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Abstract

We explore the advantages of representing hierar-
chical partially observable Markov decision pro-
cesses (H-POMDPs) as dynamic Bayesian net-
works (DBNs). In particular, we focus on the spe-
cial case of using H-POMDPs to represent multi-
resolution spatial maps for indoor robot naviga-
tion. Our results show that a DBN representation
of H-POMDPs can train significantly faster than
the original learning algorithm for H-POMDPs or
the equivalent flat POMDP, and requires much less
data. In addition, the DBN formulation can eas-
ily be extended to parameter tying and factoring
of variables, which further reduces the time and
sample complexity. This enables us to apply H-
POMDP methods to much larger problems than
previously possible.

1. Introduction

Partially observed Markov decision processes (POMDPs)
have become a popular model in AI in general, and in mo-
bile robotics in particular (Cassandra et al., 1996; Koenig &
Simmons, 1998). Unfortunately, standard methods for plan-
ning, inference, and learning with POMDPs all take time ex-
ponential in the number of (discrete) states, S, making them
impractical for large problems.

A hierarchical extension to POMDPs was introduced by
(Theocharous et al., 2001). Such H-POMDPs, which rep-
resent the state-space at multiple levels of abstraction, scale
much better to larger environments. In particular, they sim-
plify the planning and learning problems. Planning is simpler
(requires less time) in H-POMDPs because abstract states
(at the coarse-level of resolution) have lower entropy, i.e.,
are more deterministic (Theocharous & Mahadevan, 2002a).
Learning is simpler (requires less data) in H-POMDPs be-
cause the number of free parameters is reduced, and the struc-

ture of the model provides a way of encoding prior knowl-
edge. In this paper, we focus on the learning problem, and do
not address planning, i.e., we assume a fixed (given) control
policy.

To learn the parameters of an H-POMDP (using e.g., EM) re-
quires an inference algorithm, since the true state of the world
is not observed. The inference algorithm that was used in
(Theocharous et al., 2001) was based on the one proposed in
(Fine et al., 1998) for hierarchical HMMs, and takes O(ST 3)
time, where T is the length of the sequence. This made it
intractable to train the model on long data sequences, which
is essential for learning large environments. (Long sequences
are necessary to reduce perceptual aliasing.)

In this paper, we show how to do inference in H-POMDPs in
O(S1.5T ) time by representing the H-POMDP as a dynamic
Bayesian network (DBN); this is an extension of (Murphy &
Paskin, 2001). This allows us to learn much larger models
much faster, without requiring manual segmentation of the
training data. In addition, we exploit the DBN formalism to
factor the robot state into location and orientation; this further
decreases the sample and time complexity.

We explain and test our model in the domain of map learn-
ing and robot localization. However, the techniques are more
general, and can be applied to any POMDP which exhibits
hierarchical structure. As such, this technique is not directly
comparable to more specialized map learning techniques such
as SLAM (e.g., (Dissanayake et al., 2001)), which are harder
to generalize to other problems, but which have the advantage
of performing online structure learning.

The structure of the paper is as follows. In Section 2, we de-
fine H-POMDPs more precisely; in Sections 3 and 4, we dis-
cuss how to perform inference and learning in such models;
in Section 5, we show some experiments which demonstrate
the superiority of hierarchical POMDPs over flat POMDPs,
and factored H-POMDPs over unfactored H-POMDPs, both
in terms of accuracy (for a fixed amount of training data) and



speed of learning. Finally, in Section 6, we conclude and dis-
cuss future work.

2. Representation

2.1. Hierarchical HMMs
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Figure 1. State transition diagram of a three-level HHMM. The ovals
represent abstract states, the small circles represent concrete states.
Dotted arcs represent return of control. See text for details. In this
example, the sub-HMMs have a left-to-right structure, but this need
not be the case in general. Absent arcs have zero probability. Some
arcs which are shown also have zero probability; this is just to ensure
that the corresponding flat model in Figure 2 is not too complex.
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Figure 2. A flattened version of Figure 1.

Hierarchical HMMs (Fine et al., 1998) are like HMMs except
the states of the stochastic automaton can emit single observa-
tions or strings of observations. (For simplicity of exposition,
we shall assume all observations are discrete symbols, but
HHMMs can easily be generalized to handle continuous ob-
servations.) Those that emit single symbols are called “pro-
duction states”, and those that emit strings are termed “ab-
stract states”. The strings emitted by abstract states are them-
selves governed by sub-HHMMs, which can be called recur-
sively. When the sub-HHMM is finished, control is returned
to wherever it was called from; the calling context is stored
using a depth-limited stack.1 The result is a set of nested

1The fact that the stack has a fixed depth, D, means that an
HHMM is a finite-state model; it is therefore less expressive, but
more efficient, than stochastic context-free grammars and recursive
transition networks.

sequences. An HHMM is thus a generalization of a segment
(semi-Markov) model (Ostendorf et al., 1996) to multiple lev-
els, where the duration within each segment is controlled by
an HMM.

We illustrate the generative process with the example in Fig-
ure 1. We start in the root node, s1, and then make a “vertical
transition” to either s2 or s3; suppose we choose s2. From
there, we make another vertical transition, until we end up at
one of the concrete nodes at the leaves, say s6. From state s6,
we emit the first symbol. We then make a “horizontal tran-
sition”, say to the exit state e2 (which cannot emit any sym-
bols); this causes control to be returned to the calling state,
s2. From s2, we make a horizontal transition to s3, and then
a vertical transition to, say, s7, and emit another symbol. And
so on.

Any HHMM can be converted to an HMM by creating a state
for every possible legal stack configuration X1

t , . . . , XD
t . (If

the HHMM transition diagram is a tree, as above, there will
be one HMM state for every HHMM production state; If the
HHMM transition diagram is a DAG (i.e., it has shared sub-
structure), this structure must be duplicated in the HMM, gen-
erally resulting in a larger state-space.) Then, for every pair
of states (s1, s2), the flat transition probabilitiy is the sum of
the probabilities of all paths that transition between s1 and s2

in the HHMM. For example, consider converting Figure 1 to
Figure 2. The probability of the self-transition for s8 in the
flat model is 0.3+0.7× 0.5× 0.1 = 0.335, corresponding to
the paths s8 → s8 and

s8 → e3 → s3 → e1 → s1 → s3 → s8

(Note that the s8 → e3 → s3 → s8 path is illegal, since s3

does not have a self-loop; the only legal transition from s3

is to e1 and then up to the root.) The resulting flat model is
clearly more highly interconnected (because the extra paths
induced by passing through abstract nodes must be repre-
sented explicitly as new edges), and hence is harder to learn.

2.2. Hierarchical POMDPs

A hierarchical POMDP (Theocharous et al., 2001) extends an
HHMM by conditioning all state transitions (and optionally,
observations) on the action that is performed. In this paper,
we restrict our attention to a two-level hierarchical model de-
signed for robot navigation. The states are as follows: X2

t (an
abstract node) represents which corridor the robot is in, and
X1

t (a concrete node) represents which grid cell within the
corridor, plus the orientation. See Figure 3 for an example.

The actions (controls), Ut, represent “go forward by 1m”,
“turn left by 90deg”, or “turn right by 90deg”. In this paper,
we ignore the problem of how to choose actions, and simply
model them as exogeneous inputs. Finally, Yt represents the
observations (sensor measurements). In our simulations, we
assume this represents the presence or absence of a wall (ob-



Figure 3. State transition diagram of the H-POMDP used to model
corridor environments. Throughout the paper we refer to this model
as the “hierarchical model”. Large ovals represent abstract states;
the small solid circles within them represent entry states, and the
small hollow circles represent exit states. The small circles with
arrows represent concrete state and orientation. Arcs represent non-
zero transition probabilities as follows: Dashed arrows from con-
crete states represent concrete horizontal transitions, dotted arrows
from exit states represent abstract horizontal transitions, and solid
arrows from entry states represent vertical transitions.

stacle) on the front, back, left and right sides of the robot; thus
Yt can be represented by four bits. In our actual robot exper-
iments (see Section 5.4), we use a neural network to convert
laser range finder readings into this form.

In the original HHMM model, when we exit from a sub-
model, we “pop” the old concrete state off the call stack; the
new concrete state is chosen according to what is left on the
stack, namely just the current abstract state number. How-
ever, in the robot navigation domain, the concrete state we
enter depends on which exit state we used; i.e., which end of
the new corridor we enter depends on which end of the pre-
vious corridor we exited from. Hence we must condition the
new concrete state not only on the new abstract state, but also
on the previous concrete state. However, this is equivalent
to a flat model, since it allows full interconnectivity between
concrete states. Hence we introduce the notion of “bottle-
neck” states, which in our domain are the ends of corridors;
information can only flow from one sub-HMM to another via
these bottlenecks. In particular, we allow multiple exit states,
which summarize the previous concrete state; the new con-
crete state is allowed to depend on the previous exit state, but
not the previous concrete state. We will make this more pre-
cise below.

Every H-POMDP can be converted to a flat POMDP in a
manner similar to flattening an HHMM (see Figure 4 for an
example). However, the flattening operation loses most of the
structure, making learning much harder, as we show below.

Figure 4. State transition diagram for a flattened version of Figure 3.
Throughout this paper we refer to this model as the “flat” model.
Transition matrices for each action can be computed from the hier-
archical model as follows: for each pair of concrete states s1, s2, we
need to sum up the probabilities of all the paths that transition from
s1 to s2 under some action a.

2.3. Representing H-POMDPs as DBNs

A DBN model for HHMMs was introduced by (Murphy &
Paskin, 2001). We can extend this to the H-POMDP case by
making three changes: we add action nodes, Ut, we add ori-
entation nodes, Θt, and we allow exit nodes, Et, to be multi-
valued (not just binary). See Figure 5.

The action nodes represent the movement made by the robot.
The orientation nodes are present because we now factor X1

t

into concrete location, L1
t , and orientation, Θt, instead of hav-

ing to duplicate each (concrete) location four times as is done
in Figures 3 and 4. We will denote the abstract location, X2

t ,
by L2

t . The exit node Et can take on five possible values, rep-
resenting no-exit, north-exit, east-exit, south-exit, and west-
exit. If Et = no-exit, then we make a horizontal transition at
the concrete level, but the abstract state is required to remain
the same. We will explain the model in more detail below.

2.3.1. NOTATION

Lower case letters denote values of random variables. To
shorten notation, we will sometimes denote the probability
of events like P (Θt = θ, L2

t = a, L1
t−1 = i, L1

t = j) by
P (θ, a, i, j), i.e., we will use θt to denote an assignment to
Θt, a for L2

t , j for L1
t and i for L1

t−1.

2.3.2. TRANSITION MODEL

We now define the conditional probability distributions
(CPDs) of each type of node in the DBN. All distributions,
except for the observations, are conditioned on the input
Ut−1; this is not shown explicitly, to simplify notation. For
the abstract nodes,

P (L2

t = j|L2

t−1 = i,Et−1 = e)

=

{

δ(i, j) if e =no-exit
H2(i, e, j) otherwise

where H2(i, e, j) is the abstract horizontal transition matrix
through exit of type e and δ is the Kronecker delta function.
(This corresponds to the connections between the big ovals in
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Figure 5. A 2-level factored H-POMDP represented as a DBN.
Throughout the paper we refer to this model as the “factored hierar-
chical DBN”. The arcs from the action node, Ut, are shown dotted
merely to reduce clutter. The L2

t nodes denote the abstract state, the
L1

t nodes denote the concrete location, the Θt nodes denote the ori-
entation, the Et nodes denote the state of the exit variable, and Yt

denotes the state of the observation variables.

Figure 3.) For the concrete nodes,

P (L1

t = j|L1

t−1 = i,Et−1 = e, θt−1, L
2

t = a)

=

{

H1(i, θt−1, a, j) if e =no-exit
V (e, a, j) otherwise

where H1(i, θt−1, a, j) is the concrete horizontal transition
matrix (the horizontal connections below each oval in Fig-
ure 3), and V (e, a, j) is the concrete vertical entry vector (the
downward pointing arcs in Figure 3). For the exit nodes,

P (Et = e|j, θt, a) = X(j, a, θt, e)

where X(j, a, θt, e) is the probability of concrete state j en-
tering exit state e given that it is in abstract state a and has
orientation θt (the upward pointing arcs in Figure 3).

2.3.3. OBSERVATION MODEL

Although the observations are shown as a single node in
Figure 5, in fact we make the naive Bayes assumption that
P (Yt|Xt) =

∏4

i=1
P (Y i

t |Xt), where Y i
t are the four differ-

ent observations, and Xt = (L1
t , L

2
t , Θt) is the entire state.

Our observation model is the probability of seeing a wall
or opening on each of the four sides of the robot. How-
ever, we must first map the global coordinate frame of the
map to the robot’s local coordinate frame by taking into
account its orientation. We can do this as follows. Let

B(a, j, θ, y)
def
=P (Y θ

t = y|L2
t = a, L1

t = j) for all t, where
θ ∈ {N, E, S, W}, B(a, j, N, y) is the probability of observ-
ing y to the north of cell (a, j), etc. Then:

P (Y F
t = y|L1

t = j, θt, a) = B(a, j, θt, y)

P (Y B
t = y|L1

t = j, θt, a) = B(a, j, R180θt, y)

P (Y L
t = y|L1

t = j, θt, a) = B(a, j, R−90θt, y)

P (Y R
t = y|L1

t = j, θt, a) = B(a, j, R90θt, y)

where R180 represents a 180 degree rotation matrix, mapping
north to south, etc. For example, P (Y B

t = y|L1
t = j, θt =

E, L2
t = a) = B(a, j, W, y), i.e., if the robot is facing east,

what the robot sees in its back sensor is determined by what
is on the west edge of the cell. This form of parameter tying
allows us to learn about the appearance of a cell in all possible
directions at once, even if we only approach it in a single
direction.

3. Inference

There are at least two kinds of inference: online filtering
and offline smoothing. By online filtering we mean recur-
sively computing the belief state P (Xt|y1:t, u1:t); this is
then passed to the controller (policy), in order to choose
the next action. By offline smoothing, we mean computing
P (Xt|y1:T , u1:T ); this is necessary for parameter estimation
(see Section 4).

The offline inference algorithm used by (Fine et al., 1998;
Theocharous et al., 2001) takes O(KDT 3) time, where K is
the number of states at each level of the hierarchy, D is the
depth of the hierarchy, and T is the length of the sequence.
This makes it intractable to train models from long, unseg-
mented sequences of data. In addition, no online inference
algorithm was presented: the resulting model had to be flat-
tened before being used in a controller. For the DBN rep-
resentation, on the other hand, we can apply any standard
Bayes net inference algorithm, such as junction tree, to per-
form filtering or smoothing. Exact offline algorithms take
∼ DK1.5DT time; the factor of 1.5 arises because the largest
clique in the junction tree contains all the state nodes in slice
t− 1, and half of the state nodes in slice t (Murphy & Paskin,
2001). (This is a general result for the DBN representation of
H-POMDPs, and is not specific to this application.)

Although it may seem that O(DK1.5DT ) is not much im-
provement on O(K2DT ), the time required to do inference
in the flat model, note that inference in the flat model cannot
be used to compute the expected sufficient statistics needed
to learn the hierarchical model (see Section 4). So although
inference in flat models is fast, they are not practical, because
they require exponentially more data to learn. The DBN rep-
resentation of H-POMDPs, by contrast, has low sample and
time complexity. Furthermore, we can exploit the structure
of the DBN even more if we are willing to use approximate



inference, such as assumed density filtering (Boyen & Koller,
1998) or loopy belief propagation (Murphy & Weiss, 2001).
Such approximations, together with restricted forms for the
CPDs (so that the number of parameters for the bottom level
nodes is less than KD), can reduce the time complexity to
O(DKT ).

The various inference algorithms help us to understand the
basic difference between hierarchical and flat models. In a
hierarchical model, a transition to an abstract state at time t
has zero probability unless the abstract state is able to produce
a complete sub-sequence (you cannot enter a corridor unless
you are sure you will exit it again); this is what enables the
algorithm to work at a higher level of abstraction (since the
algorithm does not need to “think” about which concrete state
the system may be in). The inference algorithm in (Fine et al.,
1998; Theocharous et al., 2001) achieves this by considering
all possible subsequences of observations under the different
abstract states, which takes O(T 3) time.2

In the DBN representation we can achieve the same result
by asserting that at the last time slice, all sub-HMMs must
be finished. Since we do not know which exit state they
will use, just that ET 6= no-exit, we assign “soft” or “vir-
tual” evidence to the ET node: the local evidence becomes
(0, 0.25, 0.25, 0.25, 0.25), which encodes the fact that we can
exit by any direction with equal likelihood, but the no-exit
condition is impossible. If we do not add this virtual ev-
idence, the hierarchical DBN behaves the same as the flat
model (before the first iteration of EM; thereafter, the hier-
archical model will outperform the flat model, since it can
learn better, as we discuss below.)

3.1. Space requirements

In addition to running time, space is an important issue when
training on long sequences: when learning, we need to com-
pute the smoothed belief states for all time-slices; this re-
quires storing all the forward filtered estimates for t = 1 : T
until the backwards pass. For the flat model, this takes O(ST )
space, where S = O(KD) is the number of states (one
per leaf in the calling graph); for the O(T 3) algorithm, the
space requirements are O(ST 3); but for the DBN algorithm,
the space requirements are O(S1.5T ), which can be pro-
hibitive for large T . Fortunately, there is a simple divide-and-
conquer algorithm that can perform inference in any DBN
in O(S1.5 log T ) space, if one waits O(S1.5T log T ) time
(Binder et al., 1997; Zweig & Padmanabhan, 2000). Fur-

2The original inference algorithm for HHMMs is very similar
to the inside-outside algorithm for SCFGs (see e.g., (Jurafsky &
Martin, 2000)), which computes P (N i → N jNk|Ot:t+k), where
P (N i → N jNk) is the probability that non-terminal i expands
into non-terminal j followed by non-terminal k. If there are N non-
terminals in the grammar and the training sequence is of length T ,
then the Inside-Outside algorithm requires O(N3T 3) time.

themore, approximate inference can reduce S from O(KD)
to O(KD).

4. Learning

We can compute maximum likelihood parameter esti-
mates using the EM algorithm (or gradient ascent) in
the same was as for any Bayes net. In particular, in
the E step, we compute the expected sufficient statistics,
∑

t P (Vt, Pa(Vt)|y1:T , u1:T ), for each node Vt with parents
Pa(Vt); in the M step, we use the equations in the sections be-
low. (Parameter learning in flat POMDPs models was studied
in the context of map learning in e.g., (Thrun et al., 1998).)

The topology of the environment is encoded in the structural
zeros of the transition matrices. (Note that if an element is
set to 0, EM will leave it as 0.) In this paper, we pre-specify
a noisy version of the topology, e.g., we specify that the go-
forward action moves to the adjacent state with high proba-
bility. However, the robot still has to learn the observation
probabilities, i.e., the appearance of each grid cell; without
these, the robot will suffer from severe perceptual aliasing,
and will not be able to estimate its state.

4.1. Estimating the transition model

To shorten notation, let O = (y1:T , u1:T ) represent all the
observed data, and let n be the value of Et representing no-
exit. The parameters can be estimated by normalizing matri-
ces of expected counts, just as in a regular HMM. For exam-
ple, for the abstract horizontal transition matrix, the matrix of
expected counts is

H2(t, i, e, j)
def
=P (L2

t−1 = i, L2

t = j, Et−1 = e|O)

where e 6= n; the corresponding maximum likelihood esti-
mate (MLE) is given by

Ĥ2(i, e, j) =

∑T

t=2
H2(t, i, e, j)

∑

j′

∑T

t=2
H2(t, i, e, j′)

.

The equations for the other parameters are very similar, so we
will just define the count matrices; to compute the corrspond-
ing MLEs, simply sum up over t (the first index) and then
normalize with respect to the last dimension (to ensure the
result is a stochastic matrix).

For the concrete horizontal transition matrix, we condition on
the event Et−1 = n, meaning we are still in the same sub-
HMM:

H1(t, i, θt−1, a, j)
def
=

P (L1

t−1 = i, Et−1 = n, Θt−1 = θt−1, L
2

t = a, L1

t = j|O)

For the vertical transition vector, we condition on Et−1 6= n,
meaning that we just exited from a sub-HMM at the previous



step:

V (t, e, a, j)
def
=P (Et−1 = e, θt−1, L

2

t = a, L1

t = j|O), e 6= n

Finally, for the exit probabilities:

X(t, j, θt, a, e)
def
=P (L1

t = j, θt, L
2

t = a, Et = e|O)

4.2. Estimating the observation model

The robot can learn about the appearance of the world simul-
taneously in all four directions: if it knows which way it is
facing, it can map its local observations into world-centered
coordinates. For example, the probability of observing y
when facing North in cell j can be estimated by counting the
(expected) number of times y is observed in front when in
j and facing north, plus the number of times y is observed
to the left when in j and facing east, etc. We also sum up
these counts over all time to compute the following expected
sufficient statistic:

B(t, a, j, N, y) =

P (L2

t = a, L1

t = j, Θt = N, Y F
t = y|O)

+ P (L2

t = a, L1

t = j, Θt = E, Y L
t = y|O)

+ P (L2

t = a, L1

t = j, Θt = S, Y B
t = y|O)

+ P (L2

t = a, L1

t = j, Θt = W, Y R
t = y|O)

Normalizing this yields the maximum likelihood estimate:

B̂(a, j, N, y) =

∑T

t=1
B(t, a, j, N, y)

∑

y′

∑T

t=1
B(t, a, j, N, y′)

The appearance of the other directions are estimated simi-
larly. (Note that we are conflating the true appearance of the
world with the sensor noise model; separating these can yield
still lower sample complexity, at the cost of a harder learning
problem.)

5. Experimental results

To investigate the advantages of learning H-POMDPs repre-
sented as DBNs, we performed experiments using a simula-
tion environment shown in Figure 6. First we created artifi-
cial data using a good hand-coded model (which we call the
“original” model ) for which all transitions to the correct state
were set to 0.9 and the rest of the probability mass, 0.1, was
divided between self and overshoot-by-one transitions. For
the sensor models we initialized the probabilities of perceiv-
ing the correct observation to be 0.99 and all probabilities of
perceiving an incorrect observation to be 0.01. The control
policy was a random walk.

We then used the artificial data to train four different models:
a flat POMDP, a hierarchical POMDP, a hierarchical POMDP

with factored orientation, and a hierarchical POMDP with
factored orientation and for which we also do parameter tying
on the observation model (as in Section 4.2). We used “uni-
form” initial models for training, where all non-zero param-
eters in the “original” model were changed to uniform (e.g.,
〈0.1, 0.9〉 was changed to 〈0.5, 0.5〉). Also, we used a uni-
form Dirichlet prior on all non-zero probabilities, to prevent
us from incorrectly setting probabilities to zero due to small
training sets.
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Figure 6. The corridor environment used in our simulation experi-
ments. The circles represent abstract states (junctions). The num-
bers next to the lines represent distance in meters. Each concrete
state represents a 2m × 2m square. The model compiles to 595
H-POMDP states.

For testing, we created 500 sequences of length 30 by sam-
pling the “original” model using a policy that performs a ran-
dom walk. We evaluated the different models using three dif-
ferent measures: log-likelihood relative to the original model,
localization accuracy, and computation time.

5.1. Log-likelihood

We meaured the “distance” between a learned model, with
parameters λL, and the generating (original) model, with
parameters λG, using the relative log-likelihood (Juang &
Rabiner, 1985): D(λL, λG) = (log P (y1:T |u1:T , λL) −
log P (y1:T |u1:T , λG))/T.

If D(λL, λG) > 0, then P (y1:T |u1:T , λL) >
P (y1:T |u1:T , λG), meaning that the learned model has
higher likelihood than the generating model, which usually
indicates overfitting.

Our results are shown in Figure 7. It is clear that the hier-
archical models require much less data than the flat model.
Furthermore, factoring and parameter tying help even more.

5.2. Localization

To assess the ability of the models to estimate the robot’s
position after training (a more relevant criterion than likeli-
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Figure 7. Relative log-likelihood for the four models averaged over
500 test sequences. The curves are as follows, from bottom to top:
flat, hierarchical, factored hierarchical, factored hierarchical with ty-
ing, The bottom flat line is the model before training, the top flat line
is the generating model.

hood), we computed the total probability mass assigned to the
true state sequence (which is known, since we generated the
data from a simulator):

∑T

t=1
bt(s), where bt(s) = P (Xt =

s|y1:t, u1:t) is the belief state at time t. If the belief state was
a delta function, and put all its mass on the correct state, then
∑T

t=1
bt(s) = T ; this is the score that an algorithm with ac-

cess to an oracle would achieve. The best score that is achiev-
able without access to an oracle is obtained by computing the
belief state using the original generating model; this score is
87%. The scores of the other algorithms are shown in Fig-
ure 8. (This is the total probability mass assigned to the true
states in all the test sequences.)

The rank ordering of the algorithms is the same as before: the
flat model performs the worst, then hierarchical, then factored
hierarchical, and the factored hierarchical with tying is the
best.

5.3. Speed

To investigate the scalability of our algorithm, we also plot-
ted the time per training epoch with respect to the length of
the training sequence (see Figure 9). The results are shown
in Figure 9. The O(T 3) behavior of the original H-POMDP
algorithm is clear; the flat and DBN algorithms are all O(T ),
although the constant factors differ. The flat algorithm was
implemented in C, and therefore runs faster than the hierar-
chical DBN (although not by much!); the factored hierarchi-
cal DBN is the fastest, even though it is also implemented in
Matlab, since the state space is much smaller.

5.4. Real robot results

To verify the applicability these ideas to the real world, we
conduced an experiment with a B21R mobile robot. We
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created a topological map by hand of the 7th floor of the
AI lab; this has about 600 production states (representing
1m× 1m grid cells), and 38 abstract states (representing cor-
ridors, junctions and open space). We manually joysticked
the robot around this environment, and collected data using
a laser-range finder. The data was classified using a neural
network to indicate the presence of a wall or opening on the
front, left, right and back sides of the robot. We then created
several initial models, based on the true topology but with
unknown (uniform) observations, and tried learning their pa-
rameters from several training sequences totalling about 600
observations (corresponding to about 3 laps around the lab).

The results are qualitatively similar to the simulation results.



However, a lot depends on the quality of the initial model: if
we start from a good initial model, there is little left to learn,
so all methods perform similarly. The tied model always does
significantly better, however, since it is able to learn the ap-
pearance of all 4 directions in a single pass through a corridor.

6. Conclusions and future work

We have shown how to represent H-POMDPs as DBNs, and
demonstrated that this allows us to learn large models with
less data and much less time than previously needed. We can
further reduce the time by using approximate inference, and
can further reduce the sample complexity by doing yet more
parameter tying (e.g., factoring the observation model into the
appearance of the world and the sensor noise, and factoring
the motion model into the location of obstacles and the motor
reliability).

The main open problem is to learn the structure of the envi-
ronment. In this paper, we assumed the topology was known.
In (Theocharous & Mahadevan, 2002b), they show that it is
possible to learn the structure at the abstract level just by do-
ing parameter estimation in the H-POMDP: the initial ab-
stract transition matrix was almost fully interconnected (er-
godic), but with the constraint that corridor states could only
connect to junction states, and vice versa. The resulting pa-
rameterss, when thresholded, recovered the correct topology.
(By contrast, attempts to learn flat HMM topology using EM
have generally been considered unsuccessful, with the no-
table exception of (Brand, 1999), who uses a minimum en-
tropy prior to encourage structural zeros.)

Rather than attempting to learn the structure at the concrete
level, we can recognize that all sub-HMMs that model corri-
dors have the same left-right structure; the only uncertainty
is the length and the appearance (assuming a tied motion
model). Similarly, sub-HMMs that model junctions consist
of a single state, and only differ in their appearance. Learning
this kind of structure shares some similarity with approaches
to unsupervised learning of hierarchical structure in language
(see e.g., (de Marcken, 1996)), which we hope to explore in
the future.
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