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Abstract

We show how to use a variational approximation
to the logistic function to perform approximate
inference in Bayesian networks containing dis-
crete nodes with continuous parents. Essentialy,
we convert the logistic function to a Gaussian,
which facilitates exact inference, and then itera-
tively adjust thevariational parameterstoimprove
thequality of theapproximation. Wedemonstrate
experimentally that this approximation is much
faster than sampling, but comparable in accuracy.
We also introduce a simple new technique for
handling evidence, which alows usto handle ar-
bitrary distributionson observed nodes, aswell as
achieving a significant speedup in networkswith
discrete variables of large cardinality.

1 Introduction

Many probabilistic models naturally contain discrete and
continuous variables. (Such models are sometimes called
“hybrid”.) Unfortunately, exact inference is only possible
when al the continuous variables are Gaussian and have
no discrete children. If we want to allow discrete children
of continuous parents (e.g., to model threshold phenom-
ena), the standard approach is to discretize al the vari-
ables [FG96, KK97] or resort to sampling [ SP90, GRS96].
The problem with discretization is that, to get good accu-
racy, we must quantize finely, which makesinference s ow;
this problem is especialy acute in high-dimensional state
spaces. The problem with sampling issimilar: to get good
accuracy, we must take many samples, whichissow. Inthis
paper, we introduce a variationa approximation to handle
the case of discrete children of continuousparents, whichis
faster and more accurate, since all the distributionsthat can
be handled exactly are handled exactly. We also introduce
a new approach to dealing with evidence, which alows us
to handle arbitrary distributionson observed nodes.

We present our results in the context of the junction tree
algorithm, which is widely considered to be the most f-
ficient and most general inference algorithm for graphical
models [SAS94]. In particular, it allows us to compute
the marginals on dl N families — a prerequisite for ef-
ficient parameter and structure learning — in two passes

over the graph, wheresas other, query-driven (goal -directed)
algorithms, such as bucket-elimination [Dec98] and SPI
[CF91, CF95], would take N passes. In addition, the junc-
tion tree agorithm alows us to handle graphs with undi-
rected cycles, unlike some previouswork on networkswith
continuous variables [DM95, AA96] which was restricted
to polytrees.

The structure of the paper is as follows. We start by de-
scribing some popular conditional probability distributions
(CPDs) for nodes in hybrid networks. In Section 3, we
give a brief overview of the junction tree algorithm, and
in Sections 4 through 6, we review aspects of it that are
specific to hybrid networks. In Section 7, we explain our
variationa approximation, in Section 8 we introduce our
new approach to handling evidence, in Section 9 we dis-
cuss the computational complexity of inference in hybrid
BNs, and in Section 10, we present some experimenta re-
sultsto assess the quality of our approximation. We finish
by discussing future work.

2 CPDsfor hybrid networks

For any directed graphical model, we must define the con-
ditiona distribution of each node given its parents. see
Table 1 for some examples.

For discrete nodeswith discrete parents, the simpl est rep-
resentation is a table (called a Conditiona Probability Te-
ble, or CPT), which defines Pr(R = i|Q = j) € 0;;. (A
note on nomenclature: wewill use () to represent adiscrete
parent, R torepresent adiscrete child, X to represent acon-
tinuous parent, and Y to represent a continuous child.) If
there are multipleparents, @1, . . ., Q,, we can use amulti-
dimensiona table, although this requires specifying O(27)
parameters (assuming for simplicity that each discrete node
is binary). There are other representations which require
fewer parameters (e.g., noisy-OR, neura networks), and
hence are easier to learn, but we don't discuss them here.

Now let us consider the case of continuous nodes with
continuous parents. (Without loss of generality, we can
assume the child has only one continuous parent, since if
it has more than one, we can aggregate them into a sin-
gle vector-valued node.) The simplest such example is a
Gaussian whose mean is a linear function of its parent’s
value:

P(Y = y|X = 2) = N(yip + W, %)



Child/Parent | Discrete

Continuous

Discrete
Continuous

Tabular, noisy-OR, decisiontree  Probit, logistic, softmax
Conditional Gaussian

Linear Gaussian

Table 1: Some popular conditional probability distributions. If a node has both discrete and continuous parents, we can

create a mixture distribution.

where IV isthe weight or regression matrix,

N(yip,Z) = C(X) exp[—3(y — 1) ="y — p)]
isthe Normal (Gaussian) distribution, and

C(2) = (2m) /25|

is the normalizing constant (n is the number of
rows/columnsin %), which ensures fy N(y;p, 2) = 1.

Networks in which &l the variables have this kind of
linear Gaussian distribution were studied in [SK89]. If
the continuous child (also) has discrete parents, we can
specify aGaussianfor each valueof thediscrete parents; this
is called a Conditional Gaussian (CG) distribution. Note
that a CG distribution can be used to approximate arbitrary
continuous distributions.

Finally, we consider the case of discrete nodes with con-
tinuous parents. There are two popular modelsfor the con-
ditional distributionof adiscretebinary variable R € {0, 1}
given acontinuous (vector-val ued) parent X, called logistic
and probit, which are defined as follows:

p
1—-P
probit(p) & ®=1(p) = p = d(n)

n = logit(p) o log = p=oa(n)

77 =

where p o P(R=1X =z),n = b+ w'z, o(n) =
H—T;(—n) isth.esigmoidfunction, and ®(z) = P(Z < a:).,
7 ~ N(0,1), isthe cdf of the standard Normal. The logit
and probit distributionsare very similar (see Figure 2), and
differ only in the tails; essentialy, the cumulative norma
dies off ase~", wheress the sigmoid dies off more slowly
ase ",

Although probit hasaniceinterpretation asanoisy thresh-
old unit (R = 1iff y > Z), the logistic distribution has
several advantages:

o It can be well-motivated from a statistical viewpoint

[Jor95].

e There is an efficient method for fitting its parame-
ters, caled the Iterative Reweighted Least Squares
(IRLS) agorithm [MN83, J394b] (aform of Newton-
Raphson).

e There isagood approximation method for converting
it to potential form (see Section 6).

o It generalizesto multi-valued discrete variables as fol -
lows:

v oy &XP(wiz + bi)
Pr(R=1X =z) = Zj E(p(w}a? T+ 5))

Thisiscalled the softmax (multinomial logit) function.
Note that softmax for binary variables is equivaent
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B

Figure 1: The crop network. Circles represent continuous
(scalar) nodes, squares represent discrete (binary) nodes.
Thisexample isfrom [BKRK97].

to the logistic function when w = w1 — wg and b =
w!zdby

by—bo,SncePr(R=1X =) = — S =

ew6r+b0+ew1r+bl
1
14¢(wo—w1) =+ (bg—b1) *

Inthe softmax function, w; isthenormal vector tothe:'th
decision boundary, and b; isitsoffset. The magnitude of w;
determines the steepness of the curve: alarge magnitude
corresponds to a hard threshold (steep curve), and a small
magnitude corresponds to a soft threshold. In the limit
as |w;| — oo, the sigmoid approaches a step function; in
the limit as |w;| — O, the sigmoid approaches a uniform
distribution.

It turns out that linear Gaussians and softmax are both
special cases of Generaized Linear Models (GLIMS): see
[MN83] or [J394b)] for details. Althoughwe canuse GLIMs
as CPDsfor observed nodes (see Section 8), in general itis
difficult to use them for hidden nodes, at least if we restrict
ourselves to exact inference.

2.1 Example

As a simple example of some of the distributionswe have
described, consider the network in Figure 1. Inthismodedl,
the price (P) of a certain crop, say wheat, is assumed to
decrease linearly with the amount of crop (C) produced that
year, onthe assumption that aglut reduces prices. Butif the
government artificially subsidises prices (S = 1), theprice
will be raised by afixed amount. In addition, the consumer
islikely tobuy (B = 1) if the pricedropsbelow 5 units(see
Figure 2). This model will be used for the experiments in
Section 10 with the parameter values shown bel ow.

Node Didtribution Params.

S CPT p=0.3

C Gaussian p=5%2=1

P CG po = 10, py = 20,
Wo1=-1,201=1

B Logistic w=-1,b=5
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Figure2: Left: The expected price decreases linearly withthe crop yield, E[P|C, S = 0] = 10— (', and is shifted up by a
constant if the price isartificialy supported, E[P|C, S = 1] = 20 — C.. Right: The probability someone will buy the crop
decreases as the price rises above the threshold of 5. We plot o (wzx + b) and ®(wz + b), where z istheprice, w = —1 and

b=>5.

3 Thejunction treealgorithm

In thissection, we give a brief overview of thejunctiontree
algorithm (see eg., [HD94] for details), before discussing
the aspects of it which are specific to hybrid networks. This
summary is meant to provide aroad map for therest of the
paper.

In the junction tree algorithm, we first perform the fol-
lowing graph-theoretic stepsin order.

e Mordlize the origind graph G, i.e., connect together
all parents who share a common child, and then drop
the directionality of the arcs. This will result in an
undirected graph, G .

e Choose an dimination ordering =, e.g., according to
the heuristics discussed in [Kja90].

o Let al nodes beinitially unmarked. For each nodein
order 7, mark it and join all its unmarked neighbors.
This will result in a triangulated graph, Gr. (See
[BG96] for moreeffectivewaystotriangulateagraph.)

¢ Find the maximal cliquesin Gr; cal them C.

¢ Build an undirected weighted graph G ; whose nodes
arethecliquesC and wheretheweight of theedgefrom
clique i to clique j is |C;NC;|. Let T be a maximal
spanning tree of GGy [JJ94al.

o Add a separator node S to each edge (3, j) of 7" such
that .S = CinG;.

e Pick an arbitrary nodein 7" asroot.

In Section 5, we discuss the changes that need to be made
to the above steps in the case of hybrid networks.

After building the junction tree “shell”, we perform the
following numerica stepsin order. These stepsinvolvethe
potentials associated with each clique and separator; how
to represent and operate on such potentialsis discussed in
Section 4.

o For each clique and separator in T, initiaizeits poten-
tia to the identity el ement.

e Foreachnode X inG,findacliqueC in7 that contains
X anditsparents, convert X’s CPD to a potential (see

Sections 6 and 7), and multiply it onto C”s potential .

¢ Optionaly, we can now perform aglobal propagation,
to convert the potential sinto joint form; these can then
be saved for later reuse, so that we can avoid repeating
thisinitialization step. (In the approach to evidence
that we discuss in Section 8, it is not possible to do a
propagation before the evidence has arrived.)

e For each node X for which we have evidence, find a
clique C that contains X, and multiply in the evidence
(see Section 8).

e For each clique V' in postorder (i.e., children before
parents), make 1/ absorb from V', where W is V’s
parent in 7. (Thisis cdled the “collect evidence’
phase) W absorbs from V' via separator S by per-
forming the following operations:

= ¢"(5) = 2w 2(V)-

— ¢*(W) =8(W) x (¢7(5) + (5))-
where ¢ is a potentid, the x superscript denotes the
new or updated potential, > represents the marginal -
ization operator, x the multiplication operator, and +
the division operator. (We say that 1V sends a “mes-
sage’ to W)

e For each clique V' in preorder (i.e, parents before

children), make 1/ absorb from V/, for each child W
of V. (Thisiscalled the “distribute evidence” phase.)

4 Hybrid clique potentials

When al the variablesin a clique are discrete, we can rep-
resent its potential using a table (multidimensiona array);
when al the variables are Gaussian, we can represent the
potentia as a quadratic form; and when some of the vari-
ables are discrete, and some are Gaussian, we can use a
table of quadratic forms. We now explain the quadratic
form representation; see [LW89, Lau92, Ole93, Lau96] for
details.

A Gaussian clique potential can either be represented in
familiar moment form

P(z;p,p, ) = pexp[—3(z — p)'Z7(z — p)]



or the more convenient canonical form
P(z;9,h,K) =exp [g +z'h — %I'K:L‘]

We can convert from canonical to moment form (provided
K isfull rank) asfollows:

T = K!
p = Zh
N 1 - n 1,/
logp = g—3log|K|+ > log(27) + sp' K p

We can always convert from moment to canonical form.

A CG potentid isjust alist of such Gaussian potentials,
one for each value of the discrete variables. Note that, by
using a logarithmic representation of the constant factor,
we are assuming the p() is never non-zero. To get around
this, we need to additionaly store an indicator variable,
x(7), whichis 1 iff this discrete value has positive support.
(One advantage of the logarithmic representation is that it
isunlikely to underflow even if we have alot of evidence.)

We now define how to peform thefundamental operations
of extension, multiplication/division, and marginalization
on CG potentials.

Extension isthe operation of ensuring that two potentias
are defined on the same set of variables. For the continuous
variables, we must make sure the size of each vector and
matrix is the same, by inserting Os where necessary.! For
the discrete variables, we must make sure both potentials
have the same number of table entries, duplicating where
necessary.

We can now define multiplication of two CG potentials,
é1(W) and ¢(V), asfollows.

o Convert both potentia sto canonical form,if necessary.
o Extend them to the same domain, if necessary.
o Compute the following for each discrete entry:

(91, h1, K1) x (g2, ho, K2) = (91492, h1+hs, K1+ K))

Divisionissimilar, except we use — instead of +.
Marginalization is harder. Let us first consider the case

of pure Gaussian potentials. Suppose we want to compute

¢(x2) = [,, ¢(z1,z2). Wefirst convert ¢ to canonical form

(if necessary)?, and then partition it into the components
being kept and the components being marginalized over:

_ (M -_ (Ku Ko
h= ( ho )’ K= <K21 Ky

The new canonica characteristics are as follows:

§ = g+3(plog(2r) —log|Ku| + hiKy;tha)
h = hy— KnKgthy
K = Kp-KaK3'Ki

Now let us turn to the CG case. We first marginalize
over the continuous variables, and then the discrete ones.

1We assumethereis a canonical ordering for the entries within
each vector/matrix/table.

2It is much easier to marginalize in moment form (just extract
the relevant components of ¢ and X); however, it is not always
possible to convert to moment form.

However, this does not necessarily reduce the size (num-
ber of table entries) of the CG potential. For example,
consider the potentia ¢(z, y, 7, j) where z and y are con-
tinuous scalar variables, and i and j are discrete binary
variables; hence ¢ is a mixture of four (two dimensional)
Gaussians. If we marginalize over y and j, the result will
bed(z,i) = 3, [, o(x,y,i,j) whichis till a mixture of
four (one dimensional) Gaussians. marginalization has not
made the potentia any smaller (in terms of the number of
discrete components). Now suppose we multiply this po-
tential by v(z, z, ¢, k), where z isascdar and k isabinary
variable— theresult will now beamixtureof 8 (two dimen-
sional) Gaussians, instead of just 4, since for each value of
i and k, ¢ containstwo Gaussians. Hence, as we propagate
messages, the potentials become mixtures with more and
more components.

To avoid the exponentia blow-up in the size of the poten-
tials, we adopt the standard approximation of “collapsing”
amixture of Gaussiansto a single Gaussian, using the fol-
lowing formulas (thisis called “weak marginalization”):

p(i) = Zp(i,j)
pli)y = Zp(jli)u(i,j)
(i) = Y_pl) [26.9)+

(i, 5) = p(D))(u(i. 5) = ()]
where p(jli) = p(i,§)/ ¥2; p(i,5). (In our example, we
collapse a mixture of 2 Gaussians to a single Gaussian for
each value of i.) Thisisthe best CG approximation (in the
sense of minimizing KL divergence) to the true marginal
(seeeg., [Lau9b, p. 162] for aproof). In particular, it gives
the correct first and second order moments, i.e., £ [z|i] and
Var[z|i] will bethe same for theweak marginal and thetrue
marginal.

Note that if the parameters of the Gaussian are indepen-
dent of the discrete variable being marginalized over (i.e.,
u(i,j) = p(@) and Z(4,5) = %(i)) — for example, be-
cause the discrete variable is not a parent or child of the
Gaussian variables but just happens to “live” in the same
cliqgue — then this process is exact, and is called “strong
marginalization”.

5 Junction treeswith strong roots

The non-closure of CG-potentialsunder marginalization of
discrete variables means that we have to be careful how we
congtruct the junction tree. In particular, we need to be
ableto convert to moment form before we perform any dis-
crete margindizations. The relevant theory is discussed in
[Lau92, Lau96]; here, we just summarize the main results.

We define a strong root as any node R (in the junction
tree) which satisfies the following property: for any pair
V, W of neighbors on the tree with 1/ closer to R than V/,
we have

(VAW)CTv((VnW)CA

where " are al the continuous variables and A are al the
discrete variables. In other words, when a separator be-



tween two neighboring cliquesis not purely discrete, all the
variables in the clique furthest away from the root which
are not in the separator are continuous. If agraphistrian-
gulated and does not have any paths between two discrete
vertices passing through only continuous vertices (i.e, a
“forbidden path” of the form D — C' — D), then there is
always at least one strong root [Lei89]; such graphs are
caled decomposable, marked graphs (marked just means
there are two types of nodes).

For example, consider Figure 1. Moralization adds an
arc between S and C'; the resulting graph is then already
triangul ated, and has cliques SC' P and P B, so thejunction
treeisSC' P — P — P B. Notethat thishas aforbidden path
from S to B, and hence there is no strong root. However,
if weadd an extra arc between S and B after the mordiza-
tion step, to eliminate the forbidden path, the junction tree
becomes SCP — SP — SPB. Here, SP B isastrong root,
snceV\W ={S,C,P}\{S,P,B} ={C}CT.

A sufficient conditionto ensurethereisastrongroot isto
eliminate all the continuous nodes before the discrete ones
when triangulating. For example, if we use the elimination
order # = (C, P, S, B), we get the strong junction tree
above.

We need ajunctiontreewith astrongroot isto ensure that
when we send messages up to the root (during the collect
evidence phase), all the marginalizations will be strong,
so that when we subsequently send messages back from
the root (during the distribute evidence phase), heighboring
potentialswill be consistent.

Thereason thefirst passresultsin strongmarginal siseasy
to see: for any pair V, W of neighbors on the tree with W/
closer tothestrong root than V', whenwe compute ¢* (S) =
>_v\s ¢(V), weareonly performingintegrations, sincethe
only variablesin VV which are not in 14/ are continuous (by
definition). When we have to marginalize out a discrete
variable, say I, we can aways integrate out any variables
which depend on it, say X, first (i.e, we can compute
> [ o(x,4) instead of [ 3", ¢(x,1)), and hence avoid
the need to collapse the mixture of Gaussians.

Thereason the second passresultsin consistent potentials
is also easy to see. Suppose that 1 absorbed from V' on
thefirst pass, s0 ¢(S) = -\ @(V). On the backwards

pass, we compute 6* (V) = ¢(V) x (¢*(S) + ¢(S)), S0
Do(V) = (87(S) = 6(9) x Y é(V)

VAW VAW

¢*(S) =D " (W)
W\V

(Note that we are justified in pulling the ratio outside the
sumonly becausethemarginalizationover V'\ W isstrong.)

The disadvantage of requiring a strong root is that, in
general, adding extra linksto remove forbidden paths will
increase the size of the cliques, as we saw above. One
can always choose to ignore the strong root requirement,
although this risks incurring additional inaccuracies of un-
known magnitude. Fortunately, aswe will seein Section 9,
the effective size of acliqueisdetermined only by the num-
ber of hidden nodes it contains, so adding extra links to
observed nodes does not increase the computational com-
plexity.

6 Converting CPDsto potentials

We now discuss how to convert CPDs into potentials for
Gaussian hodes with Gaussian and/or discrete parents, and
for discrete nodes with discrete and/or Gaussian parents.

For a Gaussian hode with Gaussian parents, we can create
acanonica potentia as follows.

P(y|z)
= CEep[-3(y—pn—Wa)T Hy—p—Wa)]

Z_l r Z_l
= o0 (S ) (3)
_ /z—l
+ (= y)< Vg_l'u ”)—%ulz_lﬂ—l—logC(Z)]

Hence we set the canonical characteristics to

g = —3u'Tu+logC(z)
—W'z—l,l)
h = _
< Pl
K - wE-tw' —wz?!
- _z—lwl Z_l

This generalizes theresult in [Lau92] to the case of vector-
valued nodes. Inthescalar case, 3~ = 1/, W = w, and
n = 1, so the above becomes

2

—p

g = ﬁ—%log(Zﬂ'az)
_ Hf-w

b= ()

- 1 (ww —w

K = ; (—U)l 1 )

From this, we see that K isrank 1; hence we may not be
ableto represent theinitial potential on acliquein moment
form (athough after we have propagated evidence, each
potential represents a joint probability density, which can
always be converted to moment form).

For a Gaussian node with discrete parents, we get a
(g,h, K) triple of the above form for each value of the
discrete parents.

For discrete nodes with discrete parents, we can convert
any CPD into a CPT (i.e., we can compute Pr(R = i|@Q =
J), evenif thedistributionisspecified implicitly), and hence
can convert it to atabular potential. Of course, such atrans-
formation might lose some local conditional independence
information, which might have been exploited to speed up
inference. For some kinds of CPDs, such as noisy causa
independence models[RD98], there are waysto expose the
local structure graphically, which makes it easier to exploit
in the junction tree framework, but we don’t discuss this
issue here.

Finally, we discussthe case of discrete nodes with Gaus-
Sian parents in the next section.

7 Thevariational approximation

We can convert thelogisticfunctionto acanonical Gaussian
potential by using the following variational lower bound



[JJ96] (see Appendix A for the derivation):
P(R=r|X =z)=o(w'z+b)
> o(&)exp[(A—€)/2+ A\E) (A%~ £2)]

)
where A = (2r — 1)(w'z +b), A(€) = (3 — o(£))/2¢, and
r € {0, 1}. Noticethat thisisquadratic in z, and hence we
can represent it as a canonical potential:

g = logo(€) + 3(2r — )b — 36+ A(€) (b — €7)
h = 1(2r —lw+ A(¢)2bw
K = =-2\(§)wu'

We call this representation VG, for Variational Gaussian.
If the discrete node also has discrete parents, we get a
(wy, b;) pair for each discrete parent val ue, and theresulting
potentia will be a mixture of VGs (MVG).

The advantage of the variational approximationisthat it
allowsusto represent the potential as a Gaussian, and hence
performmarginalizationin closed form. Theneed todothis
arises even in sparsely connected model s (ones which have
small cliquesize). Thisisin contrast to the more common
use of variational methods, which is to approximate infer-
ence in models which are too dense to solve exactly (see
[JGJS9g] for areview).

With any approximation method, it is natural to ask how
good the approximation is. Although a quadratic function
is a poor approximation to a sigmoid, the joint probability
P(X, R) (where X is Gaussian and R islogistic) is well-
approximated by a Gaussian (see Figure 3). In fact, the
approximationisexact when ¢ = (2r — 1)(w'z + b).

If X ishidden, theoptimal valueof ¢ cannot be computed.
However, we can guess an initia value, and then iteratively
adjust it to increase the quality of the approximation. Asin
EM [NH98], at eachiteration weset ¢ to thevaluethat maxi-
mi zes the expected compl ete-datal og-likelihood, where the
expectation is computed using the parameter values of the
previousiteration. Thisresultsin thefollowing update (see
Appendix B for the derivation):

2 =FE[(w'z+b)% = (4 pp')w + 2bw'p + b2
wheretheposterior distributionon X isX ~ N (u, X). (The
updateequation doesnot specify whether totakethepositive
or negative square root. However, thisambiguity turns out
not to matter, since Pr(R|X; ¢) issymmetriciné.)

Choosing a good initial estimate of ¢ is important (see
Section 10). The procedure we useis as follows. We walk
down the graph and compute the mean and variance of each
node (if it is continuous), or its most probable value (if it
is discrete), based only on the evidence and assignments
aboveit. Then, when we get to alogistic node, we can ook
up ¢ and X of its parents, and plug them into the equation
abovefor £.

For example, consider the crop network and supposeonly
B isobserved. We set S = 0 (since the S node is more
likely to be off than on), E[C] = 5, and E[P] = E[P|S =
0] = 10-5 = 5, i.e, we use the mixture component
corresponding to themost probablevalueof S. (Thisturned
out to be better than collapsing the mixture of Gaussians at
P, using the distribution over S for the weights.)

We can al so derivethe upper bound P(r|z) < exp(aA —
Hy(a)), where a is another variational parameter and

Hj(p) « —plogp — (1 — p)log(1 — p) isthe binary en-

tropy function. We use the lower bound because (1) it is
tighter (since it is a second-order approximation), and (2)
for learning, we want to maximize a lower bound on the
likelihood [NH98]. However, the upper bound can be used
in conjunction with the lower bound to filter out runs of
MCMC which result in marginas which fall outside the
bounds, asin [JJ99].

Notethat we can al so exploit the quadrati c approximation
to fit the parameters of the logistic node, w and b, using
linear regression, instead of the slower IRLS (lteratively
Reweighted Least Squares) procedure, as noted in [Tip98g].

Finding agood variational approximationfor the softmax
distribution is a problem we are currently working on. In
this paper, we only consider the logistic distribution (i.e.,
binary nodes). However, we can alwaysuse k binary nodes
to encode (in a distributed fashion) the value of a single
node R with 2* possiblevalues (see e.g., [Tip98)).

8 A new approach to handling evidence

The*“traditiona” approach to handlingevidencein thejunc-
tion tree framework is as follows (see eg., [HD94]). Let
us start by considering the case where al the potentialsare
discrete. First we create a junction tree with the potentials
initialized to 1s, then we multiply on al the CPDs. When
evidence arrives, eg., we observe that Q = i, we find any
clique that contains () and multiply it by a potential of the
form (0,...,1,...,0), wherethe 1isin thei'th position.®
This sets to 0 any entries incompatible with the evidence.
Finally, we do a propagation to restore global consistency.
Now each clique potentia containsthe joint probability of
its varigbles and the evidence ¢, eg., ¢(Q =i, R = j) =
Pr(Q =i, R = j,e). Thiscan be normalized to obtain the
likelihood of the evidence, Pr(e) = >, ; ¢(¢,j), and the
posterior, Pr(Q = %, R = jle) = ¢(1, j)/ Pr(e).

When we have Gaussian potentias, we initiaize to 0s,
and follow asimilar procedure, except now we must multi-
ply every potentia (including separators) that contains the
nodesfor whichwe have evidence, since thedimensionality
of the vectors and matrices will be reduced. For example,
suppose we observe Y = y; then ¢(X,Y’) becomes

e<p[9+<"‘7/ y/><2§)

= expl(9+hyy— 3y Kyvy)

—|—£E/(hX — [(ny) — %Ilffxx.l‘]

¢*(«)

This generalizes the eguation in [Lau92] to the case of
vector-valued nodes.
There are several problemswith thetraditional approach:

o For discrete variables with many possiblevalues (e.g.,
HMMswithlarge codebooks), wemay create hugeini-
tia cligue potentias, only to subsequently set most of

Thisis sometimes called “ hard” evidence. “ Soft” or “virtual”
evidencewould consist of a distribution over Q’s possible values.
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Figure 3: The variational approximation gets poorer as the logistic function becomes steeper (more deterministic). On the
left we plot Pr(R = 1|z) for theexact (solid) and approximate (dotted) logistic function, using 4 = —2 and w = 1 (top) or
w = 4 (bottom), and the optimal ¢ value. On theright, we plot Pr(R = 1|z) Pr(z), where Pr(z) = N(z;0, 1).

the entriesto zero. The technique of evidence shrink-
age [HD94] and zero compression [JA90] can help
reduce the inefficiency of manipulating such sparse
potentias, but it would be better not to create themin
thefirst place.

¢ We need to have away of converting the CPD of each
node into potential form. This makes it impossible
to use many kinds of distributions. Also, we might
want to create a conditional model Pr(Y|X'), and not
associate any parameters with X sinceit isalways an
observed input (as in linear regression). This is not
possiblewith the traditional approach.

e There is an annoying asymmetry in the handling of
observations on discrete and continuous nodes. For
the former, we only need to modify one potential,
but for the latter, we must modify all potentials that
contain the observed nodes. In addition, it is difficult
to do the book-keeping when we change the size of
each Gaussian potential .

There is a very simple solution to al these problems:
create the initid clique potentias after the evidence has
arrived! Then the potentials only have to be defined on the
hidden nodes: the observed nodes just contributea constant
factor to thevalue of clique potential, and don’t take up any
space.

For example, consider a softmax node with a parent X
whose value is observed to be z*. We can convert this to
a CPT and thence into a discrete potentia by computing
Pr(R = i|X = z*) = softmax(z*, ) for each 1. Similarly,
consider an HMM with Gaussian output. We can create
the evidence-specific observation matrices by computing
Pr(Y: = yf|Q = i) = N(y;; pi, Z;) for each hidden state i
and each time step ¢. Thisisthe sense in which we can use
arbitrary conditional densities on observed nodes.

The type of potential that we need to use in the junction
treeis determined by the type of hidden nodes that are | ft.
If al the hidden nodes in a clique are discrete (D), we can
represent its potential with atable; if they are all Gaussian
(G), we can use a Gaussian; otherwise, we must use a
Mixtureof Gaussians (MG). If thereisone potentia of type
D and another of type G, all the potentia swill be converted

to type MG for compatibility (i.e., so they can absorb from
one another). Similarly, if oneisof type MG and another is
of typeD or G, the latter will be converted to MG. (That is,
all the cliques are “raised” to their least common ancestor
in the type hierarchy, which has MG above both D and G.)

The disadvantage of the new approach to handling evi-
denceisthat it is not incremental, i.e., when new evidence
arrives, we cannot just update a small part of the junction
tree, but instead must combine the new and old evidence,
and rerun the whole inference agorithm. In addition, the
new approach cannot handle retraction of evidence or soft
evidence. On the other hand, it is simple to combine the
new technique with the old, so that the “core” findings can
be handled in the new way, and nodes for which we have
soft evidence, or which we might want to just temporarily
instantiate, can be handled in the old way.

9 Computational complexity of inference

It is possibleto marginalize and multiply/dividea Gaussian
potentia in O(n®) time, where n isthe size of the potential
(i.e., the number of scalar variablesin the clique), whereas
these operations on a discrete potential take time linear in
the number of entries in the table, which is exponential
in the number of discrete variables in the clique. Hence
large cliques only impose a high computational cost if they
contain many discrete variables. This is the reason why
peopl e have been ableto exactly solvelargelinear Gaussian
models, such as Kaman filters, without having to resort to
the kinds of approximations that are used in the discrete
Bayes net community.

By using the new approach to handling evidence, we
only need to worry about cliques that contain many hidden
discretevariables. More precisdly, if we partitionthe nodes
into ahidden and observed set, V- = HUO, or into adiscrete
and continuous set, V' = DUC, then the cost of inference
in ahybrid network is

3
ceC zecNHND zecNHNC



where C is the set of cliques, |z| is the number of values
node = can take on (if it is discrete) or its length (if it
is a continuous-valued vector). (See [MA98] for a more
detailed discussion of the complexity of the junction tree
algorithm for discrete networks.)

10 Experimental results

To see how accurate the variationa approximation is, we
compared the junction tree algorithm (as implemented in
BNT#) to Gibbs Sampling (as implemented in BUGS®) on
the network shown in Figure 1. We generated 20 random
examplesfromthejoint distribution encoded by the network
(using the exact setting of ¢), and computed the posterior
distributions over the hidden variables, for each possible
pattern of evidence, using the junction tree or BUGS.

For BUGS, we used a “burn-in” of 2000 iterations, and
then sampled for 10,000 iterations. (Similar results were
achieved using a burn-in of just 1000 plus 1000 iterations,
and also using 1000 samples from likelihood weighting
[SP90].) For the junction tree, we updated the varia-
tional parameters until the relative changeinlog-likelihood
dropped below 0.001; when S was observed, so P had a
unimodal distribution, thistook 2-3 iterations; when S was
hidden, so P had abimodal distribution, thistook 7—9 iter-
ations. BUGS (implemented in compiled Modula 2) took
17 and 12 minutes of red time, for 10,000 and 1000 iter-
ations respectively, and the junction tree (implemented in
interpreted Matlab) took 2.5 minutes. (Times are for aSun
Ultra Sparc 2.)

Theresultsareshownin Table2. A(S) is|E;[S]— Eu[S]]
averaged over 20 trials, and similarly for A(C'), A(P), and
A(B), where E; and E, are the expected vaues (condi-
tioned on the evidence) computed using the junction tree
and BUGS respectively. (Standard deviation is in brack-
ets.) A dash means the variable was observed, so inference
was not necessary. (Notethat, since S isa binary random
variable, E[S] = Pr(S = 1) and similarly for B.)

When P isobserved (with value, say, p), we can perform
inference exactly (because P(P = p|S,C') can be repre-
sented as a CG distribution), and so the non-zero values of
A are due to finite sampling effects in BUGS (which can
always be driven to 0 by taking more samples). When P is
hidden, we need to use the variational approximation, and
so the non-zero values of A are partly dueto errorsincurred
by this approximation, and partly due to finite sampling
effects.

The results indicate that the variationa approximation
does well except in cases where both .S and B are hidden
(rows 14 and 16). Thisisbecause, inthiscase, the posterior
on P is bimodal: there will be a pesk near P = 5 and
one near P = 15, correspondingto S = 0and S = 1
respectively. Furthermore, since B is not observed, it is
hard tell which oneis more likely (apart from the prior, of
course). Note that observing C' is not particularly helpful,
sinceitisd-separated from S, andinany caserarely deviates

‘Bayes Net Toolbox. See
www. cs. ber kel ey. edu/ nmur phyk/ Bayes/ bnt. htm .
SBayesian inference Using Gibbs Sampling. See

WWW. nT c- bsu. cam ac. uk/ bugs/ .

from its mean (since Cov [C] = 1). When P isbimodal, it
isdifficult to choose agood initial estimate of ¢, which can
causetheal gorithmto convergeto apoor local maximum (of

thelower-bound onthelog-likelihood). Whenwe*“ cheated”

by starting the variational algorithm off with the correct
valueof ¢ (i.e, § = (2r — 1)(w'z +b), using thetrueva ues
of P = z and R = r), wefound, not surprisingly, that the
variational method did very well.®

11 Futurework

We are currently working on ways to improve the quality of
the approximation in the case that the distribution over the
parents of the logistic node is multimodal. We aso want
to extend the variational approximation to softmax nodes.
In thefuture, we intend to apply these techniquesto hybrid
Dynamic Bayesian Networks, which can bethought of asan
extension to thetraditional Switching Kalman Filter model
[BSL93]; in particular, the methods in this paper alow the
mode switches to be determined by the hidden continuous
state, instead of occuring “ spontaneously”.
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A Derivation of the quadratic lower bound
tothelogistic function

In this section, we derive a quadratic lower bound on the sigmoid
function
o(e) = (1+e7)7"
For details, see[Jaa97].
Consider first

1+ &% em/Z(e—m/Z + e.r/Z) — e.r/2-|-IOg(e_“:/z-}-em/z)

o _z/24f()
where f(z) = log(e*/2 + ¢*/2) is symmetric, and a concave

function of 2.
Now, for any concave function f(z), it is easy to see that

f(z) <

def

(@ - 5)3%1?(5) 1)

MOz = NOE+ 1(9)
where A(¢) = a%f(&), i.e., any tangent line to the function is an
upper bound, which istight when ¢ = =.

Let f(22) € (), and let €2 be the variational parameter
indicating the location of the tangent, so that

f@) = f(&%) < X(E)a® + f(€2) — EX(¢)

51n fact, it did better than any exact method could, since by
using the optimal ¢, we “leaked” information about the true val-
ues of P and R. For example, in case 16, when there are no
observations, the posteriors should be equal to the priors (i.e.,
E[S] =0.3,E[C] =5,E[P] =0.7(10— 5) + 0.3(20— 5) = 8,
E[B] = 0.35), and yet the cheating method computed different
estimates of these quantities for each example, indicating that it
had knowledge of the 'true values'; furthermore, these estimates
were closer to the true values than the exact priors.



S C P B|AS) A(C) A(P) A(B)
1 O 0O o0 o0 |- - - -
2 h o o o | 0.0000(0.0000) - - -
3 o h o o]- 0.0033(0.0002) - -
4 h h o o | 0.0000(0.0000) 0.0034(0.0003) - -
5 o o h o]- - 0.0152 (0.0101) -
6 h o h o | 0.0000(0.0000) - 0.0063 (0.0037) -
7 o h h o]- 0.0110(0.0062) 0.0176(0.0137) -
8 h h h o | 0.0000(0.0000) 0.0352(0.0145) 0.0424(0.0218) -
9 o o o hj- - - 0.0018 (0.0021)
10 h o o h | 0.0000(0.0000) - - 0.0026 (0.0030)
11 o h o h |- 0.0022 (0.0003) - 0.0019 (0.0017)
12 h h o h | 0.0000(0.0000) 0.0006(0.0003) - 0.0023 (0.0022)
13 o o h h |- - 0.2286 (0.1455)  0.2800 (0.1862)
14 h o h h | 0.2957(0.0000) - 2.8897(0.3186) 0.3745(0.1788)
15 o h h h |- 0.2756 (0.1530) 0.5506 (0.3033) 0.3812 (0.2258)
16 h h h h | 0.3015(0.0000) 0.3337(0.0000) 2.3247(0.0000) 0.3480 (0.0000)

Table 2: Experimental resultsfor the crop network using thejunctiontree. Cols. 1-4: 0’ means avariableisobserved, 'h’
means it ishidden. Cols. 5-8. A(S) is|E;[S] — E[S]| averaged over 20 trids, and similarly for A(C'), A(P), and A(B),
where £; and £}, are the expected values (conditioned on the evidence) computed using the jtree and BUGS respectively.
(Standard deviation in brackets) A dash means the variable was observed, so inference was not necessary. See text for

details.

where
Mo =
Using the substitution » = ¢ we find

i) = %tanh(s/z) = (o) — Yy/2¢

Now,
logo(—X) = —log(1+¢*) = —(X/2+ f(X))

so we get the following lower bound on the logistic function:

= P(R=0)E[(-1)*(w'z +b)’]
+P(R = 1)E[(1)*(w's + )’
= E[(w/x + b)'(w':c + b)]
= Eltr(z'ww'zs)] 4+ 2bw’ E[z] + v
= tr(w E[zs'lw) 4+ 2bw’ E[z] + b
= w'(Cov[X]+ E[X]E[X))w + 2bw'E[z] + b°
= w'(Z + uu/)/w + 2bw'p + b2
where E and P aretakenw.r.t. all the data and the previous¢.
Note that this derivation is slightly more general than the one

in [JJ96], since we alow R to be hidden; however, the net result
turns out to be the same.

logo(X) = X/2—J(X)
> X2 NOX*— f(€) + €59 References
> X/24 ME)X%+logo(¢) — /2 — E2M(¢€) [AA96]  S. Alag and A. Agogino. Inference using message

where A(¢) = —X(¢). Using the fact that Pr(R = 0| X = x) =
1-Pr(R=1X =z) = o(—(w'z + b)), we get the final result.

B Derivation of updateformulafor the
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