
Accelerated Training of Conditional Random
Fields with Stochastic Gradient Methods

S.V. N. Vishwanathan svn.vishwanathan@nicta.com.au
Nicol N. Schraudolph nic.schraudolph@nicta.com.au

Statistical Machine Learning, National ICT Australia, Locked Bag 8001, Canberra ACT 2601, Australia; and
Research School of Information Sciences & Engr., Australian National University, Canberra ACT 0200, Australia

Mark W. Schmidt schmidtm@cs.ubc.ca
Kevin P. Murphy murphyk@cs.ubc.ca

Department of Computer Science, University of British Columbia, Canada

Abstract

We apply Stochastic Meta-Descent (SMD),
a stochastic gradient optimization method
with gain vector adaptation, to the train-
ing of Conditional Random Fields (CRFs).
On several large data sets, the resulting opti-
mizer converges to the same quality of solu-
tion over an order of magnitude faster than
limited-memory BFGS, the leading method
reported to date. We report results for both
exact and inexact inference techniques.

1. Introduction

Conditional Random Fields (CRFs) have recently
gained popularity in the machine learning community
(Lafferty et al., 2001; Sha & Pereira, 2003; Kumar &
Hebert, 2004). Current training methods for CRFs1

include generalized iterative scaling (GIS), conjugate
gradient (CG), and limited-memory BFGS. These are
all batch-only algorithms that do not work well in
an online setting, and require many passes through
the training data to converge. This currently limits
the scalability and applicability of CRFs to large real-
world problems. In addition, for many graph struc-
tures with large treewidth, such as 2D lattices, com-
puting the exact gradient is intractable. Various ap-
proximate inference methods can be employed, but
these cause many optimizers to break.

1In this paper, “training” specifically means penalized
maximum likelihood parameter estimation.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

Stochastic gradient methods, on the other hand, are
online and scale sub-linearly with the amount of train-
ing data, making them very attractive for large data
sets; empirically we have also found them more re-
silient to errors made when approximating the gradi-
ent. Unfortunately their asymptotic convergence to
the optimum is often painfully slow. Gain adaptation
methods like Stochastic Meta-Descent (SMD) accel-
erate this process by using second-order information
to adapt the gradient step sizes (Schraudolph, 1999,
2002). Key to SMD’s efficiency is the implicit compu-
tation of fast Hessian-vector products (Pearlmutter,
1994; Griewank, 2000).

In this paper we marry the above two techniques and
show how SMD can be used to significantly acceler-
ate the training of CRFs. The rest of the paper is
organized as follows: Section 2 gives a brief overview
of CRFs while Section 3 introduces stochastic gradi-
ent methods. We present experimental results for 1D
chain CRFs in Section 4, and 2D lattice CRFs in Sec-
tion 5. We conclude with a discussion in Section 6.

2. Conditional Random Fields (CRFs)

CRFs are a probabilistic framework for labeling and
segmenting data. Unlike Hidden Markov Models
(HMMs) and Markov Random Fields (MRFs), which
model the joint density P(X, Y) over inputs X and
labels Y , CRFs directly model P(Y |x) for a given in-
put sample x. Furthermore, instead of maintaining a
per-state normalization, which leads to the so-called
label bias problem (Lafferty et al., 2001), CRFs uti-
lize a global normalization which allows them to take
long-range interactions into account.

We now introduce exponential families, and describe
CRFs as conditional models in the exponential family.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.1. Exponential Families

Given x ∈ X and y ∈ Y (where Y is a discrete space),
a conditional exponential family distribution over Y,
parameterized by the natural parameter θ ∈ Θ, can
be written in its canonical form as

p(y|x;θ) = exp(〈φ(x,y),θ〉 − z(θ|x)). (1)

Here φ(x,y) is called the sufficient statistics of the
distribution, 〈·, ·〉 denotes the inner product, and z(·)
the log-partition function

z(θ|x) := ln
∑

y

exp(〈φ(x,y),θ〉). (2)

It is well-known (Barndorff-Nielsen, 1978) that the log-
partition function is a C∞ convex function. Further-
more, it is also the cumulant generating function of
the exponential family, i.e.,

∂

∂θ
z(θ|x) = Ep(y|x;θ)[φ(x,y)], (3)

∂2

(∂θ)2
z(θ|x) = Covp(y|x;θ)[φ(x,y)], etc. (4)

The sufficient statistics φ(x,y) represent salient fea-
tures of the data, and are typically chosen in an
application-dependent manner as part of the CRF de-
sign for a given machine learning task.

2.2. Clique Decomposition Theorem

The clique decomposition theorem essentially states
that if the conditional density p(y|x;θ) factorizes ac-
cording to a graph G, then the sufficient statistics (or
features) φ(x,y) decompose into terms over the max-
imal cliques {c1, . . . cn} of G: φ(x,y) = ({φc(x,yc)}),
where c indexes the maximal cliques, and yc is the
label configuration for nodes in clique c.

For ease of notation we will assume that all maximal
cliques have size two, i.e., each edge of the graph has
a potential associated with it, denoted φij for an edge
between nodes i and j. We will also refer to single-
node potentials φi as local evidence.

To reduce the amount of training data required, all
cliques share the same parameters θ (Lafferty et al.,
2001; Sha & Pereira, 2003); this is the same parameter
tying assumption as used in HMMs. This enables us
to compute the sufficient statistics by simply summing
the clique potentials over all nodes and edges:

φ(x,y) =

 ∑
ij ∈E

φij(x, yi, yj),
∑
i∈N

φi(x, yi)

 (5)

where E is the set of edges and N is the set of nodes.

2.3. Parameter Estimation

Let X := {xi ∈ X}m
i=1 be a set of m data points

and Y := {yi ∈ Y}m
i=1 be the corresponding set of

labels. We assume a conditional exponential family
distribution over the labels, and also that they are i.i.d.
given the training samples. Thus we can write

P(Y |X;θ) =
m∏

i=1

p(yi|xi;θ) (6)

= exp(
m∑

i=1

[〈φ(xi,yi),θ〉 − z(θ|xi)]).

Bayes’ rule states that P(θ|X, Y) ∝ P(θ) P(Y |X;θ).
For computational convenience we assume an isotropic
Gaussian prior over the parameters θ, i.e., P(θ) ∝
exp(− 1

2σ2 ||θ||2) for some fixed σ, and write the nega-
tive log-posterior of the parameters given the data and
labels, up to a constant, as

L(θ) :=
||θ||2

2σ2
−

m∑
i=1

[〈φ(xi,yi),θ〉 − z(θ|xi)] (7)

= − ln P(θ|X, Y) + const.

Maximum a posteriori (MAP) estimation involves
maximizing P(θ|X, Y), or equivalently minimizing
L(θ). Prediction then utilizes the plug-in estimate
p(y|x;θ∗), where θ∗ = argminθ L(θ).

2.4. Gradient and Expectation

As stated in Section 2.3, to perform MAP estimation
we need to minimize L(θ). For this purpose we com-
pute its gradient g(θ) := ∂

∂θ L(θ). Differentiating (7)
with respect to θ and substituting (3) yields

g(θ) =
θ

σ2
−

m∑
i=1

[
φ(xi,yi)− Ep(y|xi;θ)[φ(xi,y)]

]
. (8)

which has the familiar form of features minus expected
features. The expected feature vector for each clique,

Ep(y|x;θ) [φ(x,y)] =
∑
y∈Y

p(y|x;θ)φ(x,y) (9)

can be computed in O(N | Y |w) time using dynamic
programming, where N is the number of nodes and w
is the treewidth of the graph, i.e., the size of its largest
clique after the graph has been optimally triangulated.
For chains and (undirected) trees, w = 2, so this com-
putation is usually fairly tractable, at least for small
state spaces. For cases where this is intractable, we
discuss various approximations in Section 2.6. Since
we assume all the variables are fully observed during
training, the objective function is convex, so we can
find the global optimum.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.5. Hessian and Hessian-Vector Product

In addition to the gradient, second-order methods
based on Newton steps also require computation and
inversion of the Hessian H(θ) := ∂2

(∂θ)2 L(θ). Taking
the gradient of (8) wrt. θ and substituting (4) yields

H(θ) =
I

σ2
+

m∑
i=1

Covp(y|xi;θ)φ(xi,y). (10)

Explicitly computing the full Hessian (let alone invert-
ing it) costs O(n2) time per iteration, where n is the
number of features (sufficient statistics). In our 1-D
chain CRFs (Section 4) n > 105, making this approach
prohibitively expensive. Our 2-D grid CRFs (Sec-
tion 5) have few features, but computing the Hessian
there requires the pairwise marginals P(xi,xj |y) ∀i, j,
which is O(| Y |2k) for an k × k grid, again infeasible
for the problems we are looking at.

Our SMD optimizer (given below) instead makes use
of the differential

dg(θ) = H(θ) dθ (11)

to efficiently compute the product of the Hessian with
a chosen vector v =: dθ by forward-mode algorithmic
differentiation (Pearlmutter, 1994; Griewank, 2000).
Such Hessian-vector products are implicit — i.e., they
never calculate the Hessian itself— and can be com-
puted along with the gradient at only 2–3 times the
cost of the gradient computation alone.

In fact the similarity between differential and complex
arithmetic (i.e., addition and multiplication) implies

g(θ + i ε dθ) = g(θ) + O(ε2) + i ε dg(θ), (12)

so for suitably small ε (say, 10−150) we can effectively
compute the Hessian-vector product in the imaginary
part of the gradient function extended to the complex
plane (Pearlmutter, personal communication). We use
this technique in the experiments reported below.

2.6. Approximate Inference and Learning

Since we assume that all the variables are observed
in the training set, we can find the global optimum
of the objective function, so long as we can compute
the gradient exactly. Unfortunately for many CRFs
the treewidth is too large for exact inference (and
hence exact gradient computation) to be tractable.
The treewidth of an N = k × k grid, for instance,
is w = O(2k) (Lipton & Tarjan, 1979), so exact in-
ference takes O(| Y |2k) time. Various approximate in-
ference methods have been used in parameter learning
algorithms (Parise & Welling, 2005). Here we con-
sider two of the simplest: mean field (MF) and loopy

belief propagation (LBP) (Weiss, 2001; Yedidia et al.,
2003). The MF free energy is a lower bound on the log-
likelihood, and hence an upper bound on our negative
log-likelihood objective. The Bethe free energy mini-
mized by LBP is not a bound, but has been found em-
pirically to often better approximate the log-likelihood
than the MF free energy (Weiss, 2001). Although LBP
can sometimes oscillate, convergent versions have been
developed (e.g., Kolmogorov, 2004).

For some kinds of potentials, one can use graph cuts
(Boykov et al., 2001) to find an approximate MAP
estimate of the labels, which can be used inside a
Viterbi training procedure. However, this produces
a very discontinuous estimate of the gradient (though
one could presumably use methods similar to Collins’
(2002) voted perceptron to smoothe this out). For the
same reason, we use the sum-product version of LBP
rather than max-product.

An alternative to trying to approximate the condi-
tional likelihood (CL) is to change the objective func-
tion. The pseudo-likelihood (PL) proposed by Besag
(1986) has the significant advantage that it only re-
quires normalizing over the possible labels at one node:

θ̂PL = arg max
θ

∑
m

∑
i

ln p(ym
i |ym

Ni
,xm, θ), (13)

where Ni are the neighbors of node i, and

p(ym
i |ym

Ni
,xm, θ) =

φi(ym
i)

zi(xm, θ)

∏
j∈Ni

φij(ym
i , ym

j), (14)

zi(xm, θ) =
∑
yi

φi(yi)
∏

j∈Ni

φij(ym
i , ym

j). (15)

Here ym
i is the observed label for node i in the m’th

training case, and zi sums over all possible labels for
node i. We have dropped the conditioning on xm in
the potentials for notational simplicity.

Although the pseudo-likelihood is not necessarily a
good approximation to the likelihood, as the amount
of training data (or the size of the lattice, when us-
ing tied parameters) tends to infinity, its maximum
coincides with that of the likelihood (Winkler, 1995).

Note that pseudo-likelihood estimates the parameters
conditional on i’s neighbors being observed. As a con-
sequence, PL tends to place too much emphasis on the
edge potentials, and not enough on the local evidence.
For image denoising problems, this is often evident as
“oversmoothing”. The “frailty” of pseudo-likelihood
in learning to segment images was also noted by Blake
et al. (2004). Regularizing the edge parameters does
help, but as we show in Section 5, it is often better to
try to optimize the correct objective function.

Accelerated Training of CRFs with Stochastic Gradient Methods

3. Stochastic Gradient Methods

In this section we describe stochastic gradient de-
scent and discuss how its convergence can be improved
by gain vector adaptation via the Stochastic Meta-
Descent (SMD) algorithm (Schraudolph, 1999, 2002).

3.1. Stochastic Approximation of Gradients

Since the log-likelihood (7) is summed over a poten-
tially large number m of data points, we approximate
it by subsampling batches of b � m points:

L(θ) ≈
m
b −1∑
t=0

Lb(θ, t), where (16)

Lb(θ, t) =
b||θt||2

2mσ2
−

b∑
i=1

[〈φ(xbt+i,ybt+i),θt〉 (17)

− z(θt|xbt+i)].

Note that for θt = const. (16) would be exact. We will,
however, interleave an optimization step that modifies
θ with each evaluation of Lb(θ, t), resp. its gradient

gt := ∂
∂θ Lb(θ, t). (18)

The batch size b controls the stochasticity of the ap-
proximation. At one extreme, b = m recovers the con-
ventional deterministic algorithm; at the other, b = 1
adapts θ fully online, based on individual data sam-
ples. Typically small batches of data (5 ≤ b ≤ 20) are
found to be computationally most efficient.

Unfortunately most advanced gradient methods do
not tolerate the sampling noise inherent in stochas-
tic approximation: it collapses conjugate search di-
rections (Schraudolph & Graepel, 2003) and confuses
the line searches that both conjugate gradient and
quasi-Newton methods depend upon. Full second-
order methods are unattractive here because the com-
putational cost of inverting the Hessian is better amor-
tized over a large data set.

This leaves plain first-order gradient descent. Though
this can be very slow to converge, the speed-up gained
by stochastic approximation dominates on large, re-
dundant data sets, making this strategy more efficient
overall than even sophisticated deterministic methods.
The convergence of stochastic gradient descent can be
further improved by gain vector adaptation.

3.2. SMD Gain Vector Adaptation

Consider a stochastic gradient descent where each co-
ordinate of θ has its own positive gain:

θt+1 = θt − ηt · gt, (19)

where ηt ∈ Rn
+, and · denotes component-wise (Hada-

mard) multiplication. The gain vector η serves as a
diagonal conditioner; it is simultaneously adapted via
a multiplicative update with meta-gain µ:

ηt+1 = ηt ·max(1
2 , 1− µ gt+1 · vt+1), (20)

where the vector v ∈ Θ characterizes the long-term
dependence of the system parameters on gain history
over a time scale governed by the decay factor 0≤λ≤1.
It is computed by the simple iterative update

vt+1 = λvt − ηt · (gt + λHtvt), (21)

where Htvt is calculated efficiently via (11). Since θ0

does not depend on any gains, v0 = 0. SMD thus
introduces two scalar tuning parameters, with typical
values (for stationary problems) µ = 0.1 and λ = 1; see
Vishwanathan et al. (2006) for a detailed derivation.

4. Experiments on 1D Chain CRFs

We have applied SMD as described in Section 3, com-
prising Equations (19), (20), and (21), to the training
of CRFs as described in Section 2, using the stochas-
tic gradient (18). The Hessian-vector product Htvt

in (21) is computed efficiently alongside the gradient
by forward-mode algorithmic differentiation using the
differential (11) with dθ := vt.

We implemented this by modifying the CRF++ soft-
ware2 developed by Taku Kudo. We compare the con-
vergence of SMD to three control methods:

• Simple stochastic gradient descent (SGD) with a
fixed gain η0,

• the batch-only limited-memory BFGS algorithm
as supplied with CRF++, storing 5 BFGS correc-
tions, and

• Collins’ (2002) perceptron (CP), a fully online up-
date (b = 1) that optimizes a different objective.

Except for CP —which in our implementation re-
quired far more time per iteration than the other meth-
ods — we repeated each experiment several times, ob-
taining for different random permutations of the data
substantially identical results to those reported below.

4.1. CoNLL-2000 Base NP Chunking Task

Our first experiment uses the well-known CoNLL-2000
Base NP chunking task (Sang & Buchholz, 2000). Text

2Available under LGPL from http://chasen.org/
∼taku/software/CRF++/. Our modified code, as well as
the data sets, configuration files, and results for all exper-
iments reported here will be available for download from
http://sml.nicta.com.au/code/crfsmd/.

Accelerated Training of CRFs with Stochastic Gradient Methods

Figure 1. Left: F-scores on the CoNLL-2000 shared task,
against passes through the training set, for SMD (solid),
SGD (dotted), BFGS (dash-dotted), and CP (dashed).
Horizontal line: F-score reported by Sha & Pereira (2003).
Right: Enlargement of the final portion of the figure.

chunking, an intermediate step towards full parsing,
consists of dividing a text into syntactically correlated
parts of words. The training set consists of 8936 sen-
tences, each word annotated automatically with part-
of-speech (POS) tags. The task is to label each word
with a label indicating whether the word is outside a
chunk, starts a chunk, or continues a chunk. The stan-
dard evaluation metrics for this task are the precision
p (fraction of output chunks which match the refer-
ence chunks), recall r (fraction of reference chunks re-
turned), and their harmonic mean, the F-score given
by F = 2pr/(p + r), on a test set of 2012 sentences.

Sha & Pereira (2003) found BFGS to converge faster
than CG and GIS methods on this task. We follow
them in using binary-valued features which depend on
the words, POS tags, and labels in the neighborhood
of a given word, taking into account only those 330731
features which occur at least once in the training data.
The main difference between our setup and theirs is
that they assume a second-order Markov dependency
between chunk tags, which we do not model.

We used σ = 1 and b = 8, and tuned η0 = 0.1 for best
performance of SGD on this task. SMD then used the
same η0 and the default values µ = 0.1 and λ = 1. We
evaluated the F-score on the test set after every batch
during the first pass through the training data, after
every iteration through the data thereafter. The result
is plotted in Figure 1 as a function of the number of
iterations through the data on a logarithmic scale.

Figure 1 shows the F-score obtained on the test set
by the three algorithms as a function of the number
of passes through the training set, on a logarithmic
scale. The online methods show progress orders of
magnitude earlier, simply because unlike batch meth-
ods they start optimizing long before having seen the
entire training set even once.

Enlarging the final portion of the data reveals dif-

Figure 2. Left: F-scores on the BioNLP/NLPBA-2004
shared task, against passes through the training set. Hor-
izontal line: best F-score reported by Settles (2004).
Right: Enlargement of the final portion of the figure.

ferences in asymptotic convergence between the on-
line methods: While SMD and BFGS both attain the
same F-score of 93.6% — compared to Sha & Pereira’s
(2003) 94.2% for a richer model— SMD does so almost
an order of magnitude faster than BFGS. SGD levels
out at around 93.4%, while CP declines to 92.7% from
a peak of 92.9% reached earlier.

4.2. BioNLP/NLPBA-2004 Shared Task

Our second experiment uses the BioNLP/NLPBA-
2004 shared task of biomedical named-entity recogni-
tion on the GENIA corpus (Kim et al., 2004). Named-
entity recognition aims to identify and classify tech-
nical terms in a given domain (here: molecular bi-
ology) that refer to concepts of interest to domain
experts (Kim et al., 2004). Following Settles (2004)
we use binary orthographic features (AlphaNumeric,
HasDash, RomanNumeral, etc.) based on regular
expressions, though ours differ somewhat from those
used by Settles (2004). We also use neighboring words
to model context, and add features to capture corre-
lations between the current and previous label, for a
total of 106583 features that occur in the training data.

We permuted the 18546 sentences of the training data
set so as to destroy any correlations across sentences,
used the parameters σ = 1 and b = 6, and tuned
η0 = 0.1 for best performance of SGD. SMD then used
the same η0, µ = 0.02 (moderately tuned), and λ = 1
(default value). Figure 2 plots the F-score, evaluated
on the 3856 sentences of the test set, against number
of passes through the training data.

Settles (2004) trained a CRF on this data and report a
best F-score of 72.0%. Our asymptotic F-scores are far
better; we attribute this to our use of different regular
expressions, and a richer set of features. Again SMD
converges much faster to the same solution as BFGS
(85.8%), significantly outperforming SGD (85.2%) and
CP, whose oscillations are settling around 83%.

Accelerated Training of CRFs with Stochastic Gradient Methods

We deliberately chose a large value for the initial step
size η0 in order to demonstrate the merits of step size
adaptation. In other experiments (not reported here)
SGD with a smaller value of η0 converged to the same
quality of solution as SMD, albeit at a far slower rate.

We also obtained comparable results (not reported
here) with a similar setup on the first BioCreAtivE
(Critical Assessment of Information Extraction in Bi-
ology) challenge task 1A (Hirschman et al., 2005).

5. Experiments on 2D Lattice CRFs

For the 2D CRF experiments we compare four
optimization algorithms: SGD, SMD, BFGS as
implemented in Matlab’s fminunc function (with
‘largeScale’ set to ‘off’), and stochastic gradient with
scalar gain annealed as ηt = η0/t (ASG). Note that full
BFGS converges at least as fast as a limited-memory
approximation. While the stochastic methods use only
the gradient (8), fminunc also needs the value of the
objective, and hence must compute the log-partition
function (2), with the attendant computational cost.
We also briefly experimented with conjugate gradi-
ent optimization (as implemented in Carl Rasmussen’s
minimize function), but found this to be slower and
give worse results than fminunc.

We use these algorithms to optimize the conditional
likelihood (CL) as approximated by loopy belief prop-
agation (LBP) or mean field (MF), and the pseudo-
likelihood (PL) which can be computed exactly. We
apply this to the two data sets used by Kumar &
Hebert (2004), using our own matlab/C code.3

For all experiments we plot the training objective (neg-
ative log-likelihood) and test error (pixel misclassifica-
tion rate) against the number of passes through the
data. The test error is computed by using the learned
parameters to estimate the MAP node labels given a
test image. In particular, we run sum-product belief
propagation until convergence, and then compute the
max marginals, y∗i = arg maxyi p(yi|x,θ). We also
limit the number of loopy BP iterations (parallel node
updates) to 200; LBP converged before this limit most
of the time, but not always.

For the local evidence potentials, we follow Kumar &
Hebert (2004) in using φij(yi, yj) = exp(yiyjθ

>
E hij),

where yi = ±1 is node i’s label, and hij the feature
vector of edge ij. The node potentials were likewise set
to φi(yi) = exp(yiθ

>
N hi). We initialize node potentials

by logistic regression, and edge potentials to θE = 0.5.
3The code will be made available at http://www.cs.

ubc.ca/∼murphyk/Software/CRFs.html.

Figure 3. A noisy binary image (top left) and various at-
tempts to denoise it. Bottom left: logistic regression;
columns 2–4: BFGS, SGD and SMD using LBP (top row)
vs. MF (bottom row) approximation. PL did not work.

Note that due to the small number of features here,
the O(m) calls to inference for each pass through the
data dominate the runtime of all algorithms.

After some parameter tuning, we set σ = 1, λ = 0.9,
and µ = 10η0, where the initial gain η0 is set as high as
possible for each method while maintaining stability:
0.0001 for LBP, 0.001 for MF, and 0.04 for PL.

5.1. Binary Image Denoising

This experiment uses 64 × 64 binary images of hand-
drawn shapes, with artificial Gaussian noise added; see
Figure 3 for an example chosen at random. The task
is to denoise the image, i.e., to recover the underlying
binary image. The node features are hi = [1, si], where
si is the pixel intensity at location i; for edge features
we use hij = [1, |si − sj |]. Hence in total there are 2
parameters per node and edge. We use 40 images for
online (b = 1) training and 10 for testing.

Figure 3 shows that the CL criterion outperforms logis-
tic regression (which does not enforce spatial smooth-
ness), and that the LBP approximation to CL gives
better results than MF. PL oversmoothed the entire
image to black.

In Figure 4 we plot training objective and test error
percentage against the number of passes through the
data. With LBP (top row), SMD and SGD converge
faster than BFGS, while the annealed stochastic gra-
dient (ASG) is slower. Eventually all achieve the same
performance, both in training objective and test error.
Generalization performance worsens slightly under the
MF approximation to CL (middle row) but breaks
down completely under the PL criterion (bottom row),
with a test error above 50%. This is probably because
most of the pixels are black, and since pseudolikeli-
hood tends to overweight its neighbors, black pixels
get propagated across the entire image.

Accelerated Training of CRFs with Stochastic Gradient Methods

Figure 4. Training objective (left) and percent test error
(right) against passes through the data, for binary image
denoising with (rows, top to bottom) LBP, MF, and PL.

5.2. Classifying Image Patches

This dataset consists of real images of size 256 × 384
from the Corel database, divided into 24× 16 patches.
The task is to classify each patch as containing “man-
made structure” or background. For the node fea-
tures we took a 5-dimensional feature vector computed
from the edge orientation histogram (EOH), and per-
formed a quadratic kernel expansion, resulting in a 21-
dimensional hi vector. For the edge features we used
hij = [1, |mi − mj |], where mi is a 14-dimensional
multi-scale EOH feature vector associated with patch
i; see Kumar & Hebert (2003) for further details on
the features. Hence the total number of parameters is
21 per node, and 15 per edge. We use a batchsize of
b = 3, with 129 images for training and 129 for testing.

In Figure 6, we see that SGD and SMD are initially
faster than BFGS, but eventually the latter catches up.
We also see that ASG’s ηt = η0/t annealing schedule
does not work well for this particular problem, while
its fixed gain ηt = η0 prevents SGD from reaching the
global optimum in the PL case (bottom row). One ad-
vantage of SMD is that its annealing schedule is adap-
tive. The LBP and MF approximations to CL perform
slightly better than PL on the test set; all optimizers
achieve similar final generalization performance here.

Figure 5. A natural image (chosen at random from the test
set) with patches of man-made structure highlighted, as
classified via LBP (top) vs. PL (bottom) objectives opti-
mized by BFGS (left) vs. SMD (right).

6. Outlook and Discussion

In the cases where exact inference is possible (1D CRFs
and PL objective for 2D CRFs), we have shown that
stochastic gradient methods in general, and SMD in
particular, are considerably more efficient than BFGS,
which is generally considered the method of choice for
training CRFs. When exact inference cannot be per-
formed, stochastic gradient methods appear sensitive
to appropriate scheduling of the gain parameter(s);
SMD does this automatically. The magnitude of the
performance gap between the stochastic methods and
BFGS is largely a function of the training set size; we
thus expect the scaling advantage of stochastic gra-
dient methods to dominate in our 2D experiments as
well as we scale them up.

The idea of stochastic training is not new; for instance,
it has been widely used to train neural networks. It
does not seem popular in the CRF community, how-
ever, perhaps because of the need to carefully adapt
gains — the simple annealing schedule we tried did not
always work. By providing automatic gain adapta-
tion, the SMD algorithm can make stochastic gradient
methods easier to use and more widely applicable.

Acknowledgments

National ICT Australia is funded by the Australian
Government’s Department of Communications, Infor-
mation Technology and the Arts and the Australian
Research Council through Backing Australia’s Ability
and the ICT Center of Excellence program. This work
is also supported by the IST Program of the European
Community, under the Pascal Network of Excellence,

Accelerated Training of CRFs with Stochastic Gradient Methods

Figure 6. Training objective (left) and percent test error
(right) vs. passes through the data, for classifying image
patches with (rows, top to bottom) LBP, MF, and PL.

IST-2002-506778, and an NSERC Discovery Grant.

References

Barndorff-Nielsen, O. E. (1978). Information and Exponen-
tial Families in Statistical Theory. Wiley, Chichester.

Besag, J. (1986). On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society B, 48 (3),
259–302.

Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P.
(2004). Interactive image segmentation using an adap-
tive GMMRF model. In Proc. European Conf. on Com-
puter Vision.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approxi-
mate energy minimization via graph cuts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23 (11), 1222–1239.

Collins, M. (2002). Discriminative training methods for
hidden markov models. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

Griewank, A. (2000). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Frontiers
in Applied Mathematics. Philadelphia: SIAM.

Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A.
(2005). Overview of BioCreAtivE:critical assessment of
information extraction for biology. BMC Bioinformat-
ics, 6 (Suppl 1).

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Col-
lier, N. (2004). Introduction to the bio-entity recogni-
tion task at JNLPBA. In Proceeding of the Interna-

tional Joint Workshop on Natural Language Processing
in Biomedicine and its Applications (NLPBA), 70 – 75.
Geneva, Switzerland.

Kolmogorov, V. (2004). Convergent tree-reweighted mes-
sage passing for energy minimization. Tech. Rep. MSR-
TR-2004-90, Microsoft Research, Cambridge, UK.

Kumar, S., & Hebert, M. (2003). Man-made structure de-
tection in natural images using a causal multiscale ran-
dom field. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition.

Kumar, S., & Hebert, M. (2004). Discriminative fields for
modeling spatial dependencies in natural images. In Ad-
vances in Neural Information Processing Systems 16.

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic modeling for seg-
menting and labeling sequence data. In Proc. Intl. Conf.
Machine Learning, vol. 18.

Lipton, R. J., & Tarjan, R. E. (1979). A separator theorem
for planar graphs. SIAM Journal of Applied Mathemat-
ics, 36, 177–189.

Parise, S., & Welling, M. (2005). Learning in markov ran-
dom fields: An empirical study. In Joint Statistical Meet-
ing.

Pearlmutter, B. A. (1994). Fast exact multiplication by
the Hessian. Neural Computation, 6 (1), 147–160.

Sang, E. F. T. K., & Buchholz, S. (2000). Introduction to
the CoNLL-2000 shared task: Chunking. In In Proceed-
ings of CoNLL-2000, 127 – 132. Lisbon, Portugal.

Schraudolph, N. N. (1999). Local gain adaptation in
stochastic gradient descent. In Proc. Intl. Conf. Arti-
ficial Neural Networks, 569–574. Edinburgh, Scotland:
IEE, London.

Schraudolph, N. N. (2002). Fast curvature matrix-vector
products for second-order gradient descent. Neural Com-
putation, 14 (7), 1723–1738.

Schraudolph, N. N., & Graepel, T. (2003). Combining con-
jugate direction methods with stochastic approximation
of gradients. In C. M. Bishop, & B. J. Frey, eds., Proc.
9th Intl. Workshop Artificial Intelligence and Statistics,
7–13. Key West, Florida. ISBN 0-9727358-0-1.

Settles, B. (2004). Biomedical named intity recogni-
tion using conditional random fields and rich feature
sets. In Proceedings of COLING 2004, International
Joint Workshop On Natural Language Processing in
Biomedicine and its Applications (NLPBA). Geneva,
Switzerland.

Sha, F., & Pereira, F. (2003). Shallow parsing with con-
ditional random fields. In Proceedings of HLT-NAACL,
213–220. Association for Computational Linguistics.

Vishwanathan, S. V. N., Schraudolph, N. N., & Smola,
A. J. (2006). Online SVM with multiclass classifica-
tion and SMD step size adaptation. Journal of Machine
Learning Research. To appear.

Weiss, Y. (2001). Comparing the mean field method and
belief propagation for approximate inference in MRFs.
In D. Saad, & M. Opper, eds., Advanced Mean Field
Methods. MIT Press.

Winkler, G. (1995). Image Analysis, Random Fields and
Dynamic Monte Carlo Methods. Springer Verlag.

Yedidia, J., Freeman, W., & Weiss, Y. (2003). Under-
standing belief propagation and its generalizations. In
Exploring Artificial Intelligence in the New Millennium,
chap. 8, 239–236. Science & Technology Books.

