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Abstract
The human figure exhibits complex and rich dynamic be-
havior that is both nonlinear and time-varying. How-
ever, most work on tracking and synthesizing figure mo-
tion has employed either simple, generic dynamic models
or highly specific hand-tailored ones. Recently, a broad
class of learning and inference algorithms for time-series
models have been successfully cast in the framework of dy-
namic Bayesian networks (DBNs). This paper describes a
novel DBN-based switching linear dynamic system (SLDS)
model and presents its application to figure motion analy-
sis. A key feature of our approach is an approximate Viterbi
inference technique for overcoming the intractability of ex-
act inference in mixed-state DBNs. We present experimen-
tal results for learning figure dynamics from video data and
show promising initial results for tracking, interpolation,
synthesis, and classification using learned models.

1 Introduction
The human figure exhibits complex and rich dynamic

behavior. Dynamics are essential to the analysis of human
motion (e.g. gesture recognition) as well as to the syn-
thesis of realistic figure motion in computer graphics. In
visual tracking applications, dynamics can provide a pow-
erful cue in the presence of occlusions and measurement
noise.

Although the use of kinematic models in figure tracking
is now commonplace, dynamic models have received rela-
tively little attention. The kinematics of the figure specify
its degrees of freedom (e.g. joint angles and torso pose)
and define a state space. A dynamic model imposes addi-
tional structure on the state space by specifying which state
trajectories are possible (or probable) and by specifying the
speed at which a trajectory evolves.

One approach to dynamic modeling comes from the
field of biomechanics. From this point of view, the dy-
namics of the figure are the result of its mass distribution,
joint torques produced by the motor control system, and re-
action forces resulting from contact with the environment
(e.g. the floor). Research efforts in biomechanics, reha-

bilitation, and sports medicine have resulted in complex,
specialized models of human motion. For example, entire
books have been written on the subject of walking [10].
This approach has also been used successfully to produce
computer graphics animations [9] and to track upper body
motion in a user-interface setting [23].

The biomechanical approach has two drawbacks for vi-
sual tracking applications. First, the dynamics of the figure
are quite complex, involving a large number of masses and
applied torques, along with reaction forces which are dif-
ficult to measure using only visual data. In principle all of
these factors must be modeled or estimated in order to pro-
duce physically-valid dynamics. Second, in some applica-
tions we may only be interested in a small set of motions,
such as a vocabulary of gestures. In the biomechanical ap-
proach it may be difficult to reduce the complexity of the
model to exploit this restricted focus.

This paper explores the alternative method of learning
dynamic models from a training corpus of observed state
space trajectories. In cases where sufficient training data
is available, the learning approach promises flexibility and
generality. A wide range of learning algorithms can be cast
in the framework of Dynamic Bayesian Networks (DBNs).
DBNs generalize two well-known signal modeling tools:
Kalman filters [1] for continuous state linear dynamic sys-
tems (LDS) and Hidden Markov Models (HMMs) [20] for
classification of discrete state sequences.

The DBN framework provides two distinct benefits:
First, a broad variety of modeling schemes can be con-
ceptualized in a single framework with an intuitively-
appealing graphical notation (see Figure 1 for an example).
Second, a broad corpus of exact and approximate statisti-
cal inference and learning techniques from the BN litera-
ture can be applied to dynamical systems. In particular, it
has been shown that estimation in LDSs and inference in
HMMs are special cases of inference in DBNs.

The focus of this paper is on a subclass of DBN models
called Switching Linear Systems [2, 22, 14, 8, 19]. Intu-



itively, these models attempt to describe a complex non-
linear dynamic system with a succession of linear models
that are indexed by a switching variable. While other ap-
proaches such as learning weighted combinations of linear
models are possible, the switching approach has an appeal-
ing simplicity and is naturally suited to the case where the
dynamics are time-varying.

This paper makes two contributions. First, we demon-
strate the application of the SLDS framework to modeling
figure dynamics. In particular, we demonstrate the learning
of switching models of fronto-parallel walking and jogging
motion from video data. We demonstrate the application of
these learned models to segmentation and tracking tasks.
Second, we derive a mixed-state version of the Viterbi ap-
proximation algorithm for inference in DBNs. Efficient ap-
proximation schemes are crucial for the practical applica-
tion of these models. Our results demonstrate the promise
of the SLDS approach to modeling visual dynamics.

2 Switching Linear System Model
Consider a complex physical system whose parameters

evolve in time according to some known model. The sys-
tem can be described using the following set of state-space
equations:

xt+1 = A(st+1)xt + vt+1(st+1);

yt = Cxt + wt; and

x0 = v0(s0)

for the physical system, and

Pr(st+1jst) = s0t+1�st; and

Pr(s0) = �0

for the switching model. The meaning of the variables is
as follows:xt 2 <N denotes the hidden state of the LDS,
andvt is the state noise process. Similarly,yt 2 <M is the
observed measurement andwt is the measurement noise.
ParametersA andC are the typical LDS parameters: the
state transition matrix and the observation matrix, respec-
tively. We assumed that the LDS models a Gauss-Markov
process. Hence, the noise processes are independently dis-
tributed Gaussian:

vt(st) � N (0; Q(st)); t > 0

v0(s0) � N (x0(st); Q0(st))

wt � N (0; R):

The switching model is assumed to be a discrete first order
Markov process. State variables of this model are writ-
ten asst. They belong to the set ofS discrete symbols
fe0; : : : ; eS�1g, whereei is the unit vector of dimensionS
with a non-zero element in thei-th position. The switching

model is defined with the state transition matrix� whose
elements are�(i; j) = Pr(st+1 = eijst = ej), and an
initial state distribution�0.

Coupling between the LDS and the switching process
stems from the dependency of the LDS parametersA and
Q on the switching process statest. Namely,

A(st = ei) = Ai

Q(st = ei) = Qi

In other words, switching statest determines which ofS
possible plant models is used at timet.

The complex state space representation is equivalently
depicted by the DBN dependency graph in Figure 1 and
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Figure 1:Bayesian network representation (dependency graph)
of the SLDS.s denote instances of the discrete valued action
states switching the physical system models with continuous val-
ued statesx and observationsy.

can be written as thejoint distributionP :

P (YT ;XT ;ST ) = Pr(s0)
QT�1
t=1 Pr(stjst�1)

Pr(x0js0)
QT�1
t=1 Pr(xtjxt�1; st)QT�1

t=0 Pr(ytjxt):

whereYT ;XT , andST denote the sequences (of lengthT )
of observations and hidden state variables. For instance,
YT = fy0; : : : ; yT�1g. We can write an equivalent rep-
resentation of the physical system in the probability space
assuming that the necessary conditional pdfs are defined.
In fact they are. From the Gauss-Markov assumption on
the LDS it follows:

xt+1jxt; st+1 = ei � N (Aixt; Qi);

ytjxt � N (Cxt; R);

x0js0 = ei � N (x0;i; Q0;i)

Recalling the Markov switching model assumption, the
joint pdf of the complex DBN of duration T (or, equiva-
lently, its Hamiltonian1) can be written as in Equation 1.

1HamiltonianH(x) of a distributionP (x) is defined as any positive

function such thatP (x) =
exp(�H(x))P
 
exp(�H( ))

.



H(XT ;ST ;YT ) =
1

2

PT�1
t=1

PN�1
i=0

�
(xt �Aixt�1)

0
Qi

�1 (xt �Aixt�1) + log jQij
�
st(i)+

1

2

PN�1
i=0

�
(x0;i)

0
Q0;i

�1 (x0;i) + log jQ0;ij
�
s0(i) +

NT
2

log 2� +

1

2

PT�1
t=0 (yt � Cxt)

0
R�1 (yt � Cxt) +

T
2
log jRj+ MT

2
log 2�

+
PT�1
t=1 s

0
t(� log�)st�1 + s00(� log�0): (1)

2.1 Hidden State Inference
The goal of inference in complex DBNs is to estimate

the posterior probability of the hidden states of the system
(st andxt) given some known sequence of observations
YT and the known model parameters. Namely, we need to
find the posterior

P (XT ;ST jYT ) = Pr(XT ;ST jYT );

or its sufficient statistics. Given the form ofP it is easy to
show that these statistics areh[xtst]i, h[xtst][xtst]0i, and
h[xtst][xt�1st�1]0i2.

If there were no switching dynamics, the inference
would be straightforward – we could inferXT from YT
using LDS inference (RTS smoothing [21]). However, the
presence of switching dynamics embedded in matrix�
makes exact inference more complicated. To see that, as-
sume that the initial distribution ofx0 at t = 0 is Gaussian,
at t = 1 the pdf of the physical system statex1 becomes
a mixture ofS Gaussian pdfs since we need to marginal-
ize overS possible but unknown plant models. At timet
we will have a mixture ofSt Gaussians, which is clearly
intractable for even moderate sequence lengths. So, it is
more plausible to look for an approximate, yet tractable,
solution to the inference problem.
2.2 Approximate Inference Using Viterbi Ap-

proximation
The task of Viterbi approximation approach is to find

the best sequence of switching statesst and LDS states
xt that minimizes the Hamiltonian cost in Equation 1
for a given observation sequenceYT . It is well known
how to apply Viterbi inference to discrete state hidden
Markov models [20] and continuous state Gauss-Markov
models [13]. Here we develop an algorithm for Viterbi in-
ference in SLDSs (complex discrete/continuous DBNs.)

Define first the “best”partial costup to timet of the
measurement sequenceYt when the switch is in statei at
time t:

Jt;i = min
St�1;Xt

H (fSt�1; st = eig;Xt;Yt) (2)

2The operatorh�i denotes conditional expectation with respect to the
posterior distribution, e.g.hxti =

P
S

R
X
xtP (X ;SjY).

Namely, this cost is the least cost over all possible se-
quences of switching statesSt�1 and corresponding LDS
statesXt. This partial cost is essential in Viterbi-like total
cost minimization. In order to calculate this cost we first
define the following LDS state and variance terms:

x̂tjt;i
�
= hxtjYt; st = eii

�tjt;i
�
=



(xt � x̂tjt;i)(xt � x̂tjt;i)

0jYt; st = ei
�

x̂tjt�1;i;j
�
= hxtjYt�1; st = ei; st�1 = eji

�tjt�1;i;j
�
=



(xt � x̂tjt�1;i;j)(xt�1 � x̂tjt�1;i;j)

0j

Yt�1; st = ei; st�1 = eji

x̂tjt;i;j
�
= hxtjYt; st = ei; st�1 = eji

�tjt;i;j
�
=



(xt � x̂tjt;i)(xt � x̂tjt;i)

0j

Yt; st = ei; st�1 = eji

x̂tjt;i is the “best” filtered LDS state estimate att when
the switch is in statei at timet and a sequence oft mea-
surements,Yt, has been processed.̂xtjt�1;i;j and x̂tjt;i;j
are the one-step predicted LDS state and the “best” filtered
state estimates at timet, respectively, given that the switch
is in statei at timet and in statej at timet�1 and onlyt�1
measurements are known. Similar definitions are used for
filtered and predicted state variance estimates,�tjt;i and
�tjt�1;i;j respectively.

For a given switch state transitionj ! i it is now easy
to establish relationship between the filtered and the pre-
dicted estimates. From the theory of Kalman estimation
(see [1], for example) it follows that for transitionj ! i

the followingtime updateshold:

x̂tjt�1;i;j = Aix̂t�1jt�1;j (3)

�tjt�1;i;j = Ai�t�1jt�1;jA
0
i +Qi: (4)

Given a new observationyt at timet each of these predicted
estimates can now be filtered using Kalmanmeasurement
updateframework. For instance, the state estimate mea-
surement update equation yields

x̂tjt;i;j = x̂tjt�1;i;j +Ki;j

�
yt � Cx̂tjt�1;i;j

�
: (5)



Jt;t�1;i;j =
1

2

�
yt � Cx̂tjt�1;i;j

�0 �
C�tjt�1;i;jC

0 +R
��1 �

yt � Cx̂tjt�1;i;j
�
+

1

2
log
��C�tjt�1;i;jC 0 +R

��� log�(i; j) (6)

Appropriate equations can be obtained that link�tjt�1;i;j
and�tjt;i;j .

Each of thesej ! i transitions has a certaininnovation
costJt;t�1;i;j associated with it, as defined in Equation 6.
One portion of the innovation cost reflects the LDS state
transition, as indicated by the innovation terms in Equa-
tion 6. The remaining cost is due to switching from statej

to statei,� log�(i; j).
Obviously, for every current switching statei there are

S possible previous switching states where the system
could have originated from. To minimize the overall cost at
every time stept and for every switching statei one “best”
previous statej is selected:

Jt;i = min
j
fJt;t�1;i;j + Jt�1;jg (7)

 t�1;i = argmin
j
fJt;t�1;i;j + Jt�1;jg : (8)

The index of this state is kept in the state transition record
 t�1;i. Consequently, we now obtain a set ofS best filtered
LDS states and variances at timet:

x̂tjt;i = x̂tjt;i; t�1;i (9)

�tjt;i = �tjt;i; t�1;i : (10)

Once allT observationsYT�1 have been fused the best
overall cost is obtained as

J�T�1 = min
i
JT�1;i: (11)

To decode the “best” switching state sequence one uses the
index of the best final state,i�T�1 = argmini JT�1;i, and
then traces back through the state transition record t�1;i,

i�t =  t;i�
t+1
: (12)

Switching model’s sufficient statistics are now simply
hsti = ei�

t
and



sts

0
t�1

�
= ei�

t
e0i�
t�1

. Given the “best”
switching state sequence the sufficient LDS statistics can
be easily obtained using the Rauch-Tung-Streiber smooth-
ing [21]. For example,

hxt; st(i)i =

�
x̂tjT�1;i�

t
i = i�t

0 otherwise

for i = 0; : : : ; S � 1.
The Viterbi inference algorithm for complex DBNs can

now be summarized as:

Initialize LDS state estimates x̂0j�1;i and �0j�1;i;
Initialize cost J0;i.
for t = 1 : T � 1

for i = 1 : S
for j = 1 : S

Predict and filter LDS state estimates
x̂tjt;i;j and �tjt;i;j

Find innovation cost Jtjt�1;i;j
end
Find “best” partial cost Jt;i, state transition
 t�1;i, and LDS state estimates
x̂tjt;i and �tjt;i

end
end
Find “best” final switching state i�T�1.
Backtrack to find “best” switching state sequence i�t .
Find DBN’s sufficient statistics.

2.3 Maximum Likelihood Learning of Complex
DBNs

Learning in complex DBNs can be formulated as the
problem of ML learning in general Bayesian networks.
Hence, a generalized EM algorithm [17] can be used to find
optimal values of DBN parametersfA;C;Q;R;�; �0g.
The expectation (E) step of EM is the inference itself—we
dealt with this task in the previous section.

Given the sufficient statistics from the inference phase,
it is easy to obtainparameter update equationsin the maxi-
mization (M) step. For instance, updated values of the state
transition parameters are easily shown to be

Âi =

 
T�1X
t=1



xtx

0
t�1st(i)

�!
 
T�1X
t=1



xt�1x

0
t�1st(i)

�!�1

�̂ =

 
T�1X
t=1



sts

0
t�1

�!
diag

 
T�1X
t=1

hsti

!�1

:

All the variable statistics are evaluated before updating any
parameters. Notice that the above equations represent a
generalization of the parameter update equations of classi-
cal (non-switching) LDS models [7].



3 Previous Work
Most previous figure trackers which have used a dy-

namic model employed a simple smoothness prior such as
a constant velocity Kalman filter [12]. One exception is
[23], in which an input estimation approach is used to esti-
mate the joint torques in a 3-D dynamic model of the upper
body. In the following section we demonstrate the superi-
ority of our learned models over simple smoothness priors.
We believe these methods provide a useful alternative to
detailed biomechanical modeling.

SLDS models and their equivalents have been studied in
statistics, time-series modeling, and target tracking since
early 1970’s. Bar-Shalom [2] and Kim [14] have devel-
oped a number of approximate pseudo-Bayesian inference
techniques based on mixture component truncation or col-
lapsing is SLDSs. They did not address the issue of learn-
ing system parameters. Shumway and Stoffer [22] pre-
sented a systematic view of inference and learning in SLDS
while assuming known prior switching state distributions
at each time instance,Pr(st) = �t(i) and no temporal
dependency between switching states. Krishnamurthy and
Evans [15] imposed Markov dynamics on the switching
model. However, they assumed that noisy measurements
of the switching states are available.

Ghahramani [8] introduced a DBN-framework for
learning and approximate inference in one class of SLDS
models. His underlying model differs from ours in as-
suming the presence ofS independent, white noise-driven
LDSs whose measurements are selected by the Markov
switching process. An alternative input-switching LDS
model was proposed by Pavlovic et al. [19] and utilized for
mouse motion classification. A switching model frame-
work for particle filters is described in [11] and applied to
dynamics learning in [3]. Manifold learning [5] is another
approach to constraining the set of allowable trajectories
within a high dimensional state space. An HMM-based
approach is described in [4].

4 Experiments
We applied our DBN-based SLDS framework to the

analysis of two categories of fronto-parallel motion: walk-
ing and jogging. Fronto-parallel motions exhibit interest-
ing dynamics and are free from the difficulties of 3-D re-
construction. Experiments can be conducted easily using
a single video source, while self-occlusions and cluttered
backgrounds make the tracking problem non-trivial.

We adopted the 2-D Scaled Prismatic Model proposed
by Morris and Rehg [16] to describe the kinematics of the
figure. The kinematic model lies in the image plane, with
each link having one degree of freedom (DOF) in rotation
and another DOF in length. A chain of SPM transforms can
model the image displacement and foreshortening effects
produced by 3-D rigid links. The appearance of each link

in the image is described by a template of pixels which is
manually initialized and deformed by the link’s DOF’s.

In our figure tracking experiments we analyzed the mo-
tion of the legs, torso, and head, and ignoring the arms. Our
kinematic model had eight DOF’s, corresponding to rota-
tions at the knees, hip, and neck. A sample configuration
of our figure model is shown in Figure 4.2.
4.1 Classification

The first task we addressed was learning an SLDS
model for walking and running. Our training set consisted
of 18 sequences of six individuals jogging (two examples
of three people) and walking at a moderate pace (two ex-
amples of six people.) Each sequence was approximately
50 frames duration. The training data consisted of the joint
angle states of the SPM in each image frame, which was
obtained manually.

Each of the two motion types were each modeled as
multi–state3 SLDSs and then combined into a single com-
plex SLDS. Measurement matrix in all cases was as-
sumed to be identity,C = I . Initial state segmenta-
tion within each motion type was obtained using unsuper-
vised clustering in a state space of some simple dynamics
model (e.g. constant velocity model.) Parameters of the
model (A;Q;R; x0;�; �0) were then reestimated using the
EM-learning framework with approximate Viterbi infer-
ence. This yielded refined segmentation of switching states
within each of the models. An example of the learned
switching state sequence within a single “jog” training ex-
ample is shown in Figure 2.
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Figure 2:Segmentation of two-state SLDS model states within
single “jog” motion sequence.

To test the classification ability of our learned model
we next considered segmentation of sequences ofcomplex
motion, i.e., motion consisting of alternations of “jog” and
“walk.” 4 Identification of different motion “regimes” was

3We explored SLDS models with two to six states.
4Test sequences were constructed by concatenating in random order

randomly selected and noise corrupted training sequences. Transitions
between sequences were smoothed using B-spline smoothing.



conducted using the approximate Viterbi inference. Esti-
mates of “best” switching stateshsti indicated which of
the two models can be considered to be driving the corre-
sponding motion segment. One example of this segmenta-
tion is depicted in Figure 3. Classification experiments on
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Figure 3: Segmentation of mixed walking/running sequence.
Top graph shows correct segmentation (dotted line) and estimated
segmentation (solid line). Bottom graph depicts the segmentation
of the estimated LDS states.

a set of 20 test sequences gave an error rate5 of 2.9% over
a total of 8312 classified data points.

4.2 Tracking
A second experiment explored the utility of the SLDS

model in improving tracking of the human figure from
video. The difficulty in this case is that feature (joint
angle) measurements are not readily available from a se-
quence of image intensities. Hence, we use the SLDS as
a multi-hypothesis predictor that initializes multiple local
template searches in the image space. Instead of choos-
ing S2 multiple hypotheseŝxtjt�1;i;j at each time step
as indicated in Equation 3 we pick the bestS hypothe-
sis with the smallest switching cost, i.e.,x̂tjt�1;i;i�

t
where

i�t = argminj f� log�(i; j) + Jt�1;jg.
Given the predicted means for the figure locations,

state-space observations are obtained by local image reg-
istration, or hill-climbing. This identifies the state-space
modes in the likelihood function given by the template
model. A larger set of measurements could be explored
through sampling, as described in [6]. Given these obser-
vations of figure state, the regular SLDS filtering yields
SLDS state priors.

Figure 4 shows stills from a representative example of
SLDS tracking of walking motion. In this experiment, sim-

5Classification error was defined as the difference between inferred
segmentation and true segmentation accumulated over all sequences,e =PT�1

t=0
j hsti � strue;tj .

ple template features were used to model the appearance of
the figure. Each link in the model has an associated tem-
plate, which is initialized manually in the first frame and
applied throughout the sequence. Template features are
not robust to appearance changes such as lighting effects
or the wrinkling of cloth. As a result, a template-based
tracker can benefit substantially from an accurate dynami-
cal model.

A constant velocity predictor does poorly in this case,
leading to tracking failure by frame seven (shown in Figure
4.b). The learned SLDS model gives improved predictions
leading to more robust tracking.

(a) (b) (c)

Figure 4:(a) Tracker (in white) using constant velocity predictor
drifts off track by frame 7. (b) SLDS-based tracker is on track at
frame 7. Model (switching state) 3 has the highest likelihood.
Black lines show prior mean and observation. (c) SLDS tracker
at frame 20.

4.3 Synthesis and Interpolation
In Section 2 we introduced SLDS as agenerativemodel.

Nonetheless, SLDS is most commonly employed as a clas-
sifier (e.g. Section 4.1.) To test the power of the learned
SLDS framework we examined its use in synthesizing
realistic–looking motion sequences and interpolating mo-
tion between missing frames.

In the first set of experiments the learned walk/jog
SLDS was used to generate a “synthetic walk.” Two stick
figure motion sequences of the noise driven model are
shown in Figure 5. Depending on the amount of noise used
to drive the model the stick figure exhibits more or less
“natural”–looking walk. Departure from the realistic walk
becomes more evident as the simulation time progresses.
This behavior is not unexpected as the SLDS in fact learns
locally consistent motion patterns.

Another realistic situation may call for filling-in a small
number of missing frames from a large motion sequence.
SLDS can then be utilized as an interpolation function. In
a set of experiments we employed the learned walk/jog
model to interpolate a walk motion over two sequences
with missing frames (see Figure 6.) The visual quality of
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Figure 5:Synthesized walk motion over 50 frames using SLDS
as a generative model. States of the synthesized motion are shown
on the bottom.

the interpolation and the motion synthesized from it was
high (left column in Figure 6.) As expected, the sparseness
of the measurement set had definite bearing on this quality.

5 Conclusions
We have introduced a new approach to dynamics learn-

ing based on switching linear models. We have proposed a
Viterbi approximation technique which overcomes the ex-
ponential complexity of exact inference. One open issue
with this approach is the lack of an exact bound on the ap-
proximation error. This is a problem in general with greedy
Viterbi-style approximations, as well as with Markov chain
Monte Carlo methods [18]. One possibility alternative are
the variational inference techniques used in [8, 19], which
do have well-defined error bounds.

Our preliminary experiments have demonstrated
promising results in classification of human motion,
improved visual tracking performance, and motion syn-
thesis and interpolation using our SLDS framework. We
demonstrated accurate discrimination between walking
and jogging motions. We showed that SLDS models
provide more robust tracking performance than simple
constant velocity predictors. The fact that these models
can be learned from data may be an important advantage in
figure tracking, where accurate physics-based dynamical
models may be prohibitively complex.

We are currently building a more comprehensive col-
lection of frontoparallel human motion. We plan to build
SLDS models for wide variety of motions and performers
and evaluate their performance.
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Figure 6:SLDS as an interpolation function. Two motion sequences (left and right column) with missing measurements between frames
50 and 100 were interpolated using an SLDS model. Symbols ’x’ in top two figures (a & b) indicate known measurement points. Solid
lines show interpolated joint angle values. Dotted lines indicate ground truth (smoothing with no missing measurements.) Figures (c) and
(d) depict corresponding SLDS states. Stick figure motion generated from interpolated data is shown in figures (e) and (f). Graphs (e.2)
and (f.2) show true figure motion .


