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Abstract

Recently, there has been much interest in reverse
engineering genetic networks from time series
data. In this paper, we show that most of the
proposed discrete time models — including the
boolean network model [Kau93, SS96], the linear
model of D’haeseleer et al. [DWFS99], and the
nonlinear model of Weaver et al. [WWS99] —
are all special cases of a general class of mod-
els called Dynamic Bayesian Networks (DBNs).
The advantages of DBNs include the ability to
model stochasticity, to incorporate prior knowl-
edge, and to handle hidden variables and missing
data in a principled way. This paper provides a
review of techniques for learning DBNs. Key-
words: Genetic networks, boolean networks,
Bayesian networks, neural networks, reverse en-
gineering, machine learning.

1 Introduction

Recently, it has become possible to experimentally mea-
sure the expression levels of many genes simultaneously,
as they change over time and react to external stimuli (see
e.g., [WFM+98, DLB97]). In the future, the amount of
such experimental data is expected to increase dramatically.
This increases the need for automated ways of discovering
patterns in such data. Ultimately, we would like to auto-
matically discover the structure of the underlying causal
network that is assumed to generate the observed data.

In this paper, we consider learning stochastic, discrete time
models with discrete or continuous state, and hidden vari-
ables. This generalizes the linear model of D’haeseleer et al.
[DWFS99], the nonlinear model of Weaver et al. [WWS99],
and the popular boolean network model [Kau93, SS96], all
of which are deterministic and fully observable.

The fact that our models are stochastic is very important,
since it is well known that gene expression is an inher-
ently stochastic phenomenon [MA97]. In addition, even if
the underlying system were deterministic, it might appear
stochastic due to our inability to perfectly measure all the
variables. Hence it is crucial that our learning algorithms be

capable of handling noisy data. For example, suppose the
underlying system really is a boolean network, but that we
have noisy observations of some of the variables. Then the
data set might contain inconsistencies, i.e., there might not
be any boolean network which can model it. Rather than
giving up, we should look for the most probable model
given the data; this of course requires that our model have
a well-defined probabilistic semantics.

The ability of our models to handle hidden variables is also
important. Typically, what is measured (usually mRNA
levels) is only one of the factors that we care about; other
ones include cDNA levels, protein levels, etc. Often we
can model the relationship between these factors, even if
we cannot measure their values. This prior knowledge can
be used to constrain the set of possible models we learn.

The models we use are called Bayesian (belief) Networks
(BNs) [Pea88], which have become the method of choice
for representing stochastic models in the UAI (Uncertainty
in Artificial Intelligence) community. In Section 2, we
explain what BNs are, and show how they generalize the
boolean network model [Kau93, SS96], Hidden Markov
Models [DEKM98], and other models widely used in the
computational biology community. In Sections 3 to 7, we
review various techniques for learning BNs from data, and
show how REVEAL [LFS98] is a special case of such an
algorithm. In Section 8, we consider BNs with continuous
(as opposed to discrete) state, and discuss their relationship
to the the linear model of D’haeseleer et al. [DWFS99], the
nonlinear model of Weaver et al. [WWS99], and techniques
from the neural network literature [Bis95].

2 Bayesian Networks

BNs are a special case of a more general class called graph-
ical models in which nodes represent random variables, and
the lack of arcs represent conditional independence assump-
tions. Undirected graphical models, also called Markov
Random Fields (MRFs; see e.g., [WMS94] for an applica-
tion in biology), have a simple definition of independence:
two (sets of) nodes A and B are conditionally indepen-
dent given all the other nodes if they are separated in the
graph. By contrast, directed graphical models (i.e., BNs)
have a more complicated notion of independence, which



Figure 1: The Bayes-Ball algorithm. Two (sets of) nodesA
and B are conditionally independent (d-separated [Pea88])
given all the others if and only if there is no way for a
ball to get from A to B in the graph. Hidden nodes are
nodes whose values are not known, and are depicted as
unshaded; observed nodes are shaded. The dotted arcs
indicate direction of flow of the ball. The ball cannot pass
through hidden nodes with convergent arrows (top left), nor
through observed nodes with any outgoing arrows. See
[Sha98] for details.

takes into account the directionality of the arcs (see Fig-
ure 1). Graphical models with both directed and undirected
arcs are called chain graphs.

In a BN, one can intuitively regard an arc from A to B
as indicating the fact that A “causes” B. (For a more
formal treatment of causality in the context of BNs, see
[HS95].) Since evidence can be assigned to any subset of
the nodes (i.e., any subset of nodes can be observed), BNs
can be used for both causal reasoning (from known causes
to unknown effects) an diagnostic reasoning (from known
effects to unknown causes), or any combination of the two.
The inference algorithms which are needed to do this are
briefly discussed in Section 5.1. Note that, if all the nodes
are observed, there is no need to do inference, although we
might still want to do learning.

In addition to causal and diagnostic reasoning, BNs support
the powerful notion of “explaining away”: if a node is
observed, then its parents become dependent, since they are
rival causes for explaining the child’s value (see the bottom
left case in Figure 1.) In contrast, in an undirected graphical
model, the parents would be independent, since the child
separates (but does not d-separate) them.

Some other important advantages of directed graphical
models over undirected ones include the fact that BNs can
encode deterministic relationships, and that it is easier to
learn BNs (see Section 3) since they are separable models
(in the sense of [Fri98]). Hence we shall focus exclusively
on BNs in this paper. For a careful study of the relation-
ship between directed and undirected graphical models, see
[Pea88, Whi90, Lau96].1

1It is interesting to note that much of the theory underlying
graphical models involves concepts such as chordal (triangulated)
graphs [Gol80], which also arise in other areas of computational
biology, such as evolutionary tree construction (perfect phyloge-
nies) and physical mapping (interval graphs).
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Figure 2: (a) A Markov Chain represented as a Dynamic
Bayesian Net (DBN). (b) A Hidden Markov Model (HMM)
represented as a DBN. Shaded nodes are observed, non-
shaded nodes are hidden.

2.1 Relationship to HMMs

For our first example of a BN, consider Figure 2(a). We call
this a Dynamic Bayesian Net (DBN) because it represents
how the random variable X evolves over time (three time
slices are shown). From the graph, we see that Xt+1 is
independent of Xt�1 given Xt (since Xt blocks the only
path for the Bayes ball between Xt�1 and Xt+1). This, of
course, is the (first-order) Markov property, which states
that the future is independent of the past given the present.

Now consider Figure 2(b). Xt is as before, but is now
hidden. What we observe at each time step is Yt, which
is another random variable whose distribution depends on
(and only on) Xt. Hence this graph captures all and only
the conditional independence assumptions that are made in
a Hidden Markov Model (HMM) [Rab89].

In addition to the graph structure, a BN requires that we
specify the Conditional Probability Distribution (CPD) of
each node given its parents. In an HMM, we assume that
the hidden state variables Xt are discrete, and have a dis-
tribution given by Pr(Xt = jjXt�1 = i) = Tt(i; j). (Tt
is the transition matrix for time slice t.) If the observed
variables Yt are discrete, we can specify their distribution
by Pr(Yt = jjXt = i) = Ot(i; j). (Ot is the observa-
tion matrix for time slice t.) However, in an HMM, it is
also possible for the observed variables to be Gaussian, in
which case we must specify the mean and covariance for
each value of the hidden state variable, and each value of t:
see Section 8.

As a (hopefully!) familiar example of HMMs, let us con-
sider the way that they are used for aligning protein se-
quences [DEKM98]. In this case, the hidden state variable
can take on three possible values, Xt 2 fD; I;Mg, which
represent delete, insert and match respectively. In protein
alignment, the t subscript does not refer to time, but rather
to position along a static sequence. This is an important dif-
ference from gene expression, where t really does represent
time (see Section 3).

The observable variable can take on 21 possible values,
which represent the 20 possible amino acids, plus the gap
alignment character “-”. The probability distribution over
these 21 values depends on the current position t and of
the current state of the system, Xt. Thus the distribution
Pr(YtjXt = M ) is the profile for position t, Pr(YtjXt =I) is the (“time”-invariant) “background” distribution, and
Pr(Yt =00 �00jXt) = 1:0 if Xt = D and is 0.0 if Xt 6= D,
for all t.
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Figure 3: (a) A DBN, (b) Represented as a boolean network.

In an HMM, “learning” means finding estimates of the pa-
rameters Tt and Ot (see Section 4.1); the structure of the
model is fixed (namely, it is Figure 2(b)).

2.2 Relationship to boolean networks

Now consider the DBN in Figure 3(a). (We only show two
time slices of the DBN, since the structure repeats.) Just as
an HMM can be thought of as a single stochastic automaton,
so this can be thought of as a network of four interacting
stochastic automata: node At represents the state of the A
automaton at time t, for example; its next state is determined
by its previous state, and the previous state of B.

The interconnectivity between the automata can also be
represented as in Figure 3(b). The presence of directed
cycles means that this is not a BN; rather, an arc from nodei to node j means A(i; j) = 1, where A is the inter-slice
adjacency matrix.

In addition to connections between time slices, we can also
allow connections within a time slice (intra-slice connec-
tions). This can be used to model co-occurrence effects,
e.g., geneBt�1 causes At to turn on if and only ifCt is also
turned on. Since this relationship between At and Ct is not
causal, it is more natural to model this with an undirected
arc; the resulting model would therefore be a chain graph,
which we don’t consider in this paper.

The transition matrix of each automaton (e.g.,
Pr(AtjAt�1; Bt�1)) is often called a CPT (Conditional
Probability Table), since it represents the CPD in tabu-
lar form. If each row of the CPT only contains a single
non-zero value (which must therefore be 1.0), then the au-
tomaton is in fact a deterministic automaton. If all the nodes
(automata) are deterministic and have two states, the system
is equivalent to a boolean network [Kau93, SS96].

In a boolean network, “learning” means finding the best
structure, i.e., inter-slice connectivity matrix (see Sec-
tion 6). Once we know the correct structure, it is easy
to figure out what logical rule each node is using, e.g., by
exhaustively enumerating them all and finding the one that
fits the data.

2.3 Stochastic boolean networks

We can define a stochastic boolean network model by mod-
ifying the CPDs. For example, a popular CPD in the UAI
community is the noisy-OR model [Pea88]. This is just like
an OR gate, except that there is a certain probability qi that
the i’th input will be flipped from 1 to 0. For example, if
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Figure 4: The noisy-OR gate modelled as a BN. A’ is a
noisy version of A, and B’ is a noisy version of B. C is
a deterministic OR of A’ and B’ (indicated by the double
ring). Shaded nodes are observed, non-shaded nodes are
hidden.C = noisyor(A;B), we can represent its CPD in tabular
form as follows:A B Pr(C = 0) Pr(C = 1)

0 0 1.0 0.0
1 0 q1 1� q1
0 1 q2 1� q2
1 1 q1q2 1� q1q2

Note that this CPT has 2K+1 entries, where K is the
number of parents (here, K = 2), but that there are con-
straints on these entries. For a start, the requirement that
Pr(C = 0jA;B) + Pr(C = 1jA;B) = 1:0 for all values
of A and B eliminates one of the columns, resulting in 2K
entries. However, the entries in the remaining columns are
themselves functions of justK free parameters, q1; : : : ; qK.
Hence this is called an implicit or parametric distribution,
and has the advantage that less data is needed to learn the
parameter values (see Section 3). By contrast, a full multi-
nomial distribution (i.e., an unconstrained CPT) would have
2K parameters, but could model arbitrary interactions be-
tween the parents.

The intepretation of the noisy-OR gate is that each input is
an independent cause, which may be inhibited. This can be
modelled by the BN shown in Figure 4. It is common to
imagine that one of the parents is permanently on, so that
the child can turn on “spontaneously”. This “leak” node
can be used as a catch-all for all other, unmodelled causes.

It is straightforward to generalize the noisy-OR gate to non-
binary variables and other functions such as AND [Hen89,
Sri93, HB94]. It is also possible to loosen the assumption
that all the causes are independent [MH97].

Another popular compact representation for CPDs in the
UAI community is a decision tree [BFGK96]. This is a
stochastic generalization of the concept of canalyzing func-
tion [Kau93], popular in the boolean networks field. (A
function is canalyzing if at least one of its inputs has the
property that, when it takes a specific value, the output of
the function is independent of all the remaining inputs.)

2.4 Comparison of DBNs and HMMs

Note that we can convert the model in Figure 3(a) into the
one in Figure 2(a), by defining a new variable whose state
space is the cross product of the original variables, Xt =



(At; Bt; Ct), i.e., by “collapsing” the original model into a
chain. But now the conditional independence relationships
are “buried” inside the transition matrix. In particular, the
entries in the transition matrix are products of a smaller
number of parameters, i.e.,

Pr(XtjXt�1) = Pr(AtjAt�1; Bt�1)�
Pr(BtjAt�1; Ct�1) � Pr(CtjAt�1; Ct�1)

So 0s in the transition matrix do not correspond to absence
of arcs in the model. Rather, if T (i; j) = 0, it just means
the automaton cannot get from state i to state j — this says
nothing about the connections between the underlying state
variables. Thus Markov chains and HMMs are not a good
representation for sparse, discrete models of the kind we
are considering here.

2.5 Higher-order models

We have assumed that that our models have the first-order
Markov property, i.e., that there are only connections be-
tween adjacent time slices. This assumption is without
loss of generality, since it is easy to convert a higher-order
Markov chain to a first-order Markov chain, simply by
adding new variables (called lag variables) which contain
the old state, and clamping the transition matrices of these
new variables to the identity matrix. (Note that doing this
for an HMM (as opposed to a DBN) would blow up the
state space exponentially.)

2.6 Relationship to other probabilistic models

Although the emphasis in this section has been on models
which are relevant to gene expression, we should remark
that Bayesian Nets can also be used in evolutionary tree con-
struction and genetic pedigree analysis. (In fact, the peel-
ing (Elston-Stewart) algorithm was invented over a decade
before being rediscovered in the UAI community.) Also,
Bayesian networks can be augmented with utility and deci-
sion nodes, to create an influence diagram; this can be used
to compute an optimal action or sequence of actions (opti-
mal in the decision-theoretic sense of maximizing expected
utility).This might be useful for designing gene-knockout
experiments, although we don’t pursue this issue here.

3 Learning Bayesian Networks

In this section, we discuss how to learn BNs from data. The
problem can be summarized as follows.

Structure/ Observability Method
Known, full Sample statistics
Known, partial EM or gradient ascent
Unknown, full Search through model space
Unknown, partial Structural EM

Full observability means that the values of all variables are
known; partial observability means that we do not know
the values of some of the variables. This might be because
they cannot, in principle, be measured (in which case they

are usually called hidden variables), or because they just
happen to be unmeasured in the training data (in which
case they are called missing variables). Note that a variable
can be observed intermittently.

Unknown structure means we do not know the complete
topology of the graph. Typically we will know some parts
of it, or at least know some properties the graph is likely
to have, e.g., it is common to assume a bound, K, on
the maximum number of parents (fan-in) that a node can
take on, and we may know that nodes of a certain “type”
only connect to other nodes of the same type. Such prior
knowledge can either be a “hard” constraint, or a “soft”
prior.

To exploit such soft prior knowledge, we must use Bayesian
methods, which have the additional advantage that they re-
turn a distribution over possible models instead of a single
best model. Handling priors on model structures, however,
is quite complicated, so we do not discuss this issue here
(see [Hec96] for a review). Instead, we assume that the
goal is to find a single model which maximizes some scor-
ing function (discussed in Section 6.1). We will, however,
consider priors on parameters, which are much simpler. In
Section 8.1, when we consider DBNs in which all the vari-
ables are continuous, we will see that we can use numerical
priors as a proxy for structural priors.

An interesting approximation to the full-blown Bayesian
approach is to learn a mixture of models, each of which has
different structure, depending on the value of a hidden, dis-
crete, mixture node. This has been done for Gaussian net-
works [TMCH98] and discrete, undirected trees2 [MJM98];
unfortunately, there are severe computational difficulties in
generalizing this technique to arbitrary, discrete networks.

In this paper, we restrict our attention to learning the struc-
ture of the inter-slice connectivity matrix of the DBN. This
has the advantage that we do not need to worry about in-
troducing (directed) cycles, and also that we can use the
“arrow of time” to disambiguate the direction of causal re-
lations, i.e., we know an arc must go from Xt�1 to Xt and
not vice versa, because the network models the temporal
evolution of a physical system. Of course, we still cannot
completely overcome the problem that “correlation is not
causation”: it is possible that the correlation between Xt�1
and Xt is due to one or more hidden common causes (or
observed common effects, because of the explaining away
phenomenon). Hence the models learned from data should
be subject to experimental verification.3

2In one particularly relevant example, [MJM98] applies her
algorithm to the problem of classifying DNA splice sites as intron-
exon or exon-intron. When she examined each tree in the mixture
to find the nodes which are most commonly connected to the class
variable, she found that they were the nodes in the vicinity of the
splice junction, and further, that their CPTs encoded the known
AG/G pattern.

3[HMC97] discusses Bayesian techniques for learning causal
(static) networks, and [SGS93] discusses constraint based tech-
niques — but see [Fre97] for a critique of this approach. These
techniques have mostly been used in the social sciences. One
major advantage of molecular biology is that it is usually feasible



When the structure of the model is known, the learning task
becomes one of parameter estimation. Although the focus
of this paper is on learning structure, this calls parameter
learning as a subroutine, so we start by discussing this case.

Finally, we mention that learning BNs is a huge subject,
and in this paper, we only touch on the aspects that we
consider most relevant to learning genetic networks from
time series data. For further details, see the review papers
[Bun94, Bun96, Hec96].

4 Known structure, full observability

We assume that the goal of learning in this case is to find
the values of the parameters of each CPD which maximizes
the likelihood of the training data, which contains S se-
quences (assumed to be independent), each of which has
the observed values of all n nodes per slice for each of T
slices. For notational simplicity, we assume each sequence
is of the same length. Thus we can imagine “unrolling” a
two-slice DBN to produce a (static) BN with T slices.

We assume the parameter values for all nodes are constant
(tied) across time (in contrast to the assumption made in
HMM protein alignment), so that for a time series of lengthT , we get one data point (sample) for each CPD in the initial
slice, and T � 1 data points for each of the other CPDs. IfS = 1, we cannot reliably estimate the parameters of the
nodes in the first slice, so we usually assume these are fixed
apriori. That leaves us with N = S(T � 1) samples for
each of the remaining CPDs. In cases where N is small
compared to the number of parameters that require fitting,
we can use a numerical prior to regularize the problem (see
Section 4.1). In this case, we call the estimates Maximum A
Posterori (MAP) estimates, as opposed to Maximum Like-
lihood (ML) estimates.

Using the Bayes Ball algorithm (see Figure 1), it is easy to
see that each node is conditionally independent of its non-
descendants given its parents (indeed, this is often taken
as the definition of a BN), and hence, by the chain rule of
probability, we find that the joint probabilityof all the nodes
in the graph isP (X1; : : : ; Xm) ==Yi P (XijX1; : : : ; Xi�1) =Yi P (XijPa(Xi));
where m = n(T � 1) is the number of nodes in the un-
rolled network (excluding the first slice4), Pa(Xi) are the
parents of node i, and nodes are numbered in topological
order (i.e., parents before children). The normalized log-
likelihood of the training set L = 1N log Pr(DjG), whereD = fD1; : : : ; DSg, is a sum of terms, one for each node:L = 1N mXi=1

SXl=1

logP (XijPa(Xi); Dl): (1)

to verify hypotheses experimentally.
4Since we are not trying to estimate the parameters of nodes in

the initial slice, we have omitted their contribution to the overall
probability, for simplicity.

We see that the log-likelihoodscoring function decomposes
according to the structure of the graph, and hence we can
maximize the contribution to the log-likelihood of each
node independently (assuming the parameters in each node
are independent of the other nodes).

4.1 Parameter estimation

For discrete nodes with CPTs, we can compute the ML
estimates by simple counting. As is well known from the
HMM literature, however, ML estimates of CPTs are prone
to sparse data problems, which can be solved by using
(mixtures of) Dirichlet priors (pseudo counts).

Estimating the parameters of noisy-OR distributions (and
its relatives) is harder, essentially because of the presence
of hidden variables (see Figure 4), so we must use the
techniques discussed in Section 5.

4.2 Choosing the form of the CPDs

In the above discussion, we assumed that we knew the form
of the CPD for each node. If we are uncertain, one approach
is to use a mixture distribution, although this introduces
a hidden variable, which makes things more complicated
(see Section 5). Alternatively, we can use a decision tree
[BFGK96], or a table of parent values along with their asso-
ciated non-zero probabilities [FG96], to represent the CPD.
This can increase the number of free parameters gradually,
from 1 to 2k, where k is the number of parents.

5 Known structure, partial observability

When some of the variables are not observed, the likeli-
hood surface becomes multimodal, and we must use it-
erative methods, such as EM [Lau95] or gradient ascent
[BKRK97], to find a local maximum of the ML/MAP func-
tion. These algorithms need to use an inference algorithm to
compute the expected sufficient statistics (or related quan-
tity) for each node.

5.1 Inference in BNs

Inference in Bayesian networks is a huge subject which we
will not go into in this paper. See [Jen96] for an introduction
to one of the most commonly used algorithm (the junction
tree algorithm). [HD94] gives a good cookbook introduc-
tion to the junction tree algorithm. [SHJ97] explains how
the forwards-backwards algorithm is a special case of the
junction tree algorithm, and might be a good place to start
if you are familiar with HMMs. [Dec98] would be a good
place to start if you are familiar with the peeling algorithm
(although the junction tree approach is much more efficient
for learning). [Mur99] discusses inference in BNs with dis-
crete and continuous variables, and efficient techniques for
handling networks with many observed nodes.

Exact inference in densely connected (discrete) BNs is com-
putationally intractible, so we must use approximate meth-
ods. There are many approaches, including sampling meth-



ods such as MCMC [Mac98] and variational methods such
as mean-field [JGJS98]. DBNs are even more computa-
tionally intractible in the sense that, even if the connec-
tions between two slices are sparse, correlations can arise
over several time steps, thus rendering the unrolled network
“effectively” dense. A simple approximate inference algo-
rithm for the specific case of sparse DBNs is described in
[BK98b, BK98a].

6 Unknown structure, full observability

We start by discussing the scoring function which we use to
select models; we then discuss algorithms which attempt to
optimize this function over the space of models, and finally
examine their computational and sample complexity.

6.1 The objective function used for model selection

It is commonly assumed that the goal is to find the model
with maximum likelihood. Often (e.g., as in the RE-
VEAL algorithm [LFS98], and as in the Reconstructabil-
ity Analysis (RA) or General Systems Theory community
[Kli85, Kri86]) this is stated as finding the model in which
the sum of the mutual information (MI) [CT91] between
each node and its parents is maximal; in Appendix A, we
prove that these objective functions are equivalent, in the
sense that they rank models in the same order.

The trouble is, the ML model will be a complete graph,
since this has the largest number of parameters, and hence
can fit the data the best. A well-principled way to avoid this
kind of over-fitting is to put a prior on models, specifying
that we prefer sparse models. Then, by Bayes’ rule, the
MAP model is the one that maximizes

Pr(GjD) = Pr(DjG) Pr(G)
Pr(D) (2)

Taking logs, we find

log Pr(GjD) = log Pr(DjG) + log Pr(G) + c
where c = log Pr(D) is a constant independent of G. Thus
the effect of the prior is equivalent to penalizing overly
complex models, as in the Minimum Description Length
(MDL) approach.

An exact Bayesian approach to model selection is usually
unfeasible, since it involves computing the marginal likeli-
hood P (D) =PGP (D;G), which is a sum over an expo-
nential number of models (see Section 6.2). However, we
can use an asymptotic approximation to the posterior called
BIC (Bayesian Information Criterion), which is defined as
follows:

log Pr(GjD) � log Pr(DjG; Θ̂G) � logN
2

#G
where N is the number of samples, #G is the dimension of
the model5, and Θ̂G is the ML estimate of the parameters.

5In the fully observable case, the dimension of a model is the
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Figure 5: The subsets of f1; 2; 3; 4g arranged in a lattice.
The k’th row represents subsets of size k, for 0 � k � 4.

The first term is computed using Equation 1. The second
term is a penalty for model complexity. Since the number of
parameters in the model is the sum of the number of param-
eters in each node6, we see that the BIC score decomposes
just like the log-likelihood (Equation 1). Hence all of the
techniques invented for maximizing MI also work for the
BIC case, and indeed, any decomposable scoring function.

6.2 Algorithms for finding the best model

Given that the score is decomposable, we can learn
the parent set for each node independently. There arePnk=0

�nk� = 2n such sets, which can be arranged in a

lattice as shown in Figure 5. The problem is to find the
highest scoring point in this lattice.

The approach taken by REVEAL [LFS98] is to start at
the bottom of the lattice, and evaluate the score at all
points in each successive level, until a point is found with
a score of 1.0. Since the scoring function they use isI(X; Pa(X))=maxfH(X);H(Pa(X))g, where I(X;Y ) is
the mutual information between X and Y , andH(X) is the
entropy of X (see Appendix A for definitions), 1.0 is the
highest possible score, and corresponds to Pa(X) being a
perfect predictor of X, i.e., H(XjPa(X)) = 0.

A normalized MI of 1 is only achievable with a deterministic
relationship. For stochastic relationships, we must decide
whether the gains in MI produced by a larger parent set is
“worth it”. The standard approach in the RA community
uses the fact [Mil55] that �2(X;Y ) � I(X;Y )N ln(4),
where N is the number of samples. Hence we can use a�2 test to decide whether an increase in MI is statistically
significant. (This also gives us some kind of confidence
measure on the connections that we learn.) Alternatively,
we can use a complexity penalty term, as in the BIC score.

Of course, if we do not know if we have achieved the max-
imum possible score, we do not know when to stop search-
ing, and hence we must evaluate all points in the lattice (al-
though we can obviously use branch-and-bound). For largen, this is computationally infeasible, so a common approach

number of free parameters. In a model with hidden variables, it
might be less than this [GHM96].

6Hence nodes with compact representations of their CPDs will
encur a lower penalty, which can allow connections to form which
might otherwise have been rejected [FG96].



is to only search up until level K (i.e., assume a bound on
the maximum number of parents of each node), which takesO(nK) time. Unfortunately, in real genetic networks, it is
known that some genes can have very high fan-in (and fan-
out), so restricting the bound to K = 3 would make it
impossible to discover these important “master” genes.

The obvious way to avoid the exponential cost (and the need
for a bound, K) is to use heuristics to avoid examining all
possible subsets. (In fact, we must use heuristics of some
kind, since the problem of learning optimal structure is
NP-hard [CHG95].) One approach in the RA framework,
called Extended Dependency Analysis (EDA) [Con88], is
as follows. Start by evaluating all subsets of size up to two,
keep all the ones with significant (in the �2 sense) MI with
the target node, and take the union of the resulting set as the
set of parents.

The disadvantage of this greedy technique is that it will fail
to find a set of parents unless some subset of size two has
significant MI with the target variable. However, a Monte
Carlo simulation in [Con88] shows that most random rela-
tions have this property. In addition, highly interdependent
sets of parents (which might fail the pairwise MI test) violate
the causal independence assumption, which is necessary to
justify the use of noisy-OR and similar CPDs.

An alternative technique, popular in the UAI community,
is to start with an initial guess of the model structure (i.e.,
at a specific point in the lattice), and then perform local
search, i.e., evaluate the score of neighboring points in the
lattice, and move to the best such point, until we reach a
local optimum. We can use multiple restarts to try to find
the global optimum, and to learn an ensemble of models.
Note that, in the partially observable case, we need to have
an initial guess of the model structure in order to estimate
the values of the hidden nodes, and hence the (expected)
score of each model (see Section 5); starting with the fully
disconnected model (i.e., at the bottom of the lattice) would
be a bad idea, since it would lead to a poor estimate.

6.3 Sample complexity

In addition to the computational cost, another important
consideration is the amount of data that is required to re-
liably learn structure. For deterministic boolean networks,
this issue has been addressed from a statistical physics per-
spective [Her98] and a computational learning theory (com-
binatorial) perspective [AMK99]. In particular, [AMK99]
prove that, if the fan-in is bounded by a constant K, the
number of samples needed to identify a boolean network ofn nodes is lower bounded by Ω(2K +K logn) and upper
bounded by O(22K2K logn). Unfortunately, the constant
factor is exponential inK, which can be quite large for cer-
tain genes, as we have already remarked. These analyses all
assume a “tabula rasa” approach; however, in practice, we
will often have strong prior knowledge about the structure
(or at least parts of it), which can reduce the data require-
ments considerably.

(b)(a)

Figure 6: (a) A BN with a hidden variable H. (b) The sim-
plest network that can capture the same distributionwithout
using a hidden variable (created using arc reversal and node
elimination). If H is binary and the other nodes are tri-
nary, and we assume full CPTs, the first network has 45
independent parameters, and the second has 708.

6.4 Scaling up to large networks

Since there are about n � 6400 genes for yeast (S. Cere-
visae), all of which can now be simultaneously measured
[DLB97], it is clear that we will have to do some pre-
processing to exclude the “irrelevant” genes, and just try to
learn the connections between the rest. After all, many of
them do not change their expression level during a given
experiment. In the [DLB97] dataset, for example, which
consists of 7 times steps, only 416 genes showed a sig-
nificant change — the rest are completely uninformative.
Of course, even n = 416 is too big for the techniques we
have discussed, so we must pre-process further, perhaps by
clustering genes with similar timeseries [ESBB98]. In Sec-
tion 8.1, we discuss techniques for learning the structure of
DBNs with continuous state, which scale much better than
the methods we have discussed above for discrete models.

7 Unknown structure, partial observability

Finally, we come to the hardest case of all, where the
structure is unknown and there are hidden variables and/or
missing data. One difficulty is that the score does not de-
compose. However, as observed in [Fri97, Fri98, FMR98,
TMCH98], the expected score does decompose, and so we
can use an iterative method, which alternates between eval-
uating the expected score of a model (using an inference
engine), and changing the model structure, until a local
maximum is reached. This is called the Structural EM
(SEM) algorithm. SEM was succesfully used to learn the
structure of discrete DBNs withinmissing data in [FMR98].

7.1 Inventing new hidden nodes

So far, structure learning has meant finding the right con-
nectivity between pre-existing nodes. A more interesting
problem is inventing hidden nodes on demand. Hidden
nodes can make a model much more compact: see Fig-
ure 6. The standard approach is to keep adding hidden
nodes one at a time, to some part of the network (see be-
low), performing structure learning at each step, until the
score drops. One problem is choosing the cardinality (num-



ber of possible values) for the hidden node, and its type of
CPD. Another problem is choosing where to add the new
hidden node. There is no point making it a child, since
hidden children can always be marginalized away, so we
need to find an existing node which needs a new parent,
when the current set of possible parents is not adequate.

[RM98] use the following heuristic for finding nodes which
need new parents: they consider a noisy-OR node which is
nearly always on, even if its non-leak parents are off, as an
indicator that there is a missing parent. Generalizing this
technique beyond noisy-ORs is an interesting open prob-
lem. One approach might be to examine H(XjPa(X)): if
this is very high, it means the current set of parents are in-
adequate to “explain” the residual entropy; if Pa(X) is the
best (in the BIC or �2 sense) set of parents we have been
able to find in the current model, it suggests we need to
create a new node and add it to Pa(X).
A simple heuristic for inventing hidden nodes in the case of
DBNs is to check if the Markov property is being violated
for any particular node. If so, it suggests that we need
connections to slices further back in time. Equivalently,
we can add new lag variables (see Section 2.5) and connect
to them. (Note that reasoning across multiple time slices
forms the basis of the (“model free”) correlational analysis
approach of [AR95, ASR97].)

Another heuristic for DBNs might be to first perform a clus-
tering of the timeseries of the observed variables (see e.g.,
[ESBB98]), and then to associate hidden nodes with each
cluster. The result would be a Markov model with a tree-
structured hidden “backbone” c.f., [JGS96]. This is one
possible approach to the problem of learning hierarchically
structured DBNs. (Building hierarchical (object oriented)
BNs and DBNs by hand is straightforward, and there are
algorithms which can exploit this modular structure to a
certain extent to speed up inference [KP97, FKP98].)

Of course, interpreting the “meaning” of hidden nodes is
always tricky, especially since they are often unidentifiable,
e.g., we can often switch the interpretation of the true and
false states (assuming for simplicity that the hidden node
is binary) provided we also permute the parameters appro-
priately. (Symmetries such as this are one cause of the
multiple maxima in the likelihood surface.) Our opinion is
that fully automated structure discovery techniques can be
useful as hypothesis generators, which can then be tested
by experiment.

8 DBNs with continuous state

Up until now, we have assumed, for simplicity, that all the
random variables are discrete-valued. However, in reality,
most of the quantities we care about in genetic networks are
continuous-valued. If we coarsely quantize the continuous
variables (i.e., convert them to a small number of discrete
values), we lose a lot of information, but if we finely quan-
tize them, the resulting discrete model will have too many
parameters. Hence it is better to work with continuous
variables directly.

To create a BN with continuous variables, we need to
specify the graph structure and the Conditional Proba-
bility Distributions at each node, as before. The most
common distribution is a Gaussian, since it is analytically
tractable. Consider, for example, the DBN in Figure 2(a),
with P (Xt = xtjXt�1 = xt�1) = N (xt;�+Wxt�1;Σ),
whereN (x;�;Σ) = 1Z exp

�(x� �)0jΣj�1(x� �)� (3)

is the Normal (Gaussian) distribution evaluated at x, Z =(2�)n=2jΣj 1
2 is the normalizing constant to ensure the den-

sity integrates to 1, andW is the weight or regression matrix.
(x0 denotes the transpose of x.) Another way of writing this
is Xt = WXt�1 + � + �t, where �t � N (0;Σ) are inde-
pendent Gaussian noise terms, corresponding to unmod-
elled influences. This is called a first-order auto-regressive
AR(1) time series model [Ham94].

If Xt is a vector containing the expression levels of all the
genes at time t, then this corresponds precisely to the model
in [DWFS99]. (They do not explicitely mention Gaussian
noise, but it is implicit in their decision to use least squares
to fit the W term: see Section 8.1). Despite the simplicity
of this model (in particular, its linear nature), they find that
it models their experimental data very well.

We can also define nonlinear models. For example, if we de-
fineXt = g(WXt�1)+�t, where g(x) = 1=(1+exp(�x))
is the sigmoid function, we obtain the nonlinear model in
[WWS99].

It is simple to extend both the linear and nonlinear models
to allow for external inputs Et, so that we regress Xt onXt�1 and Et, as the authors point out. For example, in
[DWFS99], they inject kainate — “a glutamatergic agonist
which causes seizures, localized cell death, and severely
disrupts the normal gene expression patterns” — into rat
CNS, and measure expression levels before and after. Their
model is thereforeXt =WXt�1+bKt+�, whereKt = 0
before the injection, and Kt = exp(��=2) if t is � hours
after injection, and b and � are vectors of length n, repre-
senting the response to kainate and an offset (bias) term,
respectively.

In Figure 2(a), the Xt variables are always observed. Now
consider Figure 2(b), where only the Yt are observed, and
have Gaussian CPDs. If the Xt are hidden, discrete vari-
ables, we have P (Yt = yjXt = i) = N (y;�i;Σi); this
is an HMM with Gaussian outputs. If the Xt are hid-
den, continuous variables, we have P (Yt = yjXt = x) =N (y;� + Cx;Σ). This is called a Linear Dynamical Sys-
tem, since both the dynamics, P (XtjXt�1), and the obser-
vations,P (YtjXt), are linear. (It is also called a State Space
model.)

To perform inference in an LDS, we can use the well-
known Kalman filter algorithm [BSL93], which is just a
special case of the junction tree algorithm. If the dynamics
are non-linear, however, inference becomes much harder;
the standard technique is to make a local linear approxima-
tion — this is called the Extended Kalman Filter (EKF),
and is similar to techniques developed in the Recurrent



Neural Networks literature [Pea95]. (One reason for the
widespread success of HMMs with Gaussian outputs is that
the discrete hidden variables can be used to approximate
arbitrary non-linear dynamics, given enough training data.)
In the rest of this paper, we will stick to the case of fully
observable (but possibly non-linear) models, for simplicity,
so that inference will not be necessary. (We will, however,
consider Bayesian methods of parameter learning, which
can be thought of as inferring the most probable values of
nodes which represent the parameters themselves.)

8.1 Learning

We have assumed that Xt is a vector of random variables.
If we were to represent each component of this vector as
its own (scalar) node, the inter-slice connections would
correspond to the non-zero values in the weight matrixW , and undirected connections within a slice would cor-
respond to non-zero entries in Σ�1 [Lau96]. For example,

if W =  
1 1 1
1 0 0
0 1 1

!
, and Σ is diagonal, the model is

equivalent to the one in Figure 3(a). Hence, in the case
of continuous state models, we can convert back and forth
between representing the structure graphically and numeri-
cally. This means that structure learning reduces to param-
eter fitting, and we can avoid expensive search through a
discrete space of models! (c.f., [Bra98].) Consequently, we
will now discuss techniques for learning the parameters of
continuous-state DBNs.

Consider the AR(1) model in Figure 2(a). For notational
simplicity we will assume Σ = �2I, so the normalizing
constant is Z = ( 2�� )n=2, where � = 1=�2 is the inverse
variance (the precision). Using Equation 3, we find that the
likelihood of the data (ignoring terms which are independent
of W ) isP (DjW ) = SYl=1

TYt=2

P (X ltjXlt�1)= 1ZD(�) exp

0@Xl;t ��2 jjXlt �WX lt�1jj21A= 1ZD(�) exp (��ED) (4)

whereXlt is the value ofX at time t in sequence l, ZD(�) =ZN is the product of the individual normalizing constants,N = S(T �1) is the number of samples, andED is an error
(cost) function on the data. (Having multiple sequences is
essentially the same as concatenating them into a single
long sequence (modulo boundary conditions), so we shall
henceforth just use a single index, t.) Differentiating this
with respect to W and setting to 0 yieldsW =  TXt=2

XtXt�1

! TXt=2

XtXt!�1

Let us now rewrite this in a more familiar form. Define the

matricesX = 0B@ X0
1

...X0T�1

1CA ; Y = 0@ X 0
2

...X 0T 1A
We can think of the t’th row of X as the t’th input vector
to a linear neural network with no hidden layers (i.e., a per-
ceptron), and the t’th row of Y as the corresponding output.
Using this notation, we can rewrite the above expression as
follows (this is called the normal equation):W 0 = (X 0X)�1X 0Y = XyY
whereXy is the pseudo-inverse of X (which is not square).
Thus we see that the least squares solution is the same as the
Maximum Likelihood (ML) solution assuming Gaussian
noise.

The technique used by D’haeseleer et al. [DWFS99] is
to compute the least squares value of W , and interpretjWi;jj < �, for some (unspecified) threshold �, as indicating
the absence of an arc between nodes i and j. However, as
Bishop writes [Bis95, p.360], “[this technique] has little
theoretical motivation, and performs poorly in practice”.

More sophisticated techniques have been developed in the
neural network literature, which involve examining the
change in the error function due to small changes in the
values of the weights. This requires computing the HessianH of the error surface. In the technique of “optimal brain
damage” [CDS90], they assume H is diagonal; in the more
sophisticated technique of “optimal brain surgeon” [HS93],
they remove this assumption.

Since we believe (hope!) that the true model is sparse (i.e.,
most entries in W are 0), we can encode this knowledge
(assumption) by using aN (0; 1=�)Gaussian prior7 for each
weight:P (W ) = Yij P (Wij) =Yij 1(2�=�) 1

2

exp
���

2
W 2ij�= 1ZW (�) exp

0@��
2

Xij W 2ij1A= 1ZW (�) exp(��EW ) (5)

where ZW (�) = ( 2�� )n2=2 (since W is an n � n matrix)
and EW is an error (cost) function on the weights. Then,
using Bayes’ rule (Equation 2) and Equations 4 and 5, the
posterior distribution on the weights isP (W jD) = 1ZS(�; �) exp(��ED � �EW )
Since the denominator is independent of W , the Maximum
Posterior (MAP) value of W is given by minimizing the

7In [WWS99], they use an ad-hoc iterative pruning method to
achieve a similar effect.



cost functionS(W ) = �ED + �EW = �ED + � 1
2

Xi;j W 2i;j
The second term is called a regularizer, and encourages
learning of a weight matrix with small values. (Unfortu-
nately, this prior favours many small weights, rather than
a few large ones, although this can be fixed [HP89].) This
regularization technique is also called weight decay. Note
that the use of a regularizer overcomes the problem thatW will often be underdetermined, i.e., there will be fewer
samples than parameters, Nn < n2.

The values � and � are called hyperparameters, since they
control the prior on the weights and the system noise, re-
spectively. Since their values are unknown, the correct
Bayesian approach is to integrate them out, but an approxi-
mation that actually works better in practice is to approxi-
mate their posterior by a Gaussian (or maybe a mixture of
Gaussians), find their MAP values, and then plug them in
to the above equation: see [Bis95, sec. 10.4] and [Mac95]
for details.

We can associate a separate hyperparameter �i;j for each
weightWi;j, find their MAP values, and use this as a “soft”
means of findingwhich entries ofWi;j to keep: this is called
Automatic Relevance Determination (ARD) [Mac95], and
has been found to peform better than the weight deletion
techniques discussed above, especially on small data sets.

9 Conclusion

In this paper, we have explained what DBNs are, and dis-
cussed how to learn them. In the future, we hope to apply
these techniques (in particular, the ones discussed in Sec-
tion 8.1) to real biological data, when enough becomes
publicly available.8

A The equivalence between Mutual
Information and Maximum Likelihood
methods

We start by introducing some standard notation from infor-
mation theory [CT91].I(X;Y ) = Xx;y P (x; y) log

P (x; y)P (x)P (y)= H(X) �H(XjY )= H(X) +H(Y ) �H(X;Y )
8We carried out some provisional experiments on a

subset of the data described in [WFM+98] (available at
rsb.info.nih.gov/mol-physiol/PNAS/GEMtable.html),
which has n = 112, T = 9 and S = 1. Applying the ARD tech-
nique to the 17 genes involved in the GAD/GABA subsystem,
described in [DWFS99], we found that all the �i;j ’s were signifi-
cant, indicating a fully connected graph. [DWFS99] got a sparse
graph, but used a larger (unpublished) data set with T = 28, and
used an unspecified pruning threshold �.

is the mutual information (MI) between X and Y ,H(X) = �Xx P (x) logP (x)
is the entropy of X, andH(XjY ) = �Xx;y P (y)P (xjy) logP (xjy)
is the conditional entropy of X given Y . (If Pa(Xi) = ;,
we define H(XijPa(Xi)) = H(Xi) and I(Xi; Pa(Xi)) =
0.) Finally, we define the MI score of a model asMIS(G;D) = Pi I(Xi; PaG(Xi);D), where the prob-
abilities are set to their empirical values given D, and
PaG(Xi) mean the parents of node Xi in graph G.

Theorem. Let G;G0 be BNs in which every node has a full
CPT, and D be a fully observable data set. Then9L(G;D)� L(G0;D) = MIS(G;D) �MIS(G0;D)
Proof: To see this, note that the normalized log-likelihood
(Equation 1) can be rewritten asL = 1N Xi;j;kNijk log Pr(Xi = kj�i = j)
where we have defined �i def= Pa(Xi) for brevity. Nijk is
the number of times the event (Xi = k; �i = j) occurs
in the whole training set. (If �i = ;, we define Pr(Xi =kj�i = j) = Pr(Xi = k) and Nijk as the number of times
the event Xi = k occurs.) If we assume each node is a full
CPT, and set the probabilities to their empirical estimates,
then Nijk = N Pr(Xi = k; �i = j), and soL = Xi;j;k Pr(Xi = k; �i = j) log Pr(Xi = kj�i = j)= Xi �H(Xij�i)= Xi I(Xi; �i)�H(Xi)
Since H(Xi) is independent of the structure of the graphG, we find L(G;D) � L(G0;D) =Pi I(Xi; PaG(Xi)) �I(Xi; PaG0(Xi)).
We note that this theorem is similar to the result in [CL68],
who show that the optimal 10 tree-structured MRF is a max-
imal weight spanning tree (MWST) of the graph in which
the weight of an arc between two nodes, Xi and Xj , isI(Xi; Xj). [MJM98] extends this result to mixtures of
trees. Trees have the significant advantage that we can

9If f(G)�f(G0) = g(G)�g(G0), then f(G) > f(G0) ()g(G) > g(G0), so f and g rank models in the same order.
However, there might be many models which receive the same
score under f or g, so it is ambiguous to say arg maxG f(G) =
arg maxG g(G).

10In the sense of minimizing the KL divergence between the
true and estimated distribution.



compute the MWST in O(n2) time, where n is the number
of variables. However, it is not clear if they are a useful
model for gene expression data.

If a node does not have a full CPT, but instead has a para-
metric CPD of the right form (i.e., at least capable of rep-
resenting the “true” conditional probability distribution of
the node), then as N ! 1, Nijk ! N Pr(Xi = kj�j),
and the proof goes through as before. But this leaves us
with the additional problem of choosing the form of CPD:
see Section 4.2.
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