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Abstract

We show how to learn causal structure from interventions with unknown effects and/or side
effects by adding the intervention variables to the graph and using Bayesian inference to
learn the resulting two-layered graph structure. We show that, on a datatset consisting of
protein phosphorylation levels measured under various perturbations, learning the targets of
intervention results in models that fit the data better than falsely assuming the interventions
are perfect. Furthermore, learning the children of the intervention nodes is useful for such
tasks as drug and disease target discovery, where we wish to distinguish direct effects from
indirect effects. We illustrate the latter by correctly identifying known targets of genetic
mutation in various forms of leukemia using microarray expression data.
Keywords: Bayesian Networks, Structure Learning, Causality, Interventions, Drug Tar-
get Discovery

1. Introduction

The use of belief networks (directed graphical models) to represent causal models has be-
come increasingly popular (Pearl, 2000; Spirtes et al., 2000). In particular, there is much
interest in learning the structure of these models from data, particularly in the area of sys-
tems biology (Friedman, 2004) and cognitive science (Gopnik and Schulz, 2007). However,
given observational data, it is only possible to identify the structure up to Markov equiva-
lence. For example, the three models X→Y→Z, X←Y←Z, and X←Y→Z all encode the
same conditional independency statement, X ⊥ Z|Y . To distinguish between such models,
we need interventional (experimental) data (Cooper and Yoo, 1999; Pearl, 2000; Spirtes
et al., 2000; Eberhardt et al., 2005; Korb and Nyberg, 2006).

Most previous work has focused on the case of “perfect” or “ideal” interventions, in
which it is assumed that an intervention sets a single variable to a specific state (as in a
randomized experiment). This is the basis of the “do-calculus” (as in the verb “to do”)
of Pearl (2000). A perfect intervention essentially “cuts off” the influence of the parents
to the intervened node, and can be modeled as a structural change by performing “graph
surgery” (removing incoming edges from the intervened node). Although some real-world
interventions can be modeled in this way (such as gene knockouts), most interventions are
not so precise in their effects.

c©2000 Daniel Eaton and Kevin Murphy.
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One possible relaxation of this model is to assume that interventions are “soft”, and
merely increase the probability the target will enter a specific state (Markowetz et al.,
2005). (An example of this would be requesting a patient to take a certain drug.) A
further relaxation is to assume that the effect of an intervention does not render the node
independent of its parents, but simply changes the parameters of the local distribution; this
has been called a “mechanism change” (Tian and Pearl, 2001a,b) or “parametric change”
(Eberhardt et al., 2006). For many situations, this is a more realistic model than perfect
interventions, since it is often impossible to force variables into specific states.

In this paper we propose a different relaxation of the notion of perfect intervention,
and consider the case where the targets of intervention are uncertain.1 Note that this is
orthogonal to the issue of whether the interventions act on their targets in a perfect or
imperfect way. Our approach is straightforward: we add the intervention nodes to the
graph as binary indicator variables, and then learn the structure of this two-layer graph
(the intervention nodes are in the top layer and act as parents to the regular nodes in the
bottom layer or “backbone”). In other words, we do not assume a known 1:1 mapping from
interventions to targets, but instead learn their targets (as well as the rest of the graph
structure).

Although the approach of adding intervention nodes to the graph is not novel (e.g., it is
mentioned in (Pearl, 2000) and used in (Pe’er et al., 2001)), previous work has not examined
the consequences of uncertain interventions in any detail. We show, with experiments on
synthetic data, that the consequences are quite benign, in the sense that one can learn
structure almost as well as if the targets of intervention were known. Furthermore, we
show, on a real biological dataset, that learning the targets of intervention can result in a
much better fitting model than assuming the targets are known, perhaps because the actual
interventions were not as ideal as expected.

In addition to learning more accurate structure between the nodes in the backbone,
learning the targets of intervention is often of interest in itself. For example, in the area
of drug target discovery (sometimes called identifying the “mode of action” of a compound
(Marton et al., 1998; Dejori et al., 2004; Gardner et al., 2003; Hallen et al., 2006)), the goal
is to identify which genes change their mRNA expression level as a direct result of adding
a drug. This is difficult because many genes may change as a result of a perturbation,
but some of these are indirect consequences of the intervention (due to the genes being
downstream of the targets). By jointly learning the structure of the network between the
genes and the connections from the interventions to the genes, we can “explain away” such
indirect effects, even when there is not enough data to fully learn the structure of the
backbone.

The structure of the paper is as follows. In Section 2, we provide a summary of various
models of intervention that have been proposed in the literature, and we explain our model
in more detail. In Section 3, we provide a brief summary of various algorithms for structure
learning that have been proposed in the literature, and sketch a novel algorithm designed
specifically for two-layer graphs. In Section 4, we provide extensive experimental results on
two synthetic and two real data datasets. We conclude in Section 5.

1. A preliminary version of this paper appeared in (Eaton and Murphy, 2007a).
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Figure 1: An example network with different models of intervention. Xn
i is back-

bone node i in data case n, and In
i is intervention node i in case n. θi are the

parameters for backbone node i, outside the n = 1 : N plate. (a) No inter-
ventions. (b) Known intervention targets (one Ii for every Xi). (c) Unknown
intervention targets. Intervention 1 affects nodes 2 and 3 (and is thus said to
have a “fat hand”); intervention 2 affects node 3. The parameters for node 3 are
θij
3|2(k, `), where I1 = i, I2 = j, X2 = k and X3 = `.

2. Models of intervention

For the reader who is already familiar with standard Bayesian approaches2 to learning
belief net structure (see e.g., (Heckerman et al., 1995; Neapolitan, 2003)) we can explain
our approach very easily by examining the example in Figure 1. On the left, we show
a 3-node belief network, where Xn

i denotes the value of node i in case n, for i = 1 : d
and n = 1 : N . The parameters of Xi’s conditional probability distribution (CPD) are
denoted by θi: thus p(Xi|XGi) = fi(Xi, XGi , θi), where Gi are i’s parents and fi is some
parametric density function. We will call the Xi “backbone” nodes. In the middle, we show
the same network, where each Xi has a unique intervention parent, Ii. This is a binary
variable that acts like a “switching parent”: if Ii = 0, the parameters for Xi’s CPD are θ0

i ;
if I1 = 1, the parameters are θ1

i . On the right, we show the same network, where we only
have 2 intervention nodes. Some intervention nodes have multiple backbone children (these
are called “fat hand” interventions), and some backbone nodes have multiple intervention
parents. The goal of this paper is to learn graph structures of this type, and to compare
their performance to models which assume known targets of intervention. In the sections
below, we elaborate on this brief discussion, and explain variants of these basic model types
that have been proposed by various authors, culminating in a more detailed description of
our proposal.

2. The Bayesian approach to structure learning avoids many of the conceptual problems that arise when
trying to combine the results of potentially inconsistent conditional independency tests performed on
data sampled from different interventional regimes (Eberhardt, 2006). Furthermore, it is particularly
appropriate when the sample sizes are small, as in many systems biology and cognitive science experi-
ments.
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Figure 2: No interventions. (a) Plate notation, (b) the same model unrolled across 4
data cases.

2.1 No interventions

We will make the same widely-used assumptions as (Heckerman et al., 1995), which we
summarize here for completeness. We assume parameters are a priori globally independent
(see Figure 2), and that data is complete, which lets us write the marginal likelihood of a
graph as

p(X1:N |G) =
d∏

i=1

p(X1:N
i |X1:N

Gi
) =

d∏

i=1

∫
[

N∏

n=1

p(xn
i |xn

Gi
, θi)]p(θi)dθi (1)

We assume the CPDs are represented as tables (conditional multinomials), p(Xi = k|XGi =
j, θi) = θijk, and that the parameter priors are conjugate and satisfy local independence.
These assumptions imply that the prior is Dirichlet (Geiger and Heckerman, 1997):

p(θi) =
qi∏

j=1

Dir(θij |αij1, . . . , αijri) (2)

where ri is the number of states of Xi, qi is the number of states of XGi and αijk are
the hyper-parameters. We will use the BDeu prior αijk = α/qiri, where we set the prior
strength to α = 1. (See (Steck and Jaakkola, 2002) for a discussion on how to set α.) With
these assumptions, the marginal likelihood of a family (a node and its parents) is given by
the following equation:

p(x1:N
i |x1:N

Gi
) =

∫
[

N∏

n=1

p(xn
i |xn

Gi
, θi)]p(θi)dθi

=
qi∏

j=1

∫
[

∏

n:xn
Gi

=j

p(xn
i |θij)]p(θij)dθij

=
qi∏

j=1

∫ [
ri∏

k=1

θ
Nijk

ijk

]
Dir(θij·|αij·)dθij

=
qi∏

j=1

Γ(αij)
Γ(αij + Nij)

qi∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

(3)
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Figure 3: Imperfect interventions. (a) Plate notation, (b) the same model unrolled
across 4 data cases. In this example, cases 1 and 3 are “normal”, and cases 2 and
4 are interventional (for node i).

where Nijk =
∑N

n=1 I(xn
i = k, xn

Gi
= j) and Nij =

∑
k Nijk are the counts and αijk and

αij =
∑

k αijk are the pseudo counts. Note that the counts can be efficiently computed for
all families from large datasets using ADtrees (Moore and Lee, 1998). An analogous formula
can be derived for the normal-Gamma case (Geiger and Heckerman, 2002). However, none
of what follows relies on being able to compute the marginal likelihood exactly (which is
only possible for certain conjugate prior-CPD pairs). For example, we could use a BIC
approximation instead.

2.2 Imperfect interventions

A simple way to model interventions is to introduce intervention nodes, that act like “switch-
ing parents”: if In

i = 1, then we have performed an intervention on node i in case n and
we use a different set of parameters than if In

i = 0, when we use the “normal” parameters.
Specifically, we set p(Xi|XGi , Ii = 0, θ,G) = fi(Xi|XGi , θ

0
i ) and p(Xi|XGi , Ii = 1, θ, G) =

fi(Xi|XGi , θ
1
i ). See Figure 3. (Note that the assumption that the functional form fi does

not change is made without loss of generality, since θi can encode within it the specific
type of function.) Tian and Pearl (2001a,b) refer to this as a “mechanism change”. To
simplify notation, we assume every node has its own intervention node; if a node i is not
intervenable, we simply clamp In

i = 0 for all n.

When we have interventional data, we modify the local marginal likelihood formula by
partitioning the data into those cases in which Xi was passively observed, and those in
which Xi was set by intervention:

p(x1:N
i |x1:N

Gi
, I1:N

i ) =
∫ 

 ∏

n:In
i =0

p(xn
i |xGi , θ

0
i )


 p(θ0

i )dθ0
i

×
∫ 

 ∏

n:In
i =1

p(xn
i |xGi , θ

1
i )


 p(θ1

i )dθ1
i (4)
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Figure 4: Perfect interventions. (a) Plate notation, (b) the same model unrolled across
4 data cases. The red nodes (cases 2 and 4) have been set by perfect intervention,
so Xi is cut off from XGi .
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Figure 5: Unreliable interventions. We add another switch node Rn
i , so that an inter-

vention is actually a mixture of θ0
i and θ1

i .

2.3 Perfect interventions

If we perform a perfect intervention on node i in data case n, then we set Xn
i = x∗i , where

x∗i is the desired “target state” for node i. Hence we define the CPD as p(Xi|XGi , θ, Ii =
1) = δ(Xi−x∗i ). Thus a perfect intervention can be seen as a special case of an imperfect in-
tervention where θ1

i (the parameters that are used when Ii = 1) encodes this delta function.
(Formally θ1

i = ~et, where t = x∗i is the target value for node i, and ~et = (0, . . . , 0, 1, 0, . . . , 0)
with a 1 in the t’th position.) From Figure 4, we see that Xi is effectively “cut off” from its
parents XGi . In this case, the second term of Equation 4 evaluates to 1 (assuming xn

i = x∗i
for each forced term), so the marginal likelihood simplifies as follows:

p(x1:N
i |x1:N

Gi
, I1:N

i ) =
∫

[
∏

n:In
i =0

p(xn
i |xGi , θ

0
i )]p(θ0

i )dθ0
i (5)

In other words, we just drop cases in which node i was set by intervention (Cooper and
Yoo, 1999).

2.4 Unreliable interventions

An orthogonal issue to whether the intervention is perfect or imperfect is the reliability
of the intervention, i.e., how often does the intervention succeed? One way to model this
is to assume that each attempted intervention succeeds with probability φi and fails with
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Figure 6: Soft interventions. (a) Plate notation, (b) the same model unrolled across 4
data cases. Proposed by Markowetz et al. (2005). x∗i is the known state into
which we wish to force node i when we perform an intervention on it; wi is the
strength of this intervention. α1

i is a deterministic function of α0
i , x∗i and wi.

probability 1 − φi; this is what Korb et al. (2004) call the degree of “effectiveness” of the
intervention. We can associate a latent binary variable Rn

i to represent whether or not the
intervention succeedeed or failed in case n, resulting in the mixture model

p(Xi|XGi , Ii = 1, θi) =
∑

r

p(Ri = r)p(Xi|XGi , Ii = 1, Ri = r, θi)

= φifi(Xi|XGi , θ
1
i ) + (1− φi)fi(Xi|XGi , θ

0
i ). (6)

Figure 5 illustrates the idea of the unreliable intervention model. Although Figure 5 adds
the indicator Rn

i to the imperfect model only, any of the other models of intervention
under discussion could be augmented with the unreliable assumption also. For example, an
unreliable, but otherwise perfect, intervention is modeled by setting

p(Xi|XGi , Ii = 1, Ri = 1, θ, G) = δ(Xi − x∗i ). (7)

Unfortunately, computing the exact marginal likelihood of the data now becomes expo-
nential in the number of R variables, because we have to sum over all latent assignments.
Consequently we will not consider this model in this paper.

2.5 Soft interventions

Another way to model imperfect interventions is as “soft” interventions, in which an in-
tervention just increases the likelihood that a node enters its target state x∗i . Markowetz
et al. (2005) suggest using the same model of p(Xi|XGi , Ii, θi) as before, but now the pa-
rameters θ0

i and θ1
i have dependent hyper-parameters. In particular, for the multinomial-

Dirichlet case, θ
0/1
ij· ∼ Dir(α0/1

ij· ), they assume the deterministic relation α1
ij· = α0

ij· + wi~et,
where j indexes states (conditioning cases) of xGi , t = x∗i is the target value for node i,
~et = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the t’th position, and wi is the strength of the inter-
vention. In other words, we “tilt” the Dirichlet distribution in the direction of state x∗i , but
don’t force it to be a delta function. As wi→∞, this becomes a perfect intervention, while
if wi = 0 it reduces to an imperfect intervention (where there are no “target states”). If
the intervention strength wi is unknown, Markowetz et al. (2005) suggest putting a mixture

7
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model on wi, but it may be more appropriate to use the Ri mixture model mentioned in
Section 2.4, where an intervention can succeed or fail on a case by case basis. Figure 6
shows the model graphically using plate notation.

2.6 Uncertain interventions

Finally we come to our proposed model for representing interventions with uncertain tar-
gets, as well as uncertain effects. We no longer assume a one to one correspondence between
intervention nodes Ii and backbone nodes Xi. Instead, we assume that each intervention
node Ii may have multiple backbone children. (Such interventions are sometimes said to be
due to a “fat hand”, which “touches” many variables at once.) If a backbone node has mul-
tiple intervention parents, we create a new parameter vector for each possible combination
of intervention parents: see Figure 1(c) for an example.

We are interested in learning the connections from the intervention nodes to the back-
bone nodes, as well as between the backbone nodes. We do not allow connections between
the intervention nodes, or from the backbone nodes back to the intervention nodes, since
we assume the intervention nodes are exogenous and fixed. We enforce these constraints by
using a two layered graph structure, V = X ∪ I, where X are the backbone nodes and I
are the intervention nodes. The addition of I motivates new notation, since the augmented
adjacency matrix has a special block structure. The full adjacency matrix, denoted by H,
is comprised of the intervention block F containing I nodes, and the backbone block G
comprised of X nodes:

H =
(

G 0
F 0

)

where G is a d × d binary matrix and F is a e × d binary matrix, where d is the number
of backbone nodes and e is the number of intervention nodes. We call the elements of
F “target edges” since they correspond to edges I→X and the elements of G “backbone
edges”.

To explain how we modify the marginal likelihood function, we need some more notation.
Let XGi be the backbone parents of node i, and IFi be the intervention parents. Let θ`

i

be the parameters for node i given that its intervention parents have state `. Then the
marginal likelihood for a family becomes

p(x1:N
i |x1:N

Gi
, I1:N

Gi
) =

∏

`∈states(IFi
)

∫



∏

n:In
Gi

=`

p(xn
i |xn

Gi
, θ`

i )


 p(θ`

i )dθ`
i . (8)

This is just the obvious extension of Equation 4 to multiple intervention parents. Note that
we have a different parameter vector for each value of IFi , regardless of whether the CPD
for Xi is tabular or not. Of course, we are free to choose a more parsimonious model of how
interventions change their target distributions.

The question of whether or not the targets of intervention are known is orthogonal to
the question of what effect the interventions have on their targets. Ignoring soft and unre-
liable interventions, we can identify four combinations, as shown in Table 1. The standard
assumption is that there is a known one-to-one correspondence between intervention nodes
and targets. There could be fewer intervention nodes than backbone nodes, but without

8
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perfect imperfect
known F = I,θ1 = δ F = I

unknown θ1 = δ -

Table 1: Four types of intervention model, corresponding to different assumptions
about intervention edge topology F (rows) and interventional parameters θ1

(columns).

loss of generality, we can assume there is an equal number, and hence F = Id, the d × d
identity matrix. The assumption of perfect interventions is that p(Xi|XGi , Ii = 1) is a
delta function; we denote this event by θ1 = δ. If we assume interventions are perfect,
then we can have at most one intervention parent for each backbone node (unless we mod-
ify the definition of perfect intervention to allow resolution of conflicting target states).
We can combine the perfect intervention assumption with the unknown target assumption,
but doing so seems a little unnatural. Hence we will mostly focus on just three combina-
tions: known targets + perfect interventions, known targets + imperfect interventions, and
unknown targets + imperfect interventions; we will call these “perfect”, “imperfect” and
“uncertain” for brevity.

2.7 Interventional vs conditional density models

One might ask what the difference is between a conditional density model and an interven-
tional model. The crucial difference is that in the latter, we assume that the interventions
have local (albeit unknown) effects. If they did not, we would no be able to pool the
data sampled from the different conditional distributions (Eberhardt, 2006). To see this,
suppose, for simplicity, we have a single intervention node Ii. If all the backbone nodes
depend on Ii, then we have a mixture of belief networks (sometimes called a “Bayesian
multinet” (Thiesson et al., 1998; Bilmes, 2000)); but if only some nodes depend on Ii, we
get a “factored mixture”, in which only some components of the density depend on the
mixing indicator, the rest being invariant across conditions.

We can see this difference in more detail by examining the marginal likelihood for the
two proposed models (Tian and Pearl, 2001a). Suppose we observe N0 cases in which Ii = 0
and N1 cases in which Ii = 1. Let N0

ijk be the counts in the first batch, N1
ijk be the counts

in the second batch, and Nijk = N0
ijk + N1

ijk. If the post interventional distribution is
unconstrained (i.e., the parameters that generated the second batch of data are unrelated
to the first set of parameters), then we get

p(X1:N1 , XN1+1:N2 |I1:N1
i = 0, IN1+1:N2

i = 1, G)

=
d∏

i=1

qi∏

j=1

Γ(αij)
Γ(αij + N0

ij)

ri∏

k=1

Γ(αijk + N0
ijk)

Γ(αijk)

×
d∏

i=1

qi∏

j=1

Γ(αij)
Γ(αij + N1

ij)

ri∏

k=1

Γ(αijk + N1
ijk)

Γ(αijk)
,
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which is a product of two regular BDe (Bayesian Dirichlet likelihood equivalent) scores.
Thus the data from the two regimes is not combined. But if we constrain the intervention
to only affect node `, we get

p(X1:N1 , XN1+1:N2 |I1:N1
i = 0, IN1+1:N2

i = 1, G, ch(Ii) = `)

=
∏

i6=`

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

×
q∏̀

j=1

Γ(α`,j)
Γ(α`,j + N0

`,j)

r∏̀

k=1

Γ(α`,j,k + N0
`,j,k)

Γ(α`,j,k)

×
q∏̀

j=1

Γ(α`,j)
Γ(α`,j + N1

`,j)

r∏̀

k=1

Γ(α`,j,k + N1
`,j,k)

Γ(α`,j,k)
.

where the first line pools the data for all i 6= `, and the second and third lines partition the
data for node `. It is this difference in likelihood that lets us distinguish local targets of
intervention from global targets.

3. Algorithms for structure learning

In the previous section, we defined a variety of possible models for interventional data. In
this section, we briefly discuss relevant computational issues. The most important question
is: what are we trying to infer? One possible goal is to compute the most probable backbone
graph, assuming the targets of intervention are known and are perfect:

GCMAP = arg max
G

p(X1:N |I1:N , G, F = I, θ1 = δ)p(G) (9)

where CMAP stands for conditional MAP (since we condition on F and θ1). Another option
is to learn the most probable backbone graph and the most probable set of intervention
targets:

HMAP = arg max
G,F

p(X1:N |I1:N , G, F )p(G,F ) (10)

In some cases, such as drug target discovery, only the targets of intervention are of interest,
and G is a nuisance variable, so we can compute

FMMAP = arg max
F

∑

G

p(X1:N |I1:N , G, F )p(G,F ) (11)

where MMAP stands for marginal MAP. However, since max-sum-product problems are
typically harder than pure sum-product or max-product (Park and Darwiche, 2004), we
follow the common practice of approximate this by maximizing over G instead of summing
over G.

In cases where the sample size N is low, there may be considerable uncertainty about the
MAP model. A more robust approach is to use Bayes model averaging (BMA) to compute
the posterior over various features of interest, such as the existence of edges (Friedman

10
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and Koller, 2003). For example, we might compute edge marginals assuming the targets of
intervention are known and perfect

p(Gij = 1|D, F = I, θ1 = δ) =
∑

G

I(G(i, j) = 1)p(G|D) (12)

where D = (X1:N , I1:N ) is the data. Or we might compute edge marginals in the expanded
graph, where we don’t assume the targets of intervention are known:

p(Hij = 1|D) =
∑

H

I(H(i, j) = 1)p(H|D) (13)

We can compute GCMAP
3 and p(Gij = 1|D, F = I, θ1 = δ) exactly4 using dynamic

programming (DP) in O(d2d) time and space (Koivisto and Sood, 2004; Koivisto, 2006;
Silander and Myllmaki, 2006; Singh and Moore, 2005). If the interventions are unknown,
we can compute HMAP and p(Hij = 1|D) in O((d + e)2d+e) time, where e is the number of
intervention nodes. If we restrict each regular node to have at most one intervention parent,
the cost becomes O((d + e)2d), since we don’t have to search over subsets of intervention
parents. Thus, assuming e = O(d), the total cost is O(2d2d), so we see that structure
learning with uncertain interventions is only a factor of two slower than structure learning
assuming known intervention targets.

The dynamic programming algorithms are only practical for d ≤ 22 nodes (unless we
have additional prior knowledge, such as layering constraints (Koivisto and Sood, 2004)).
To scale up, we need to resort to heuristic local search methods (for the MAP problem)
or MCMC methods (for the BMA problem). See e.g., (Heckerman et al., 1995; Friedman
and Koller, 2003) for details. Since these algorithms are not guaranteed to find the exact
answer, we will represent their output by ĜCMAP , p̂(Gij = 1|D, F = I, θ1 = δ), etc.

The two-layered nature of our structure learning problem suggests the following iterative
algorithm for estimating ĤMAP : first estimate F (the targets of intervention), and use
this to partition the data; then estimate G (the backbone) given this partitioning; and
iterate until convergence. This is appealing because we can estimate GCMAP using standard
software, even if it cannot handle interventions. Unfortunately, preliminary experiments
suggest this method is more prone to getting stuck in local maxima than searching through
H-space directly. Hence when we cannot afford to use DP, we resort to standard local search
techniques on the two-layer graph. In Section 4.2, we will show empirically that local search
does a good at finding posterior modes.

4. Experimental results

We first present some results on synthetic data generated from two belief networks of known
structure, and then present results on two real biological datasets. The advantage of the

3. Note that there may be more than one MAP-optimal DAG, but they are all Markov equivalent, sothe
algorithm just returns one of these.

4. Although the BMA computations are exact, they require a rather unnatural (and highly non-uniform)
“modular” prior on graph structures p(G). See (Eaton and Murphy, 2007b) for a way to use the
Metropolis-Hastings algorithm to correct for this bias. The MAP computations can use a uniform graph
prior, p(G) ∝ 1, and do not suffer from this bias. We have not found it necessary to include an explicit
complexity-penalizing term in p(G), although this is of course possible.
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Figure 7: Cancer network. Left: The cancer network, from (Friedman et al., 1998).
Right: (a-d) are Markov equivalent. (c-g) are equivalent under an intervention
on B. (h) is the unique member under an intervention on A. Based on (Tian and
Pearl, 2001a).

synthetic networks is that we can easily assess the ability of different algorithms/ models
to recover the true (generating) structure. In Sections 4.1 and 4.2, we restrict ourselves to
small models (up to 12 nodes), so that we can compare to the results of using exact inference
algorithms. We sample data from the known model assuming perfect interventions, and then
try to recover the graph, either using the knowledge that the interventions were perfect, or
not using such knowledge. We show that the latter does almost as well as the former. (If
we generate data from imperfect interventions, the perfect model cannot fit the data, since
it assumes intervened upon nodes act deterministically.)

In Section 4.3, we compute GCMAP and HMAP using some data that measures the
phosphorylation levels of 11 proteins in part of the T-cell signalling pathway. We show
that HMAP has much better predictive abilities than GCMAP , indicating that the perfect
intervention assumption is not warranted in this case. Finally, in Section 4.4, we compute
ĤMAP using some microarray data that measures expression levels of 271 genes, from cells
with 7 different types of cancer. Each cancer type causes a different primary gene to
mutate, which in turn causes downstream changes in other genes. We show that we are
able to identify the primary affected genes.

4.1 Synthetic “cancer” network

The ability to recover the true causal structure (assuming no latent variables) using per-
fect and imperfect interventions has already been demonstrated both theoretically (Eber-
hardt et al., 2005, 2006; Tian and Pearl, 2001b,a) and empirically (Cooper and Yoo, 1999;
Markowetz and Spang, 2003; Tian and Pearl, 2001b,a; Werhli et al., 2006). Specifically,
each intervention determines the direction of the edges between the intervened nodes and
its neighbors; this in turn may result in the direction of other edges being “compelled”
(Chickering, 1995).

For example, in Figure 7, we see that there are 4 graphs that are Markov equivalent to
the true structure; given observational data alone, this is all we can infer. However, given
enough interventions (perfect or imperfect) on B, we can eliminate the fourth graph (d),
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since it has the wrong parents for B. Given enough interventions on A, we can uniquely
identify the graph, since we can identify the arcs out of A by intervention, the arcs into D
since it is a v-structure, and the C→E arc since it is compelled. (We cannot orient the arc
as E→C without creating a new v-structure.) In general, given a set of interventions and
observational data, we can identify a graph up to intervention equivalence (see (Tian and
Pearl, 2001b) for a precise definition).

In this section, we experimentally study the question of whether one can still learn the
true structure, even when the targets of intervention are a priori unknown, and if so, how
much more data one needs compared to the case where the intervention targets are known.
We assessed this using the following experimental protocol. We take the 5 node “cancer”
network shown in Figure 7, and generated random multinomial CPDs by sampling from
a Dirichlet distribution with hyper-parameters chosen by the method described in (Chick-
ering and Meek, 2002), which ensures strong dependencies between the nodes.5 (Stronger
dependencies increase the likelihood that the distribution will be numerically faithful to the
conditional independency assumptions encoded by the structure.) For simplicity, we used
binary nodes. We then generated data using forwards sampling; the first 1000 cases D0

were from the original model, the second 1000 cases D1 from a “mutated” model, in which
we performed a perfect intervention either on A or B, forcing it to the “off” state in each
case.

Next we tried to learn back the structure using varying sample sizes of N ∈ {10, 25, 250, 1000}.
Specifically we used N observational samples and N interventional samples, D = (D1:N

0 , D1:N
1 ).

We used exact BMA to compute edge marginals under increasingly weak assumptions: (1)
using the perfect interventions model; (2) using the soft interventions model6; (3) using the
imperfect model; and (4) using the uncertain interventions model. In the latter case, we
also learned the children of the intervention node. As a control, we also tried just using
observational data, D = D1:2N

0 (equivalent to clamping In
i = 0 for all i and n).

Our results for the perfect and uncertain models are shown in Figure 8. (On this
network, the imperfect and soft intervention models perform very similarly to the perfect
case, though they require more data to achieve the same accuracy; hence, for brevity, we
only show the results of perfect interventions.) We see that with observational data alone,
we are only able to recover the v-structure B→D←C, with the directions of the other arcs
being uncertain (e.g., P (C→E) ≈ 0.75, since 3 out of 4 Markov equivalence classes have the
edge oriented in this way). With perfect interventions on B, we can additionally recover
the A→B arc, and with perfect interventions on A, we can recover the graph uniquely,
consistent with the theoretical results mentioned above.

With uncertain interventions, we see that there is more uncertainty about the graph
structure, but this uncertainty reduces with sample size, and eventually the posterior con-
verges to a delta function on the intervention equivalence class. We also see that we need
less data to recover the target edges than the backbone edges (the I∗ rows are less entropic

5. The method of (Chickering and Meek, 2002) works as follows. Consider a node i with 3 states and 4
parent states. We pick a “basis vector” (1, 1/2, 1/3), and then, for the j’th parent state, we sample
θij· ∼ Dir(sαij·), where αi1· ∝ (1, 1/2, 1/3), αi2· ∝ (1/2, 1/3, 1), αi3· ∝ (1/3, 1, 1/2), αi4· ∝ (1, 1/2, 1/3),
and s = 10 is an effective sample size. Obviously other methods of generating CPDs with strong
dependencies are possible.

6. Markowetz et al. (2005) do not discuss how to set the pushing strength wi. We set it equal to 0.5N , so
that the data does not overwhelm the hyper-parameter α1

ijk.
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Figure 8: Results of structure learning on the cancer network. Left column: ground
truth. Subsequent columns: posterior edge probabilities for increasing sample
sizes N , where dark red denotes 1.0 and dark blue denotes 0.0. I∗ denotes the
intervention node. For the rows labeled “perfect”, we show p(Gij = 1|D, F ),
whereas for the rows labeled “uncertain”, we show p(Hij = 1|D). The titles of
the form H = x means the entropy of the factored posterior

∏
ij p(Gij |D, F ) is x.

(In the uncertain case, we ignore the uncertainty in the interventional edge when
computing the entropy, to make comparisons fair.) This figure is best viewed in
colour.
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Figure 9: Car diagnosis network, introduced in (Heckerman et al., 1994). By selecting
the appropriate two intervention nodes, marked here in red, it is possible to
uniquely recover the structure.

than the other rows at small sample sizes), although this might be an artefact of using
perfect interventions in the generating model. We obtain similar results with other exper-
iments on random graphs. This suggests that we do not lose much in terms of statistical
efficiency by learning the targets of intervention, rather than assuming they are known and
perfect. In Section 4.3, we will show that the weaker assumption actually works better on
a particular biological dataset.

4.2 Synthetic “cars” network

In this section, we perform a more quantitative analysis of the ability to learn structure
using a slightly larger (12 node) network. In addition, we compare the performance of exact
methods for computing HMAP with local search methods for approximating ĤMAP .

We consider the synthetic “Car Diagnosis” network, shown in Figure 9. Again, we assign
multinomial CPDs according to the method of (Chickering and Meek, 2002). Without
interventional data, it would be impossible to learn the orientation of some edges; however,
if we intervene on nodes 1 and 9, it is possible to uniquely recover the original structure.
We sampled 10 data sets, each of size N ∈ {20, 200, 2000}. For a given N , half of the data is
observational and half interventional, with interventions generated according to the perfect
model. Next, we attempted to learn the structure back from each data set, using known or
unknown targets of intervention.

Following Koivisto (2006); Husmeier (2003), we summarize performance in terms of ROC
curves applied to the exact BMA marginals p(Gij = 1|D, F = I, θ1 = δ) assuming known
perfect interventions and p(Hij = 1|D) using learned targets. See Figure 10. (The results of
known imperfect interventions are similar to known perfect interventions, so are omitted.)
We see that we recover all the edges as the sample size increases, and that the performance
using uncertain interventions is only slightly worse than assuming perfect interventions. We
also see that we need less data to recover the target edges than the backbone edges (the
mean AUC for the target edges is always higher than for the backbone edges).

Next we wish to compare exact and approximate methods for finding HMAP . The exact
method uses the dynamic programming algorithm of (Silander and Myllmaki, 2006); the
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Figure 10: Performance on cars network of BMA. Each row denotes a different sample
size (N = 200 means there were 100 observational and 100 interventional data
cases). The first two columns contain ROC curves; there are 10 curves per plot,
corresponding to the 10 datasets generated per sample size. In the right column,
the ROC curves have been summarized using area under the curve. The column
labeled “perfect” is measuring the performance of estimating p(Gij = 1|D, F =
I, θ1 = δ); the column labeled “uncertain” is measuring the performance of
estimating p(Gij = 1|D); and the column labeled “target edges” is measuring
the performance of estimating p(Fij = 1|D);
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Figure 11: Performance on cars network of point estimates. “BMA” refers to
p(Hij = 1|D) > θ, where θ is the (approximate) equal error rate threshold;
“MAP” refers to HMAP computed using DP; “search” refers to ĤMAP com-
puted using multiple-restart hill-climbing.

approximate method uses multiple-restart hill-climbing (Heckerman et al., 1995). Local
search was allowed to run for 20 seconds (3 times as long as it took to compute the exact
HMAP ).

Since we cannot compute a ROC curve from a point estimate HMAP , we instead compute
a single value for the sensitivity and specifity of the resulting estimated structure. We also
compare to using exact BMA, and evaluate the point estimate Ĥ = I(p(Hij = 1|D) > θ),
where θ is the equal error rate threshold.7 The results are shown in Figure 11. We see that
for low sample sizes, BMA works better, but eventually all techniques converge to the true
structure, including local search.
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(a) (b)

Figure 12: Ground truth model of T-cell signaling pathway. (a) biologically realistic
model with latent variables. The small round circles with numbers represent
various interventions (green = activators, red = inhibitors). From (Sachs et al.,
2005). Reprinted with permission from AAAS. (b) the projection of this onto
the 11 backbone variables (circles) and 6 intervention variables (ovals) suggested
in (Sachs et al., 2005). Intervention edges are in light gray. This figure is best
viewed in colour.
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the 11 measured proteins, rows are the 9 experimental conditions, 3 of which
are “general stimulation” rather than specific interventions. The name of the
chemical that was added in each case is shown on the right. The intended
primary target is indicated by an E (for excitation) or I (for inhibition). There
are 600 measurements per condition. This figure is best viewed in colour.

4.3 T-cell data

We now analyze an interesting dataset from (Sachs et al., 2005). This consists of 11 protein
concentration levels measured under 6 different interventions, plus 3 unperturbed conditions.
The proteins in question constitute part of a biochemical signaling network of human T-
cells, and therefore play a vital role in the immune system. See Figure 12(a) for the “ground
truth” network (derived after many years of experimental research). Since the ground truth
network contains unmeasured variables we cannot expect any belief net learning algorithm
to recover this structure exactly unless we devise a way to uncover hidden variables (which
is beyond the scope of this paper). The best we can hope for is to recover the closest
“projection” of the true structure onto the space of fully observed belief nets. The model
proposed in (Sachs et al., 2005) as “ground truth DAG” is shown in Figure 12(b). It is clear
that this does not capture all of the relevant biology. For example, in the true model, there
is a bidirectional edge between PIP2 and PIP3, whereas this is disallowed in a DAG. Also,
in the DAG, there is an edge from ERK to AKT, which does not seem to be present in the

7. The equal error rate is the threshold at which sensitivity(θ) = specifity(θ) (or equivalently, false negative
rate equals false positive rate), which can be found graphically by intersecting the ROC curve with a
diagonal line from the top left to the bottom right. In practice, the ROC curve may not intersect this
curve exactly, so instead we choose the threshold such that sensitivity(θ) + specifity(θ) is maximized.
Werhli et al. (2006) proposed an alternative way to select the threshold, namely choosing θ such that the
number of false positives is fixed (they used 5). Note that the full BMA ROC curve (using all thresholds)
is shown in Figure 10.
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Figure 14: MAP structures learned on T-cell data. (a) GMAP assuming known perfect
interventions. (b) HMAP assuming unknown imperfect interventions. Red nodes
are intervention nodes. Red edges are excitory, blue edges are inhibitory, dotted
gray edges have ambiguous polarity. Numbers represent the probability the
target is excited/ inhibited. Backbones edges are solid black.

standard biological model (they cite (Fukuda et al., 2003) as evidence for the existence of
this arc). In view of this, in addition to comparing to this “ground truth DAG”, we will
look at alternative measures of performance.

The data in question were gathered using a technique called flow cytometry, which can
record phosphorylation levels of proteins in individual cells. This has two advantages com-
pared to other measurement techniques, such as microarrays: first, it avoids the information
loss commonly incurred by averaging over ensembles of cells; second, it creates relatively
large sample sizes (600 cells under 9 conditions yielding N = 5400 data points). The raw
data, which is available online8 was discretized into 3 states, representing low, medium and
high activity, using a technique described in Hartemink (2001). We obtained this discretized
data directly from Karen Sachs; see Figure 13.

Various methods have been used to learn belief networks from this data, including
multiple restart simulated annealing in the space of DAGs (Sachs et al., 2005), Metropolis-
Hastings in the space of node orderings (Werhli et al., 2006), and equi-energy sampling in
the space of node orderings (Ellis and Wong, 2006). All of these techniques assumed perfect
interventions.

8. See http://www.sciencemag.org/cgi/content/full/sci;308/5721/523/DC1.
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Figure 15: ROC curves for the T-cell dataset. (a) P (Gij = 1|D, F = I, θ1 = δ) as-
suming known perfect interventions, AUC = 0.816. (b) P (Gij = 1|D) assuming
uncertain, imperfect interventions, AUC = 0.714. (We exclude the intervention
edges from the ROC plot and AUC computation, in order to make the results
comparable.)

In Figure 14(a) we show GMAP computed exactly using DP assuming perfect interven-
tions.9 The corresponding ROC plot for the BMA estimates are in Figure 15(a). We see
that the method does a good job at recovering most of the ground truth DAG.10

In Figure 14(b) we show HMAP computed exactly using DP assuming uncertain inter-
ventions. (Again, thresholding the BMA edge marginals results in an identical structure.)
The corresponding ROC plot for the BMA estimates are in Figure 15(b); we see a slight
drop in performance, consistent with the synthetic results in previous sections. However, by
relaxing the perfect intervention assumption, we learn something interesting. While we see
that we are able to learn the known targets of all but one of the 6 interventions (we missed
the G06967 → pkc edge), we also found that the interventions have multiple children, even
though they were designed to target specific proteins, i.e., they have “side effects”. Upon
further investigation, we found that each intervention typically affected a node and some
of its immediate neighbors. For example, from the ground truth network in Figure 12(a),
we see that Psitect (designated 8 in that figure) is known to inhibit pip2; in our learned

9. Note that thresholding the edge marginals at almost any value in the range 0 < θ < 1 results in an
identical graph structure to GMAP , suggesting that the posterior is very “peaky”. Indeed, if we plot
the edge marginals as a “heat map”, we see that they are strongly concentrated around 0 or 1 (data
not shown). We verified that this result was not an artefact of the modular prior required by the DP
algorithm by using a Metropolis-Hastings method (Eaton and Murphy, 2007b) with a DP proposal to
compute BMA under a uniform graph prior p(G) ∝ 1; this gave essentially identical results. This suggests
that N = 5400 is sufficiently large to ensure the posterior is dominated by a single peak (or multiple
intervention equivalent peaks), and that vaguer edge marginals (such as those obtained in (Sachs et al.,
2005)) may be the result of poor MCMC convergence.

10. In Werhli et al. (2006), they obtained an AUC of 0.7. However, their experimental setting differs
in several respects: they only use 100 samples randomly chosen from the full 5400; they process the
original continuous data by quantile normalization, ensuring all the marginals are Gaussian, rather than
discretization; they use the BGe score (Geiger and Heckerman, 1994) (corresponding to a normal-normal-
Gamma model) instead of BDe (corresponding to a multinomial-Dirichlet model); and they used MCMC
sampling in order space rather than exact inference based on DP.
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network (Figure 14(b)), we see that Psitect connects to pip2, but also to plcy, which is a
neighbor of pip2. This is biologically plausible, since although these compounds often have
specific targets (and are chosen for this reason), there may be latent pathways which cause
indirect changes in several visible variables. Also, although we missed the G06967 → pkc
edge, the other children of G06967 (plcy, pka, mek12, erk and p38) seem to be strongly
affected by G06967 when looking at the data in Figure 13.

In addition to determining the targets of intervention, it is interesting to determine the
type of interaction between an intervention and its targets. Given HMAP , we compute the
posterior mean parameters of p(Xi|XGi , Ii = 1), θ

1
ijk = (α1

ijk + N1
ijk)/(α1

ij + N1
ij), for each

child Xi and intervention parent Ii. We can then marginalize out XGi to get the marginal
effect of the intervention on its target:

p(Xi|Ii = 1) =

∑
XGi

p(Xi|XGi , Ii = 1)pu(XGi)∑
Xi,XGi

p(Xi|XGi , Ii = 1)pu(XGi)
. (14)

where pu(XGi) is a uniform prior over the parent states. If most of the mass resides in the
“overexpressed” state, p(Xi = +1|Ii = 1) ≈ 1, we say the intervention is excitory, while if
p(Xi = −1|Ii = 1) ≈ 1, we say it is inhibitory. If the distribution is uniform, the polarity
of the edge is inconclusive. In Figure 14(b), we color code the excitatory edges in red, and
the inhibitory edges in blue; we also show the marginal probability p(Xi = ±1|Ii = 1). We
see that, as expected, the edges from B2cAMP and PMA are excitatory and the edges from
Psitech and U0126 are inhibitory; however, while the edges from AKTInh and G06976 are
inibitory on some of their targets (as desired), they also seem to have excitatory side effects.

Since the ground truth DAG (Figure 12(b)) does not reflect biological reality (Fig-
ure 12(a)) particularly well (due to the absence of cycles, latent variables, etc.), merely
quoting an AUC score is potentially misleading. An alternative way to assess performance
is to sample from the learned model to see if the resulting data resembles the training data.
(See (Gelman et al., 2004) for more sophisticated forms of posterior predictive model check-
ing.) For Dirichlet-multinomial models, we can compute the posterior predictive density by
plugging in the posterior mean parameters

p(X|I, D, HMAP ) =
d∏

i=1

∫
p(Xi|XGi , IFi , θi)p(θi|D)dθi (15)

=
d∏

i=1

∫ ∏

j

∏

k

θ
I(Xi=k,YHi

=j)

ijk Dir(θijk|αijk + Nijk)dθijk (16)

=
d∏

i=1

∏

j

∏

k

θ
I(Xi=k,YHi

=j)

ijk (17)

where Y = (X1:d, I1:e) are all the nodes (so YHi = (XGi , IFi)). We can then sample from
this using forwards sampling, setting the intervention nodes in the same way as done for the
training data. The result of sampling from GMAP (which assumes perfect interventions) is
shown in Figure 16(a); sampling from the ground truth DAG topology (but learning the
parameters) gives very similar results (not shown). The result of sampling from HMAP
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(which learns the interventions) is shown in Figure 16(b). It is clear that the latter method
learns a model that fits the data much better, e.g., compare the rows labeled “G06976” with
Figure 13. In fact, we can see from the original data in Figure 13 that the interventions
were not perfect e.g., see the row labeled “PMA”, which is not a constant block of +1’s
(this is easier to see in colour) despite being the target of an excitatory intervention.11

One might worry that HMAP is overfitting.12 We can assess this by comparing the
predictive log-likelihood in a cross-validation framework. Specifically, we evaluate the aver-
age log-likelihood across folds using a plug-in estimate of the structure. For the uncertain
interventions we have

CV (HMAP ) =
∑

f

1
Nf

Nf∑

n=1

log p(Xn|In, D−f ,HMAP ) (18)

where D−f is the data excluding fold f . We can compute CV (GMAP ) similarly.13 The
results of this CV comparison, for the perfect, imperfect, soft and uncertain intervention
models are shown in Figure 17. We see that the uncertain interventions model is a sig-
nificantly better predictor of the response of the system to interventions. In the following
section, we will show the results of extrapolating beyond the training set (predicting the
response to interventions that have not been seen before).

4.4 Leukemia data

In this section we explore a promising application of the uncertain intervention model,
namely that of drug/disease target discovery. In this setting, the primary goal is to infer
the intervention edges; the backbone structure is merely used to “explain away” indirect
changes. Although the backbone structure may be of interest, in many applications there
will not be enough data to estimate it very reliably. However, as we saw in the synthetic
data experiments, the amount of data needed to learn the intervention edges is usually much
less.

Note that similar problems arise in various other settings, such as determining which
genes are regulated by transcription factors. In general, the problem is to identify the
“downward” edges in a directed, two-layer graph. The key to success is the assumption
that the dependence between an intervention node and its true backbone target is stronger
than the dependence between an intervention node and any other backbone target. One
way to measure dependence is to use (conditional) mutual information, as in e.g., (Margolin

11. The perfect intervention model excludes cases that were set by intervention, and hence does not detect
this discrepancy. In Figure 17, to be described below, we show that the imperfect intervention model,
which uses all the data, also does not fit the model as well as the uncertain intervention model, indicating
that learning the topology of the intervention nodes, and not just allowing for stochastic effects, is
important.

12. In this domain, underfitting is also a potential problem, since if a model cannot capture important
aspects of the data, we should be cautious drawing conclusions about its topology.

13. We can also use the marginal likelihood p(Xn|D) = p(Xn, D)/p(D) in the innermost sum above (using
DP to marginalize out the graph structures) rather than using a plug-in estimate, but this is more
computationally expensive. See (Eaton and Murphy, 2007b) for a cheap approximation that works
better than a plug-in estimate but is faster than re-running DP for each Xn.
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Figure 16: Data sampled from learned T-cell models. (a) Data sample from GMAP ,
learned using the perfect intervention assumption. (c) Data sample from HMAP ,
using the learned targets of intervention. This figure is best viewed in colour.
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Figure 17: Cross-validated negative log likelihoods on T-cell dataset. Lower is
better. (a) MAP plug-in. (b) Exact BMA. Result obtained across 10-fold vali-
dation.
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Figure 18: ALL dataset. This figure is best viewed in colour.

et al., 2006), but here we adopt a Bayesian approach. (See (Minka, 2003) for an interesting
relationship between these two approaches.)

We analyze a dataset from (Yeoh et al., 2002) consisting of measurements of 12,000 genes
from 327 humans suffering from different forms of acute lymphoblastic leukemia (ALL). ALL
is a heterogeneous cancer, meaning that it is manifested by several subtypes that vary in
their genetic cause and consequently in their response to treatment. The dataset of (Yeoh
et al., 2002) contains 7 classes, called HYPERDIP > 50, E2A-PBX1, BCR-ABL, TEL-
AML1, MLL, T-ALL, and OTHER. It is believed that each of these subtypes is caused by
a small number of gene mutations; in the case of E2A-PBX1 and BCR-ABL, the relevant
genetic causes are known. We can think of each disease subtype as targeting a subset of
genes, which in turn cause other genes to change their mRNA expression level. The goal is
to identify the primary affected genes for each subtype, and to distinguish them from genes
which only change indirectly.

Yeoh et al. (2002) used a chi-square-based filtering method to identify the 40 most dif-
ferentially expressed genes in each subtype, yielding a total of 271 unique genes (9 were
shared across subtypes). Their data is available online.14 Dejori and Stetter (2004) dis-
cretized this data into 3 levels representing “underexpressed” (−1), “unchanged” (0) and
“overexpressed” (+1) using the following technique: values less than µi − σi were mapped
to −1, values greater than µi + σi were mapped to +1, and the remainder to 0 (where
(µi, σi) are the mean and standard deviation of gene i). The resulting dataset is shown in
Figure 18. We will use the same discretized data.

After discretization, Dejori and Stetter (2004) learned a belief network using simulated
annealing search, ignoring the fact that the data samples come from different conditions
(distributions). Using exact inference (state estimation), they then computed the posterior
predictive distribution assuming that gene i is observed to be in its overexpressed or under-
expressed state, p(X|Xi = ±1, ĜMAP , θ). (Note that this is not the same as setting gene i

14. See http://www.stjuderesearch.org/data/ALL1/all_datafiles.html.
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Figure 19: Highest scoring DAG found on ALL dataset. (a) DAG backbone, G, (b)
corresponding target edges, F.

by intervention. Indeed, they make no attempt to interpret their learned structure causally,
and simply use belief nets as a convenient density estimator for discrete data.) They then
generated a sample of size 327 for each gene i, D∗

i = {x ∼ p(X|Xi = ±1, ĜMAP , θ)}, and
compared the Euclidean distance between D∗

i and Dk for each k = 1 : 7, where Dk denote
all the training data cases from subtype k:

sim(k, i) =
327∑

n=1

exp(−||Dk,n −D∗
i,n||2) (19)

This gives them a “profile” over genes i for each subtype k; they then return the top 5
peaks as the most likely targets (causes) for that cancer subtype. (An alternative way to
compute the profile would be to compute the likelihood of Dk under the conditional model
p(X|Xi = ±1, ĜMAP , θ) using exact inference, thus bypassing the sampling and Euclidean
similarity steps.)

There are several drawbacks to the above approach. Firstly, the real goal is to learn
a causal model of the consequences of forcing a gene into a mutated state, rather than
a conditional density model of the consequences of observing a gene in a mutated state.
Second, in addition to estimating the graph structure, the above technique requires inference
(state estimation) in the resulting graph to infer targets, which might be slow, particular
for searching through subsets of multi-gene targets.

In our approach, we augment the 271 backbone variables with 7 binary intervention
nodes encoding the presence or absence of the subtypes using a 1-of-7 encoding. We then
learn ĤMAP using multiple restart hill climbing. Figure 19 shows the best local maximum;
the next-best structure had a score approximately e64 times lower, although it is structurally
quite similar.

One way to assess the quality of our learned model is to sample from it, as described
earlier. In Figure 20(a), we show samples drawn from p(X|I, ĤMAP , θ) where I is set in
the same way as the training data. We see that we fit the data very well. Figure 20(b)
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Figure 20: Data sampled from the learned ALL model. (a) Sampled under the same
interventional conditions as the training data. (b) Sampled assuming E2A-BX1
is on. (c) Sampled assuming no interventions. (d) Sampled assuming E2A-BX1
and MLL are on.
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shows samples where IE2A = 1 and the other I nodes are off. However, we can also sample
conditions that were not present in the training data. Figure 20(c) shows samples where
all Ii = 0 (the “wildtype” condition), and Figure 20(d) shows samples where IE2A = 1 and
IMLL = 1, but the other I nodes are off. Both of these extrapolations look plausible, sug-
gesting the model can be used to predict the consequences of novel interventions. However,
we would likely need a much more complex model (e.g., comparable in complexity to the
one in Figure 12(a)) to make plausible large extrapolations.

Next we examine the targets of each intervention node (i.e., the putative cause of each
cancer subtype). Figure 19(b) shows F̂MAP , but what we would like is a “profile” across all
the potential gene targets. We therefore compute the following approximate Bayes factor
for the edge Ik→Xi

BF (k, i) = log
p(D|k→i)
p(D|k 6→ i)

≈ log
p(D|ĜMAP , k→i)
p(D|ĜMAP , k 6→ i)

(20)

where k 6→ i means there is no edge from k to i. (The approximation arises because we use
the plug-in ĜMAP rather than marginalizing over it, in addition to the approximation of
using local search.) We can compute this by computing the marginal likelihood of the family
for node Xi with and without Ik as a parent. This score is qualitatively similar to sim(k, i)
defined above. It will be positive for all the children of Ik in ĤMAP (else ĤMAP would not
be a local maximum), and will be negative for the rest. In particular, it will be −∞ for
nodes i which already have another intervention parent, since we use the hard constraint of
at most one intervention edge per backbone node, based on the assumption that different
genes are targeted in each condition. (Of course, we could relax this assumption, but it
seemed reasonable in light of (Dejori and Stetter, 2004).)

The results for three of the subtypes are shown Figures 21(a,c,e). The top 5 targets
predicted by (Dejori and Stetter, 2004) are plotted in red, with their ranking shown as
an integer. For subtypes E2A and BCR, the true oncogene targets (PBX1 and ABL1,
respectively) is ranked first by our method and theirs. In other words, we both recover the
true cause of these cancer subtypes. For the other subtypes, our results are also similar
to those of (Dejori and Stetter, 2004), but since ground truth is unknown, it is hard to
conclude too much from this. In Figures 21(b,d,f) we plot the polarity of the intervention
edges in ĤMAP . In agreement with (Dejori and Stetter, 2004), we find that these cancer
subtypes “work” by generally forcing an overexpression of their targets.

5. Conclusions and future work

In conclusion, we have shown that interventions are useful for learning causal structure,
even if they have unknown (side) effects. By adopting a Bayesian approach and using
standard structure learning algorithms, we can learn the targets of intervention and the
graph structure at the same time. This results in better-fitting models and might also be
useful for drug target discovery.

A natural next step is active learning, i.e., deciding which intervention to perform so as
to identify the structure as quickly as possible. This has previously been studied in (Tong
and Koller, 2001; Murphy, 2001), but the high variance of MCMC estimation limited the
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Figure 21: Learned targets for various subtypes of cancer. (a-b) E2A-PBX1, (c-
d) BCR-ABL, (e-f) HYPERDIP>50. Left: Target edge strength BF (k, i) for
chosen edges (positive) and absent edges (negative). The top 5 genes chosen
by Dejori and Stetter (2004) are shown in red, with their ranking shown as
an integer. Gaps along the horizontal axis correspond to target edges which
are impossible due to the fan-in constraint (i.e., genes which already have an
intervention parent). Right: Probability that the cancer sets the target to +1
or -1 for the target edges in ĤMAP .
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usefulness of the technique. It is possible that the recent introduction of DP algorithms for
exact Bayesian inference will help.

Another important issue is how best to introduce latent variables into the model. This
has been studied in the non-interventional setting by (Elidan et al., 2000), but interventions
add a new twist: if an intervention node targets many children, it may be more parsimonious
to say it targets a latent variable (e.g., representing a pathway) which is a hidden common
cause of all the children. We leave such extensions to future work.
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