1c Pr(St�1 = i; St = j;ytjy1:t�1)= 1c Pr(ytjSt�1 = i; St = j;y1:t�1) Pr(St�1 = i; St = jjy1:t�1)= 1c Pr(ytjSt�1 = i; St = j;y1:t�1) Pr(St = jjSt�1 = i;y1:t�1) Pr(St�1 = i;y1:t�1)= 1c Lt(i; j)Z(i; j)Mt�1jt�1(i)where c is the normalization constantc =Xi Xj Lt(i; j)Z(i; j)Mt�1jt�1(i)The initial conditions are as follows. We set the predicted mean and variance based on no evidence to bexj1j0 = E [X1jS1 = j] = �j and V j1j0 = Cov [X1jS1 = j] = �j , and we set M0j0 = �.2.4 SmoothingWe perform the following steps in sequence.(x(j)ktjT ; V (j)ktjT ; V j(k)t+1;tjT) = Smooth(xkt+1jT ; V kt+1jT ;xjtjt; V jtjt; V kt+1jt+1; V j(k)t+1;tjt+1;Fk; Qk)U jjkt = Pr(St = jjSt+1 = k;y1:T ) � Mtjt(j)Z(j; k)Pj0 Mtjt(j0)Z(j0; k) �Mt;t+1jT (j; k) = U jjkt Mt+1jT (k)MtjT (j) = Xk Mt;t+1jT (j; k)6



W kjjt = Pr(St+1 = kjSt = j;y1:T ) = Mt;t+1jT (j; k)=MtjT (j)(xjtjT ; V jtjT ) = Collapse(x(j)ktjT ; V (j)ktjT ;W kjjt )(xtjT ; VtjT ) = Collapse(xjtjT ; V jtjT ;MtjT (j))xj(k)t+1jT = E [xt+1jy1:T ; St+1 = k; St = j] � xkt+1jTV kt+1;tjT = CollapseCross(xj(k)t+1jT ;x(j)ktjT ; V j(k)t+1;tjT ; U jjkt )x()ktjT = E [Xtjy1:T ; St+1 = k] =Xj x(j)ktjT U jjktVt+1;tjT = CollapseCross(xkt+1jT ;x()ktjT ; V kt+1;tjT ;Mt+1jT (k))The line marked * is a standard approximation [Kim94], derived as follows.Pr(St = jjSt+1 = k;y1:T ) � Pr(St = jjSt+1 = k;y1:t)= Pr(St = jjy1:t) Pr(St+1 = kjSt = j)Pr(St+1 = kjy1:t)where the approximation arised because St is not conditionally independent of the future evidence yt+1; : : : ;yTgiven St+1.3 This approximation will not be too bad provided future evidence does not contain much infor-mation about St beyond than that contained in St+1.3 LearningOnce again, we start by considering the simpler SAR case before extending it to the SKF case.3.1 Switching AR modelWe are interested in �nding the Maximum Likelihood estimate of the parameters. If we knew the segmen-tation (i.e., which model to apply at each time step), we could solve this using linear regression. Since theSt values are unobserved, we shall use EM (c.f., [Ham90]).The complete data log likelihood isL = logP (x1:T ; S1:T ) = TXt=2 logP (xtjxt�1; St) + TXt=2 logPr(StjSt�1) + logP (x1jS1) + logPr(S1)where P (St = jjSt�1 = i) = Z(i; j)P (xtjxt�1; St = j) = exp ��12 [xt � Ajxt�1]0Q�1j [xt �Ajxt�1]� (2�)�n=2jQjj�12P (S1 = j) = �j3The best way to see this is in terms of the directed graphical model. Recall that a node is conditionally independent ofits non-descendants given its parents [Pea88]. Hence St is independent of past evidence given only its parent St�1. However,all of St's children need to be observed to block the e�ect of future evidence (observing St+1 is not enough because the arrowpoints the \wrong" way). In the AR model, all of St's children (namelyYt and St+1) are observed, but this is not the case inthe general model (sinceXt is not observed). 7



P (x1jS1 = j) = N (�j;�j)In EM, we iteratively maximize (w.r.t. the parameters �) the expected value (w.r.t. the parameters �old) ofthe complete data log likelihood:L̂ = E P (S1:T ;x1:T )[L]= XS1 : : :XST P (x1:T ; S1:T ; �old) logP (x1:T ; S1:T ; �)= P (x1:T ) TXt=2XSt 0@ XfS� ;� 6=tgP (S1:T jx1:T )1A logP (xtjxt�1; St) + � � �= P (x1:T ) TXt=2 XSt=jW jt logP (xtjxt�1; St = j) + � � �where the weights W jt = Pr(St = jjx1:T ) were computed during the inference step, and we have used the factthat Xt ? S� jXt�1; St for all � 6= t (since a node is independent of its non-descendants given its parents).To maximize this equation, we take derivatives and set to 0; intuitively, the derivative will kill all terms butone in the summation over St, resulting in a weighted version of the standard formulas: see Appendix Bfor details. Assuming we have N iid sequences, indexed by `, we �nd (where x̂t = xt, Pt = xtx0t andPt;t�1 = xtx01�1)Ai =  X̀ TXt=2W itPt;t�1! X̀ TXt=2W itPt�1!�1Qi =  1P`PTt=2W it ! X̀ TXt=2W itPt � AiX̀ TXt=2W itPt;t�10!�i = P`W i1x̂1P`W i1�i = P`W i1(x̂1 � �i)(x̂1 � �i)0P`W i1 = P`W i1x̂1x̂01 � �i(P`W i1x01)� (P`W i1x̂1)�0i + (P`W i1)�i�0iP`W i1Z(i; j) = P`PTt=2 Pr(St�1 = i; St = jjy1:T )P`PT�1t=1 W it�i = 1N X̀W i1The formulas for Z and � are the same as for an HMM [Rab89]; the formulas for �i and �i are the sameas for a mixture of Gaussians (see e.g., [Bis95, XJ96])4; and the formulas for Ai and Qi are in fact specialcases of linear regression.These equations are the MLEs for the case in which there are no restrictions on the form of the matrices.Typically, however, we know that some entries must be 0 or 1 (or some other known value). It can be shownthat the constrained MLE is obtained by �rst computing the unconstrained MLE as above, and then settingthe constrained entries to their correct values (i.e., projecting onto the allowable subspace). For example, toestimate a covariance matrix which is constrained to be diagonal, we can compute Q̂ as above, and then setthe o�-diagonal entries to 0.4We have written the formula for �i in the usual form, and also in a form which is easier to compute in an incrementalfashion [NH98] from the su�cient statistics. Remember that x̂1 and W i1 are functions of `.8



To achieve parameter tieing, we pool the expected su�cient statistics for each parameter in the equivalenceclass. For example, if we have Qi = Q for all i 2 S, we replace W it with Pi2S W it when estimating Q.A well-known problem with mixtures-of-Gaussians models, even in the non-dynamic case, is that the covari-ance matrix can easily become singular. Hamilton [Ham90, Ham91] suggests using a Wishart prior [DeG70]to regularize the problem. In particular, suppose the prior is Q�1i � W (�i;�i), where �i is our equivalentsample size for the precision matrix �i. Then the MAP estimate of Qi is given byQi =  1�i +P`PTt=2W it ! �i + X̀ TXt=2W itPt �Ai X̀ TXt=2W itPt;t�10!We have found that setting �i = 0:1NT (i.e., we imagine we have seen 10% of the data before) and using�i = �iI works quite well in practice.3.2 Switching Kalman �lter modelIn this case, the complete data log likelihood is given byL = logP (x1:T ; S1:T ;y1:T ) = �12 TXt=1 �[yt �Ctxt]0Rt�1[yt � Ctxt]�� 12 TXt=1 log jRtj�12 TXt=2 �[xt �Atxt�1]0Qt�1[xt �Atxt�1]�� 12 TXt=2 log jQtj�12 [x1 � �1]0��11 [x1 � �1]� 12 log j�1j � T (n+m)2 log2�+ log�1 + TXt=2 logZ(St�1; St)The quantity we maximise isL̂ = E P (S1:T ;x1:T ;y1:T )[L]= E P (S1:T ;y1:T ) hE P (x1:T jS1:T ;y1:T )[L]i� E P (S1:T ;y1:T ) hE P (x1:T jy1:T )[L]i= P (y1:T ) TXt=2XSt 0@ XfS� ;� 6=tgP (S1:T jy1:T )1A Ê[logP (xtjxt�1; St)] + � � �= P (y1:T ) TXt=2 XSt=jW jt Ê[logP (xtjxt�1; St)] + � � �where Ê[�] = E [�jy1:T ]. The approximation arises because we use E [xtjy1:T ] instead of E [xtjy1:T ; S1:T ],since the latter is an exponential number of vectors (one for each segmentation). The advantage is that theformula is now of the same form as Equation 1 for the SAR case (modulo the leading constant factor), withthe following rede�nitions: W jt = Pr(St = jjy1:T ]x̂t = Ê[xt] 9



Pt = Ê[xtx0t] = VtjT + xtjTx0tjTPt;t�1 = Ê[xtx0t�1] = Vt;t�1jT + xtjTx0t�1jTOf course, since we have already computed terms like xjtjT , V jt , and V i(j)t;t�1, we could use these instead. Inpractice, this doesn't seem to make much di�erence, although it does have the advantage that we don't needto collapse the cross variance terms (twice) to compute Vt;t�1 (the last four equations in Section 2.4).Of course, the new equation for L̂ also has terms involving Ci and Ri. Maximizing with respect to thesegives (see Appendix B for the derivation):Ci =  X̀ TXt=1W itytx̂t0! X̀ TXt=1W itPt!�1Ri =  1P`PTt=1W it !X̀ TXt=1W it (yty0t � Cix̂ty0t)3.3 Deterministic annealingEM is notorious for getting stuck in local minima. This is especially common in models of the kind weare considering, which have MT possible segmentations. One solution is to use deterministic annealing EM[UN98], as suggested in [GH96b]. In DAEM, we replace the posteriorPr(Hjo) = Pr(H; o)PH Pr(H; o)(where H are the hidden variables and o the observed values) withf(Hjo) = Pr(H; o)�PH Pr(H; o)�where � is an inverse temperature parameter. When � = 0 (in�nite temperature), the posterior becomesuniform. When � = 1 (low temperature), the posterior becomes the regular EM posterior. Applying thisprinciple to the present case, we suggest usingfjt = (W jt )�Pj(W jt )�A Appendix: Details of the inference algorithmA.1 FilterThe Filter operator (xtjt; Vtjt; Vt;t�1jt; Lt) = Filter(xt�1jt�1; Vt�1jt�1;yt;Ft;Ht; Qt; Rt)is de�ned as follows. First, we compute the predicted mean and variance.xtjt�1 = Fxt�1jt�1Vtjt�1 = FVt�1jt�1F 0 +Q10



Then we compute the error in our prediction (the innovation), the variance of the error, the Kalman gainmatrix, and the likelihood of this observation.et = yt �Hxtjt�1St = HVtjt�1H0 + RKt = Vtjt�1H0S�1tLt = N (et; 0; St)Finally, we update our estimates of the mean, variance, and cross variance.xtjt = xtjt�1 +KtetVtjt = (I �KtH)Vtjt�1 = Vtjt�1 �KtStK0tVt;t�1jt = (I �KtH)FVt�1jt�1A.2 SmootherThe Smooth operator(xtjT ; VtjT ; Vt+1;tjT) = Smooth(xt+1jT ; Vt+1jT ;xtjt; Vtjt; Vt+1jt+1; Vt+1;tjt+1;Ft+1; Qt+1)is de�ned as follows. First we compute the following predicted quantities (or we could pass them in fromthe �ltering stage): xt+1jt = Ft+1xtjtVt+1jt = Ft+1VtjtF 0t+1 +Qt+1Then we compute the smoother gain matrix.Jt = VtjtF 0t+1V �1t+1jtFinally, we update our estimates of the mean, variance, and cross variance.xtjT = xtjt + Jt �xt+1jT � xt+1jt�VtjT = Vtjt + Jt �Vt+1jT � Vt+1jt� J 0tVt+1;tjT = Vt+1;tjt+1 + �Vt+1jT � Vt+1jt+1�V �1t+1jt+1Vt+1;tjt+1We now present an alternative way to compute the smoothed estimates of the cross-variance terms, Vt;t�1jT ,which does not require the corresponding �ltered terms [SS91, GH96a].The Smooth' operator(xtjT ; VtjT ; Vt;t�1jT) = Smooth0(xt+1jT ; Vt+1jT ; Vt+1;tjT ;xtjt; Vtjt; Vt�1jt�1;Ft+1; Qt+1; Ft; Qt)is de�ned as above, except Vt;t�1jT = VtjtJ 0t�1 + Jt(Vt+1;tjT � Ft+1Vtjt)J 0t�1where the boundary condition is VT;T�1jT = (I �KTHT )FTVT�1jT�111



A.3 CollapseConsider two random variables X;Y with conditional means �jX = E[XjS = j], �jY = E[Y jS = j], crossvariance V jX;Y = Cov [X;Y jS = j], and mixing coe�cients P j = Pr(S = j). Then we can compute theunconditional moments as follows. (This procedure is called moment matching.)�X = Xj P j�jX�Y = Xj P j�jYVX;Y = Xj P jCov [X;Y jS = j]= Xj P jE [(X � �X)(Y � �Y )0jS = j]= Xj P jE [(X � �jX + �jX � �X)(Y � �jY + �jY � �Y )0jS = j]= Xj P jE [(X � �jX)(Y � �Y )0jS = j] +Xj P j(�jX � �X )(�jY � �Y )0= Xj P jV jX;Y +Xj P j(�jX � �X )(�jY � �Y )0Let us introduce the following shorthand for the above operation.(�X ; �Y ; VX;Y ) = CollapseCross(�jX ; �jY ; V jX;Y ; P j)and de�ne Collapse(�jX ; V jX ; P j) = CollapseCross(�jX ; �jX ; V jX;X ; P j)It can be shown [Lau96] that a Gaussian with these moments is the closest possible Gaussian (in KL distance)to the original mixture distribution.B Derivation of the M stepWe follow [GH96a], but generalize to the switching case. For simplicity of notation, we consider only a singlesequence.We use following standard identities@ ((Xa+ b)0C(Xa+ b))@X = (C+C0)(Xa+ b)a0 (1)@(a0Xb)@X = ab0 (2)@ ln jXj@X = (X0)�1 (3)12



B.1 System matrixUsing identity 1, @@Ai L̂ = �12 TXt=2W it Ê �2Q�1i (xt �Aixt�1)xt�10�= � TXt=2W itQ�1i Pt;t�1 + TXt=2W itQ�1i AiPt�1 = 0Hence Ai =  TXt=2W itPt;t�1! TXt=2W itPt�1!�1 (4)B.2 System noise covarianceUsing identities 2 and 3,@@Q�1i L̂ = �12 TXt=2W it Ê �(xt � Aixt�1) (xt � Aixt�1)0�+ 12 TXt=2W itQi= �12 TXt=2W it �Pt � AiPt;t�10 � Pt;t�1A0i +AiPt�1A0i� + 12 TXt=2W itQi = 0Using the new value of Ai and the fact that Pt is symmetric, we �ndAi TXt=2W itPt�1!A0i =  TXt=2W itPt;t�1! TXt=2W itPt�1!�1 TXt=2W itPt;t�10!= Ai TXt=2W itPt;t�10 =  TXt=2W itPt;t�1!A0iHence Qi =  1PTt=2W it ! TXt=2W itPt � Ai TXt=2W itPt;t�10! (5)B.3 Observation matrixUsing identity 1, @@Ci L̂ = �12Xt W it Ê �2R�1i (�Cixt + yt)x0t� = 0Hence Ci =  TXt=1W itytx̂t0! TXt=1W itPt!�1 (6)13



B.4 Observation noise covarianceUsing identities 2 and 3, we �nd@@R�1i L̂ = TXt=1 Ê �W it 12 (yty0t � 2Cixty0t + Cixtx0tC0i)� + 12RiXt W it = 0Using the new estimate of Ci, we have Xt W itPt!C0i =Xt W it x̂ty0t def= Zso @@R�1i L̂ = TXt=1 12  Xt W ityty0t � 2CiZ +CiZ!+ 12RiXt W itand hence Ri =  1PTt=1W it ! TXt=1W it (yty0t � Cix̂ty0t) (7)B.5 Initial mean and covarianceThis is the standard derivation for a mixture of Gaussians model; see e.g., [Ham90, Bis95, XJ96].B.6 Initial state probability and transition matrixThis is a constrained maximization problem (since the probabilities must sum to 1), which can be solvedusing Lagrange multipliers; see e.g., [Rab89, Ham90] for a derivation.References[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.[BK98a] X. Boyen and D. Koller. Approximate learning of dynamic models. In Neural Info. Proc. Systems,1998.[BK98b] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. of theConf. on Uncertainty in AI, 1998.[BMR98] M. Billio, A. Monfort, and C. P. Robert. Bayesian estimation of switching ARMA models.Technical report, CREST, INSEE, Paris, 1998.[BSF88] Y. Bar-Shalom and T. Fortmann. Tracking and data association. Academic Press, 1988.[BSL93] Y. Bar-Shalom and X. Li. Estimation and Tracking: Principles, Techniques and Software. ArtechHouse, 1993.[CK96] C. Carter and R. Kohn. Markov Chain Monte Carlo in conditionally Gaussian state space models.Technical report, Univ. New South Wales, Graduate School of Management, 1996.14
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