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ABSTRACT
Motivation: Accurate prediction of RNA secondary structure from the
base sequence is an unsolved computational challenge. The accu-
racy of predictions made by free energy minimization is limited by
the quality of the energy parameters in the underlying free energy
model. The most widely used model, the Turner99 model, has hun-
dreds of parameters, and so a robust parameter estimation scheme
should efficiently handle large data sets with thousands of structu-
res. Moreover, the estimation scheme should also be trained using
available experimental free energy data in addition to structural data.
Results: In this work, we present constraint generation (CG), the first
computational approach to RNA free energy parameter estimation
that can be efficiently trained on large sets of structural as well as
thermodynamic data. Our constraint generation approach employs
a novel iterative scheme, whereby the energy values are first com-
puted as the solution to a constrained optimization problem. Then
the newly-computed energy parameters are used to update the cons-
traints on the optimization function, so as to better optimize the energy
parameters in the next iteration. Using our method on biologically
sound data, we obtain revised parameters for the Turner99 energy
model. We show that by using our new parameters, we obtain signifi-
cant improvements in prediction accuracy over current state-of-the-art
methods.
Availability: Our constraint generation implementation is available at
http://www.rnasoft.ca/CG/.
Contact: andrones@cs.ubc.ca

1 INTRODUCTION
RNA molecules play essential roles in living cells. Many import-
ant and diverse functions of RNA molecules, including catalysis
of chemical reactions and control of gene expression, have only
recently come to light. Outside of the cell, novel nucleic acids have
been selected using directed molecular evolution techniquesin vitro,
which can function as enzymes or aptamers with high binding spe-
cificity for target proteins (Breaker, 2002), with medical diagnostic
or biosensing applications (Benensonet al., 2004; Dirks and Pierce,
2004).

Because of the importance of RNA molecules, and because struc-
ture is key to the function of RNA molecules in their diverse roles,
there is a need to improve the accuracy of computational predictions
of RNA structure from the base sequence. RNA tertiary structure is
difficult to predict, but significantly constrained by secondary struc-
ture (Tinoco and Bustamante, 1999) – i.e., the set of base pairs

that forms when the molecule folds (see Figure 1 for an example).
Therefore, current RNA structure prediction methods are mostly
focused on secondary structure. Given a sequence, the goal is to
predict the structure with minimum free energy (MFE), relative to
its unfolded state. There is considerable evidence that RNAsecon-
dary structures do indeed adopt their MFE configurations in their
natural environments (Tinoco and Bustamante, 1999), and that in
many cases these structures are pseudoknot-free (i.e., contain only
hierarchically nested base-pairs).

Most models assume that the free energy of sequencex and
structurey is given by an equation of the form

∆G(x, y,θ) = c(x, y)⊤θ =
K

X

k=1

ck(x, y)θk (1)

whereK is the number of features,ck(x, y) is the number of times
featurek occurs in secondary structurey of sequencex, and θk

is a parameter modeling the energy contribution of each occur-
rence of featurek. In this paper, we use the features proposed
by Mathewset al. (1999), which are widely accepted as biologi-
cally realistic, and are used in several software packages such as
Mfold (Zuker, 2003), RNAstructure (Mathews, 2004), the Vienna
RNA package (Hofackeret al., 1994) and SimFold (Andronescu,
2003). We shall call this the Turner99 model. We will explain
these features in more detail in Section 2 (see Figure 1 for some
examples).

Given a set of features, we are faced with the problem of estima-
ting the model parametersθ – this is the focus of this work. Suppose
we have a datasetS consisting of a set of(x, yx) pairs, whereyx

is the true MFE structure of sequencex (as determined using tru-
sted and highly accurate methods). We created such a datasetusing
databases of known RNA structures (Cannoneet al., 2002; Sprinzl
and Vassilenko, 2005, and other databases). One approach would be
to estimate the parameter vectorθ that maximizes the likelihood of
S , as used in the CONTRAfold algorithm (Doet al., 2006). Howe-
ver, there are several problems with this approach. First, it is very
slow, which prevents us from applying it to large training sets. (For
example, it took more than 80 hours on a single reference proces-
sor to train CONTRAfold on 190 sequences of average length 100.
However, a much larger training set is needed for accurate parame-
ter estimation.) Second, it does not handle the fact that there may be
label noise in the training set, i.e.,yx may not actually be the MFE
structure forx, since the feature set is not perfect, and the structures
may not be perfectly annotated.
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Fig. 1. Secondary structure of an RNA strand of length 20. An RNA mole-
cule, or strand, is a sequence of Adenine (A), Cytosine (C), Guanine (G),
or Uracil (U) bases, with two chemically distinct ends, known as the5′ and
3′ ends. The secondary structure is the set of base pairs (indicated by black
boxes) that form when the molecule folds, under fixed environmental condi-
tions. Throughout, we consider only pseudoknot-free secondary structures.
The base pairs give rise toloops. The depicted structure includes a hairpin
loop (right end of diagram), as well as three base pair stacksand a 2× 2
internal loop. In the Turner99 model, the total free energy change of a struc-
ture, relative to its unfolded state, is the sum of the free energy changes of its
loops. The lower the free energy change, the more stable the structure. Gene-
rally, stacked base pairs tend to stabilize the RNA structure, whereas loops
with unpaired bases are destabilizing. In the depicted structure, contributi-
ons to the total free energy change at 37◦C, denoted by∆G0

37 (measured
in kcal/mol), include a+5.4 penalty for closing the hairpin loop, which is
largely an entropic cost, a−2.4 favourable term for the rightmost (UA/CG)
stacked pair, and a+0.5 penalty for an AU pair at the end of a helix (as well
as other terms).

We propose a novel algorithm that overcomes both of these pro-
blems: it is very fast (less than 20 minutes to train on 190 sequences
of length 100), thus letting us train on large datasets, and it is robust
to label noise. We show that the parameters learned using ouralgo-
rithm yield 7% better prediction accuracy (as determined using the
F-measure on base pairs) than the standard Turner99 parameters,
and 5% better accuracy than the CONTRAfold predictions, when
measured on a large structural dataset.

In addition to predicting the secondary structure, to be of biolo-
gical interest, a model must also accurately predict the free energy
changes for structure formation. We therefore collected a second
dataset, the thermodynamic setT , comprised of triples(x, yx, ex),
wherex is an RNA sequence,yx is the MFE secondary structure
of x, and ex is the free energy of structureyx for sequencex,
measured within some small experimental error. We compiledthis
dataset from the results of thermodynamic experiments (Mathews
et al., 2004, 1999; Xiaet al., 1998). Not surprisingly, we find that
our ability to accurately predict free energies is enhancedwhen we
also train usingT . Note that in contrast the scores produced by
CONTRAfold have no intrinsic biological meaning.

2 THE TURNER99 MODEL
Turner and co-workers derived and refined an energy model, which
we call the Turner99 model, over a period of more than two deca-
des (Mathewset al., 1999; Xiaet al., 1998). The model pertains to
free energy changes at 37◦C. Further refinements to the parameters
were made by Mathewset al. (2004), based on new experimen-
tal data. The Turner99 features were carefully chosen to balance

the goals of accurately modeling physical principles, and of ensu-
ring that the resulting optimization problem of finding the MFE
structure can be solved efficiently (using dynamic programming,
in O(n3) time, wheren is the sequence length). Some Turner99
free energy parameters were determined using reliable wet-lab expe-
riments, while others were estimated from known structuraldata.
However, estimation of parameter values was done in stages,with
some values being fixed before others were determined, and parame-
ter estimation did not take advantage of the large body of structural
information available today. The Turner99 model achieves an ave-
rage prediction accuracy (sensitivity) of 73% on a large setof
biological RNAs of length shorter than 700 nucleotides withknown
secondary structures (Mathewset al., 1999).

The model features capture all types of stacked base pairs as
well as loops, including hairpin loops, internal loops and multi-
loops. Non-canonical base pairs (i.e., base pairs other than CG, AU
and GU) are not explicitly predicted; however, parameter values
for internal loops do implicitly account for bonds between non-
canonical base pairs. For larger loops, features include the number
of branches, number of unpaired bases between branches, the
closing base pairs and unpaired (“dangling”) bases next to them.
Thus, there are one or more features associated with each loop, as
illustrated in Figure 1.

Overall, the Turner99 model has tabulated energy values forabout
7600 features; most of these can be determined by applying sim-
ple extrapolation rules to 363 free parameters. For computational
efficiency, in this study, we assume the 3’ dangling end parame-
ter values, used for multiloops and exterior loops (Mathewset al.,
1999), are always lower than the respective values for 5’ dangling
ends. To find improved values for the set of 363 free parameters is
the goal of our work presented in the following.

3 PARAMETER ESTIMATION
Having defined the set of features, we now discuss some techniques
for parameter estimation.

3.1 Maximum likelihood (ML) method
An obvious approach to parameter estimation is to use the maxi-
mum likelihood (ML) method, as in the CONTRAfold algorithm
of Do et al. (2006). Specifically, we define the probability of an
RNA structurey, given an RNA sequencex and parameter vector
θ, using a conditional log-linear model (Boltzmann distribution) as
follows:

p(y|x,θ) =
1

Z(x, θ)
exp(−

1

RT
∆G(x, y, θ)).

Here, R is the gas constant,T is the absolute temperature, and
Z(x, θ) is the partition function (McCaskill, 1990).

It is well known thatp(y|x,θ) is a convex function ofθ (see
e.g., Laffertyet al. (2001)), and hence we can find the globally
optimal parameter estimate of the log likelihood functionLS(θ) =
P

(x,yx)∈S log p(yx|x, θ) using a gradient-based optimizer, such as
the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
algorithm, provided we can efficiently computeZ. Since we disal-
low pseudoknots, we can computeZ and the gradient ofZ in O(n3)
time using dynamic programming (McCaskill, 1990), wheren is the
length ofy.

We can consider the thermodynamic setT as prior knowledge
by assuming the observed energiesex are noisy versions of the true
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Fig. 2. Schematic representation of the structural and thermodynamic data
sets we use in our constraint generation algorithm. The X andY axes repre-
sent RNA sequences and secondary structures, respectively. The diamonds
on the left represent(x, yx, ex) triples that form the thermodynamic set,
while the dots on the right represent(x, yx) pairs forming the structural set.
The curves depict the fact that the knownyx structures from the structural
set have lower free energy change than any other structure into whichx can
fold, although we do not know where these points are situatedon the vertical
free energy axis.

energies. We can model this with a Gaussian distribution with pre-
cisionτ and compute the maximum a posteriori (MAP) estimate of
the posterior distributionp(θ|S ,T ):

p(θ|S ,T ) ∝ LS(θ) + τ
X

(x,yx,ex)∈T

(ex − c(x, yx)T
θ)2.

We implemented the objective function and its gradient in C++,
and optimised it using an unconstrained and unbounded Matlab
LBFGS implementation. Since our model assumes constraintson 48
parameters (namely dangling end parameters), in our current imple-
mentation we fix these values to the Turner99 values. A non-linear
constrained optimization software would be needed to optimize for
all 363 parameters.

However, in practice there are problems with using the ML
approach (with or without prior). First, the method is computatio-
nally expensive, because evaluating the objective function and its
gradient is slow, and this needs to be done many times. (For exam-
ple, CONTRAfold took more than 80 hours to train on a small set
of 190 sequences, and our own implementation of maximum like-
lihood took about 66 hours on the same data.) Second, this approach
does not gracefully handle the case where there is no parameter vec-
tor θ such thatyx is the MFE structure forx with respect toθ for
all (x, yx) in the structural set. This case can arise for two reasons:
the feature set is not likely to be perfect, and the structures may not
be perfectly annotated.

3.2 Constraint generation (CG) approach
An alternative approach to parameter estimation is to find a solution
θ for a system of constraints

∆G(x, yx, θ) < ∆G(x, y,θ),

Structures

G

Predicted structure Known structure

Turner99 model

Perfect model

Fig. 3. Depiction of the motivation for the use of inequality constraints for
a given sequencex. Secondary structures forx are represented on the X
axis, and free energy changes on the Y axis. The left curve represents the
free energy curve under the Turner99 model, which, when the prediction is
incorrect, assigns a higher free energy to the known secondary structure than
to the predicted secondary structure, although in the idealmodel it should
be lower (right curve). We wish to modify the parametersθ so as to push
up the free energy of the incorrectly predicted secondary structures (and of
other structures), and to pull down the free energy of the known secondary
structures.

where(x, yx) ∈ S andy ∈ Yx\{yx}, andYx is the set of all secon-
dary structures for sequencex; these constraints ensure that for each
sequencex all non-optimal secondary structuresy of sequencex
have higher energy than the MFE structureyx. (Throughout we
assume there is no other structure which has the same minimum
free energy as the known structure, and thus use strict inequalities.
This can be relaxed to non-strict inequalities.)

3.2.1 Handling infeasible constraints.Due to inaccuracies in the
given MFE structuresyx (label noise) or inherent limitations of
the given feature set, it may happen that this system of constraints
is infeasible, i.e., no solutionθ exists that satisfies all constraints
simultaneously. To deal with infeasibility, we introduce slack varia-
blesδx,y ≥ 0 into the constraints, whose values are then minimized;
this leads to relaxed constraints of the form:

∆G(x, yx, θ) < ∆G(x, y, θ) + δx,y.

Considering the definition of the energy function∆G (see Eq. 1),
these structural constraints can be expressed as a system oflinear
inequalities

(c(x, yx) − c(x, y))⊤θ − δx,y < 0

for all (x, yx) ∈ S andy ∈ Yx \ {yx}. This can be written more
compactly in matrix form as

MSθ − δ < 0

where each row of the matrixMS is (c(x, yx)−c(x, y))⊤ for some
(x, yx) ∈ S and somey ∈ Yx \ {yx}, andδ is the vector of slack
valuesδx,y. (The rows ofMS and the elements ofδ are ordered
consistently.)
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This leads to the following formulation as a constrained optimi-
zation problem:

minimize ||δ||2

subject to

MSθ − δ < 0 (2)

δ ≥ 0.

where||δ|| is the L2-norm ofδ. (This system can get quite large,
and we explain below how to address this issue.)

This is similar to the large margin approach proposed by Taskar
et al.(2005) for learning connectivity parameters for disulfide bonds
in protein structures. However, it is not quite the same. Forour pro-
blem, we do not want to force a large distance between the known
RNA secondary structures and other secondary structures. Our para-
meters are meant to have physical meaning, and there is evidence
that there can be many low-energy folds of an RNA molecule that
have energy close to the minimum free energy (Uhlenbeck, 1995).
Thus, margin approaches are not directly applicable to our problem.

3.2.2 Incorporating thermodynamic data.We incorporate the
thermodynamic data by adding the following additional constraints:

∆G(x, yx, θ) − ξx = c(x, yx)θ − ξx = ex. (3)

whereξx is the error in predictingex. Again we can write this in
vector form as

MT θ − ξ = e

where each row of the matrixMT isc(x, yx) for some(x, yx, ex) ∈
T . This leads to the following constrained optimization problem:

minimize(1 − λ) ·
1

|S|

˛

˛

˛

˛

˛

˛
m

⊤
δ

˛

˛

˛

˛

˛

˛

2

+ λ ·
1

|T |
||ξ||2

subject to

MSθ − δ < 0 (4)

MT θ − ξ = e

δ ≥ 0.

where|S| denotes the number of sequences in setS, mx is 1 divided
by the number of constraints inMS for sequencex, and m is a
vector ofmx .

The parameterλ controls the relative importance ofT andS . The
two extreme cases are:λ = 0, which means that we do not consi-
der the thermodynamic set at all; andλ = 1, which causes those
parameters which appear in the thermodynamic set to be fixed to
the values which best fit the thermodynamic set, and the otherpara-
meters are unconstrained. Figure 2 gives a schematic representation
of T andS , and Figure 3 motivates the use of inequality constraints.

One problem with the above objective is that if a certain feature
does not occur inS or T , or if it appears only very few times,
its corresponding parameter can become unbounded in magnitude.
We therefore add an additional constraint thatθ should be boun-
ded by the Turner99 parameters, plus or minusB kcal/mol, where
we assumeB is given to the algorithm. If the structural training
data contains all features, we can even setB to infinity; however, in
practice, a large value, such as 10 kcal/mol, should suffice.These
bounds can be seen as the strength of a prior on the values of the
Turner99 parameters.

procedure CG (S,T , λ, B, K)
input: structural training setS, thermodynamic setT ,

parameterλ, bounds parameterB, number of iterationsK;
output: thermodynamic parameter vectorθ∗, accuracyq∗;

setθ(0) to the Turner99 parameters;
θ := θ(0); MS := [ ];
θ∗ := θ; q∗ := 0;
for i := 1 to K do

for each x ∈ S do
predict MFE structurey′ of x usingθ;
add row(c(x, yx) − c(x, y′))⊤ to MS ;

end for;
obtain newθ, ξ, δ by minimizing

(1 − λ) · 1
|S|

˛

˛

˛

˛

m
⊤δ

˛

˛

˛

˛

2
+ λ · 1

|T |
||ξ||2

subject to
MSθ − δ ≤ 0,
MT θ − ξ = e,
δ ≥ 0,
θ(0) − B ≤ θ ≤ θ(0) + B;

q := prediction accuracy obtained by using parametersθ onS;
if (q > q∗) then

q∗ := q; θ
∗ := θ;

end if;
end for;
return (θ∗, q∗);

end CG.

Fig. 4. Outline of the constraint generation algorithm for RNA energy
parameter optimization.

3.2.3 Sequential constraint generation algorithm.We have a
quadratic objective subject to linear equality and inequality cons-
traints, so we can find the global optimum. Unfortunately, the
number of constraints can grow exponentially with the size of the
input, since for each(x, yx) in the structural data setS , there may
be exponentially many structures inYx (Wuchty et al., 1999). To
circumvent this problem, we propose the following heuristic algo-
rithm, similar to the cutting plane algorithm used by Tsochantaridis
et al. (2005). The main idea is to iteratively estimateθ using cons-
traintsMSθ− δ < 0 for a matrixMS that only includes rows for a
manageable subset of sequencesx and structuresy.

Specifically, starting from an empty set of structures and the
Turner99 parameters, in each iteration of our algorithm, for each
sequencex from S , we predict its MFE structure using the current
parameter vectorθ and add the constraint

(c(x, yx) − c(x, y
′))⊤θ

(i) − δ
(i)
x,y′ < 0,

wherey′ ∈ Yx is the MFE structure ofx predicted using the parame-
ter vectorθ(i−1) from the previous iteration; this constraint enforces
that the true structureyx has lower energy (by marginδ(i)

x,y′ ) than the
predicted structurey′. To avoid vacuous empty and redundant cons-
traints, we never add constraints ify′ = yx or if the new constraint
is already in the system.

The intuition behind this sequential constraint generation method
is that most of the exponentially many constraints will not be active,
since they refer to structures that are energetically very unfavora-
ble. Assuming we start with a reasonable set of initial parameter
values (here the Turner99 parameters), we can generate structures
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Table 1. Structural and thermodynamic sets.

Set name No. mols. Avg. length Used for

T-Full 946 17± 7 training
T-Single 207 14± 4 test
S-Processed 3439 178± 179 training
S-Full 1660 295± 508 test
S-151Rfam 151 136± 102 training

S-A1 190 105± 28 training
S-A5 836 105± 28 training
S-A10 1531 103± 29 training
S-A1’ 193 106± 29 test

We use two structural sets and one thermodynamic set for
training. For testing, we use one comprehensive structural
set and one small thermodynamic set. In addition, we use
three artificially created structural sets for training andone for
testing.

with more plausible (low) energies and effectively use constraints
based on this much smaller set. The algorithm returns theθ values
which give the best prediction accuracy on the training set.Figure 4
summarizes our constraint generation algorithm, CG.

All secondary structure predictions are done using our SimFold
software (Andronescu, 2003). Like the widely known Mfold algo-
rithm (Zuker, 2003) and the RNAfold procedure from the Vienna
RNA package (Hofackeret al., 1994), SimFold is based on Zuker
and Stiegler’s dynamic programming algorithm and consequently
has time complexityO(n3) and space complexityO(n2), where
n is the sequence length. The constraint optimization problems are
solved with ILOG CPLEX 9.1.

4 DATASETS
In order to assess the improvement in prediction accuracy that can
be achieved using our approach, we collected a large amount of
structural and thermodynamic data. This data is summarizedin
Table 1.

The thermodynamic training set, T-Full, contains optical melting
experimental data that we collected from 39 research papers, refe-
renced by Mathewset al.(2004, 1999). Out of the 946 experiments,
739 are on RNA duplexes, which CONTRAfold cannot currently
take as input for prediction. We therefore created a test set, T-Single,
which contains the remaining 207 experimental results for single
sequences.

The structural test set, S-Full, is a comprehensive RNA structu-
ral set that we assembled from databases of well-determinedRNA
secondary structures. Table 4 shows the RNA families included in
this set, with their sizes and lengths, and references to thedataba-
ses of provenance. Several preprocessing steps have been applied,
including removal of RNAs for archeae (which live in extreme
environments), unannotated loops or unknown nucleotides.Non-
canonical base pairs and a minimal number of bases to resolveany
pseudoknots have been removed.

The training set, S-Processed, is similar to S-Full, but mole-
cules longer than 700 nucleotides have been divided into shorter
sequences, so that the MFE structure prediction step is reasonably

fast. Unannotated branches or branches containing unknownbase
pairs have been truncated. For truncated structures, arestriction
string that restricts the cut ends to pair has been added; of these
structures, 66% have been included in S-Processed.

In addition to the above datasets that we collected, we used the
structural set of Do et al., which we call S-151Rfam. This con-
tains one sequence-structure pair from each of 151 Rfam families
collected from published papers. We have not included all ofthese
families in S-Full because many of the structures have been predic-
ted in the corresponding published papers (as opposed to measured),
and are not biologically reliable.

Note that in biological data many features do not occur at all(see
Figure 6), making it hard to assess the potential for CG to esti-
mate parameters for these features. Moreover, since we do not know
what is the best accuracy achievable using the Turner99 feature set,
even with a data set that covers all features we cannot know whe-
ther CG has found the best possible parameter values. For these
reasons, we also created artificial data sets, generated by randomly
choosing sequencesx and then settingyx to be the MFE secondary
structure predicted using the Turner99 parameters. On thisartificial
data, we know that there exists a parameter setting (namely the Tur-
ner99 parameters) which gives perfectly accurate predictions. We
sampled the data such that each feature occurs at leastk times, for
k = 1, 5, 10. (Six of the features are very unlikely to occur in MFE
structures, and thus we fixed their parameter values to the Turner99
values). We call these sets S-A1, S-A5, and S-A10, and we callk the
feature coverageof the set. We then checked that we could recover
the Turner99 parameters using these training sets. We also measured
performance on an artificial test set, S-A1’, which was obtained in
exactly the same way as S-A1, but using a different random seed.

5 EXPERIMENTAL RESULTS
In this section, we report on several aspects of the performance of
our constraint generation (CG) method. First, using our artificially-
generated training sets, we show that CG runs much faster than
CONTRAfold or ML; this is significant, because as a consequence,
CG can be run on much larger training sets, for which running
CONTRAfold or ML would be practically infeasible. Our analy-
sis also indicates that CG can indeed find parameters that result in
near-perfect predictions, when such parameters exist, andwhen the
feature count is sufficiently high (10 for our artificial data). Next,
we compare the accuracy of CG and CONTRAfold, when CG is
trained on the S-151Rfam training set of Do et al., both with and
without the thermodynamic training set. While CG gives poorpre-
dictions when the thermodynamic set is not included, it matches or
exceeds the prediction accuracy of CONTRAfold when the thermo-
dynamic set is also included in training. Finally, we train CG on our
large training set, S-Processed, and evaluate the accuracyof CG on
our full structural data set, S-Full. We find that the parameter set
found by CG achieves accuracy 7% better than that obtained with
the Turner99 parameter set, and 5% better than that obtainedby
CONTRAfold. Following definitions of our accuracy measures, we
first present our results on artificial data and then on biological data.

5.1 Performance measures
We use sensitivity and positive predictive value (PPV) as measures
of structural prediction accuracy; a third measure, the F-measure (in
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Table 2. Results when training on artificial data sets.

Alg. and Set Train Test (S-A1’) Number Runtime
options train F-measure F-measure iterations

CGB = 1 S-A1 1.00 0.90 9 4m
CGB = 10 S-A1 1.00 0.80 23 19m
CGB = 1 S-A5 1.00 0.96 9 24m
CGB = 10 S-A5 1.00 0.95 13 1h35m
CGB = 1 S-A10 1.00 0.98 9 49m
CGB = 10 S-A10 1.00 0.98 13 4h

ML S-A1 0.94 0.77 – 66h
CFγ=6 S-A1 0.83 0.64 – > 80h

CG refers to constraint generation, CF refers to CONTRAfold(where we setγ = 6, as
recommended by Doet al. (2006)), and ML refers to maximum likelihood. All CG and
ML runs were performed withλ = 0 andτ = 0, respectively, so the thermodynamic
set was not used.

shortF ), combines both sensitivity and PPV:

Sensitivity=
number of correctly predicted base pairs

number of true base pairs

PPV=
number of correctly predicted base pairs

number of predicted base pairs

F-measure=
2 × sensitivity× PPV

sensitivity+ PPV

Do et al.(2006) introduced a parameter calledγ as a way to trade
off sensitivity against PPV using their prediction algorithm. They
found that settingγ = 6 gave the best overall performance. We
could obtain a similar trade-off by computing the base pair probabi-
lities and thresholding them, following Mathews (2004). However,
in this work, we focus on MFE structure prediction, which does not
support this trade-off.

5.2 Results on artificial data
In this section, we report on our runtime analysis, which we did
primarily using our artificially-generated sets. We then assess whe-
ther the CG method can robustly find an optimal parameter vector
θ when one exists. Finally, we evaluate the sensitivity of theCG
method to the feature count of the artificial training data.

5.2.1 Runtime comparison.We measured the run time of CG
and CONTRAfold when trained on the artificial structural setS-A1,
using a 2.4GHz Intel Xeon CPU with 512 KB cache size and 1GB
RAM, running Linux 2.6.16 (SUSE 10.1). For CG training, we per-
turbed the Turner99 parameters by a number chosen uniformlyat
random between 0 and 1 kcal/mol, and we used this set as the initial
set of parameters. The F-measures of this initial set are: 0.45, 0.42,
0.45 for S-A1, S-A5 and S-A10, respectively, and 0.43 for thetest
set S-A1’.

As Table 2 shows, when trained on S-A1, having 190 struc-
tures, CG took 4 minutes withB = 1, and 19 minutes with
B = 10, whereas CONTRAfold took more than 80 hours. Our ML
implementation took 66 hours.

Thus, CG is more than two orders of magnitude faster than con-
ditional maximum likelihood methods on our artificial data.On the
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Fig. 5. Correlation between “true” Turner99 parameters and estimated para-
meters on the artificial training set when the feature coverage k (minimum
number of times each feature occurs in the set), is 1 (left) and 10 (right),
Whenk = 10, the estimated parameters are very close to the “true” ones.

artificial sets, CG always converges within 23 iterations. When trai-
ned on larger artificial sets, such as S-A5 and S-A10, CG’s runtime
was within two and four hours on a single processor.

For the remaining experiments we parallelized the prediction step
and ran it on 20 similar processors. When trained on S-151Rfam, the
total runtime of CG was within 4 hours, while the total runtime of
ML was within 3 days. When trained on S-Processed, the runtime
of CG was within 12 hours. Moreover, the number of iterationsit
takes CG to converge remains low, even on our largest training set
S-Processed, as shown in Figure 7.

5.2.2 Accuracy of CG on artificial training data.When trained
on the artificial sets, CG obtainedF = 1 on all training sets within
23 iterations (recall the initial set of parameters had F-measure no
more than 0.45). CONTRAfold obtainedF = 0.85 on the training
set, but the fact that CONTRAfold did not obtainF = 1 is not
surprising, since CONTRAfold uses a different set of features than
does the Turner99 model.

5.2.3 Feature count and CG accuracy on artificial test data.
Table 2 also shows that the accuracy of CG improves as the fea-
ture counts increase. On the test set S-A1’, theF score improves
from F = 0.90 to F = 0.98, as the feature countk increases from
1 to 10. We also note that the accuracy of the CG parameters is sen-
sitive to the choice of the bounds parametersB, which should be
optimized to account for the size and feature counts of the training
data set. In addition to improvements in accuracy, a higher feature
count also improves the ability of CG to recover the true Turner99
parameters, as the correlation plots of Figure 5 show. This indicates
that CG is a consistent estimator.

5.3 Results on biological data
In order to compare CG with CONTRAfold, we first trained on
S-151Rfam, which was used by Do et al. to train CONTRAfold.
However, S-151Rfam does not include many of the solved secon-
dary structures available today. Since CG is very efficient,we also
trained it on the large structural data set S-Processed. Table 3 shows
the results on the training sets, and the accuracy of the Turner99
parameters (columns 3 and 4). We test all three prediction methods
on T-Single and S-Full (columns 5 and 6).

5.3.1 Results when training on S-151Rfam.Whenλ = 0.995
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Table 3. Prediction quality achieved by CG, CONTRAfold and the Turner99 parameters.

Training S-151Rfam S-Processed T-Single S-Full T-Single
sets Method F (sens/ppv) F (sens/ppv) F (sens/ppv) F (sens/ppv) ∆G error
used (training) (training) (test) (test) (kcal/mol)

CGB = 1.5 λ=0 0.59 (0.56/0.62) – 0.60 (0.44/0.95) 0.58 (0.55/0.61) 3.17
CGB = 10 λ=0 0.57 (0.54/0.60) – 0.47 (0.31/1.00) 0.48 (0.45/0.51) 6.08

(1 − λ) · S-151Rfam+ λ · T-Full
CGB = 1.5 λ = 0.995 0.69 (0.73/0.65) – 0.90 (0.85/0.96) 0.64 (0.65/0.63) 0.59
CGB = 10 λ = 0.995 0.66 (0.69/0.63) – 0.68 (0.53/0.96) 0.64 (0.65/0.63) 0.56

CGB = 10 λ=0 – 0.68 (0.69/0.67) 0.68 (0.53/0.96) 0.56 (0.57/0.54) 3.66
(1 − λ) · S-Processed+ λ · T-Full

CGB = 10 λ = 0.995 – 0.75 (0.77/0.73) 0.95(0.93/0.96) 0.67 (0.70/0.64) 0.54

CONTRAfold γ=4 0.70(0.73/0.67) – 0.76 (0.64/0.93) 0.62 (0.62/0.61)
S-151Rfam

CONTRAfold γ=6 0.69 (0.75/0.64) – 0.84 (0.76/0.93) 0.62 (0.64/0.60)
7.74

– Turner99 0.65(0.72/0.60) 0.72 (0.75/0.70) 0.93(0.97/0.88) 0.60 (0.64/0.57) 0.96

Column 1 gives the training sets we used. Column 2 gives the method we are testing: CG (constraint generation) with various input parameters, CONTRAfold, and the Turner99
parameters. Columns 3 and 4 show the accuracy (F-measure, sensitivity and PPV) of CG and CONTRAfold, when tested on the training structural set used (S-151Rfam in Column
3 and S-Processed in Column 4); the last row of the table showsthe accuracy of Turner99 on both training sets, for comparison. The closer the accuracy values are to 1.00,
the better. Columns 5 and 6 show the prediction accuracy on our test sets. The last column gives the average error of the predicted free energy score, when compared with the
measured free energy value for T-Single:

P

x
|ex − êx|/N , whereN = 207 is the size of T-Single (the smaller the average error, the better). Bold face values indicate cases

where the corresponding parameter set performs best for that column.
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CG performs 4% better than Turner99 and 1% worse than CON-
TRAfold on the training set. On the S-Full test set however, CG
performs 4% better than Turner99 and 2% better than CONTRAfold
(F= 0.64 vs 0.60 and 0.62, see Table 3).

When the 48 dangling end parameters were fixed to the Turner99
values for both ML and CG, ML with prior (τ = 1) performed
only 1% better than CG (λ = 0.995, B = 10) on the training set
S-151Rfam and test set S-Processed. This clearly indicatesthat the
accuracy of CG is comparable with the accuracy of ML when the
same model is used. (ML without prior performed 7% worse than
ML with prior on the test set, but better than CG withλ = 0, and
B = 1.5 andB = 10, respectively.)
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CG algorithm. Usually the accuracy at the first iterations ismuch lower
than the accuracy of the initial parameter set used (i.e., the Turner99 set),
because the number of inequality constraints is small. The algorithm usually
converges in about 20 iterations.

5.3.2 Results when training on the large structural set S-
Processed. Next we trained CG on S-Processed withB = 10 and
λ = 0.995, and tested on S-Full. This resulted in a 3% impro-
vement in prediction accuracy (F = 0.67 vs 0.64) compared to
CG when trained on S-151Rfam, a 5% improvement compared to
CONTRAfold trained on S-151Rfam (F= 0.67 vs 0.62), and a 7%
improvement compared to the Turner99 parameters (F = 0.67 vs
0.60, see Table 3).

Figure 8 summarizes the sensitivity and PPV for the Turner99
parameters, CONTRAfold, CG trained on S-151Rfam withB =
1.5 andλ = 0.995, and CG trained on S-Processed withB = 10
andλ = 0.995.
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20}) and CG parameters (trained on S-151Rfam and S-Processed).Tested
on a wide range of biological RNA structures in set S-Full, the parameters
obtained using CG give significantly better accuracy than those found by
CONTRAfold and the Turner99 parameters.

5.3.3 Feature counts. Figure 6 shows that only 254 out of the
363 features underlying the Turner99 model appear at all in S-
151Rfam. In fact, only about 170 of them appear more than once.
Thus, it is not surprising that CG performs poorly (10% worse
than the Turner99 parameters or CONTRAfold) when we train on
this set and no thermodynamic data is used (i.e.,λ=0), as seen in
the first row of Table 3. When the thermodynamic set is conside-
red, however, CG obtains higher average prediction accuracy than
CONTRAfold on our large dataset, S-Full.

Figure 6 also shows that S-Processed contains almost all of the
Turner99 features, missing only 15 of them. At the same time,the
prediction accuracy on S-Full further increases when CG is trained
on S-Processed usingλ = 0.995.

The thermodynamic set T-Full contains 203 features out of all 363
features in the model. Note that, whenλ > 0, one occurence of a
feature in the thermodynamic set is sufficient to get a good estimate
of the free energy value for that feature; this is different from the
situation for the structural set, where it is beneficial to have several
occurrences of a feature.

5.3.4 Bounds parameterB. The best setting of the bounds para-
meterB is correlated with the feature counts of the structural set
used. If many of the features do not appear in this set, we needto
set a tighter bound on the parameters. Thus, when we trained on
S-151Rfam, a maximal deviation ofB = 1.5 kcal/mol from the
Turner99 parameters gave better prediction accuracy thanB = 10.
It is interesting however that, whenλ = 0.995, the accuracy on
S-Full is the same for bothB = 1.5 andB = 10.

When we trained on S-Processed, we usedB = 10. Experiments
with B = 30 gave similar results, indicating that a larger value of
B would not affect the quality of the parameters.

5.3.5 Weight of thermodynamic data set.As we already obser-
ved with the artificial data set, Table 3 shows clearly that the
accuracy of prediction improves with increasing feature counts in

Table 4. Prediction accuracy on various classes of RNAs from S-Full

RNA class No Length CG Turner99 CF (bestγ)
(F) (F) (F)

tRNA 484 77± 5 0.75 0.59 0.73 (γ=3)
RNase P RNA 379 333± 50 0.57 0.53 0.57 (γ=3)
5S rRNA 375 118± 2 0.63 0.61 0.51 (γ=10)
16S rRNA 117 1326± 273 0.50 0.41 0.37 (γ=3)
23S rRNA 36 2821± 443 0.51 0.44 0.45 (γ=10)
SRP RNA 68 163± 96 0.60 0.69 0.61 (γ=10)
Ribozymes 63 56± 8 0.84 0.88 0.86 (γ=2)
Other 138 74± 270 0.89 0.88 0.87 (γ=4)

S-Full 1660 295± 508 0.67 0.60 0.62 (γ=4)

F-measures for our best parameters (CG trained on S-Processed, withB = 10 and
λ = 0.995) and the prediction accuracy of CONTRAfold and Turner99 parameters,
on various RNA families.

the structural set. It also improves when strong weightλ is placed
on the thermodynamic set. If many feature counts are zero, there is
no absolute free energy information in the constraints of the qua-
dratic program (i.e., no equality constraints), and the feature counts
cannot compensate for the lack of free energy information.

5.3.6 Free energy accuracy.In addition to measuring the accu-
racy of secondary structure prediction, we compare the average
absolute difference between the experimentally measured free
energy for the molecules in T-Single, and the predicted scores for
the true structures. A good free energy estimation means this ave-
rage error is low (rightmost column of Table 3). While CG with
λ = 0.995 yields an average error lower even than the Turner99
parameters (which is 0.96 kcal/mol), CONTRAfold’s score differs
by 7.74. This clearly shows that the scores used by CONTRAfold
lose the free energy physical meaning.

5.3.7 Prediction accuracy for different types of RNAs.Table 4
shows the F-measures of our best CG parameters (i.e., trained on
S-Processed, withB = 10 andλ = 0.995), CONTRAfold and Tur-
ner99 parameters on various families of RNAs. On families such as
transfer RNA, RNase P RNA or ribosomal RNA, CG performs best
on average, between 2% and 16% better than Turner99, and between
1% and 14% better than CONTRAfold. Note that CONTRAfold
performs particularly poorly on ribosomal RNAs (16S rRNAs and
23S rRNAs do not exist in the S-151Rfam set, however 5S rRNAs
do), although it does perform 3% and 14% better than Turner99on
RNase P and transfer RNAs, respectively.

On two families, namely SRP RNAs and ribozymes, CG performs
9% and 4% worse than Turner99, and 1% and 2% worse than CON-
TRAfold. The number of sequences in these families is smaller than
for most of the other families.

6 RELATED WORK
As we have mentioned, Turner and his collaborators have refined
their estimates of energy values for over 20 years, based in part on
thermodynamic data, and in part on extrapolations from structural
data, using genetic and grid search algorithms. However, estima-
tion of parameter values was done in stages, with some values
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being fixed before others were determined, and were not able to
take advantage of the large body of structural information available
today. Doet al. (2006) also considered the problem of parame-
ter estimation, using maximum likelihood techniques. Using their
method, they estimated parameters for a feature set that they con-
structed, using a small training data set (151 Rfam structures). They
showed that, on their training set, predictions with their model have
higher accuracy than predictions with the Turner99 model (using
Mfold). However, their feature set is more than twice as large as that
of Turner et al., making it difficult to assess whether their success
is due to their approach or to their set of features. Additionally, free
energy values, which are valuable to biologists, cannot be predicted
by their model. Finally, as our results show, the overall accuracy of
their predictions is poorer on average than our predictions.

The idea of sequentially adding constraints to optimize a quadra-
tic program was investigated by Tsochantaridiset al. (2005), alt-
hough they used a different objective function and did not consider
RNA structure prediction.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we present a constraint-based parameter estimation
algorithm, CG, which efficiently combines structural and thermo-
dynamic RNA secondary structure data. Our method is substantially
faster than a conditional maximum likelihood method on relatively
small training sets, and, unlike the maximum likelihood approach,
can be practically used on large training sets with thousands of
structures.

We applied our method to derive new parameters for the Turner99
model, the most widely used energy model for RNA secondary
structure prediction. The parameters obtained with our CG method
are significantly better than the Turner99 parameters, in terms of
prediction accuracy, both on a large structural set and on most fami-
lies of RNAs, with a 7% average improvement in accuracy over a
dataset of 1660 structures. In contrast, CONTRAfold obtains a 2%
accuracy improvement overall.

Our analysis to date indicates that both, high feature counts in
the structural set, as well as thermodynamic data, contribute to the
quality of the parameters obtained by the CG and ML algorithms,
although ML is more robust when feature coverage is low.

In the future, we plan to combine the maximum likelihood and
CG methods; for example to use the maximum likelihood method
to optimize a small number of unreliable parameters, such asthose
pertaining to multiloops, while using CG to optimize the remai-
ning parameters. Finally, we will explore how the introduction
of alternative features, such as co-axial base pair stacking and
asymmetry in unpaired segments of multi-loops, can lead to impro-
vements in RNA secondary structure prediction. We note thatthe
CG method can easily be adapted to other feature sets with linear
energy functions by replacing the secondary structure prediction
procedure.
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