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Abstract

We are interested in the problem of automatic tracking
and identification of players in broadcast sport videos shot
with a moving camera from a medium distance. While there
are many good tracking systems, there are fewer methods
that can identify the tracked players. Player identification is
challenging in such videos due to blurry facial features (due
to fast camera motion and low-resolution) and rarely visi-
ble jersey numbers (which, when visible, are deformed due
to player movements). We introduce a new system consist-
ing of three components: a robust tracking system, a robust
person identification system, and a conditional random field
(CRF) model that can perform joint probabilistic inference
about the player identities. The resulting system is able to
achieve a player recognition accuracy up to 85% on unla-
beled NBA basketball clips.

1. Introduction

Our work addresses the problem of automatic track-
ing and identification of players in broadcast sport videos
filmed at a medium distance with a single moving, zoom-
ing camera, as Figure 1 shows. In this paper, we focus
on basketball, but the technique is general and applicable
to other team sports such as football, ice hockey, soccer,
etc. Labeled tracks will allow for automatic generation of
game/player statistics and automatic camera control to track
a specific player (e.g., the 2010 World Cup’s Star Camera).

The problem is a challenging one and particularly rele-
vant to the computer vision community for several reasons:
(1) Tracking in sports is hard. Players move rapidly and
unpredictably to make themselves hard to track. Track-
ing pedestrians is easier since they have similar and sim-
pler, continuous motion patterns. (2) Tracking in a moving,
zooming camera is harder since background subtraction is
difficult. Coupled with motion blur, frequent occlusions and
exit/re-entrance of players, tracking becomes non-trivial.
(3) Identification is challenging. Faces are blurry and low-

Figure 1: Automatic tracking and labeling of players from
a medium-distance moving, zooming camera.

resolution (∼ 15×15 pixels), making it impossible for even
humans to identify players only from faces. Players on a
team have the same jersey color and many have the same
hair/skin color. Player dimensions may help but are hard to
estimate since computing homographies in a moving cam-
era is non-trivial.

Most existing player identification systems focus on
video clips taken from a close-up view where either fa-
cial features or numbers on the jersey are clear [1, 2, 3, 14,
25, 28]. In addition, most pedestrian re-identification tech-
niques (e.g., [8, 12, 13]) cannot be applied directly since
they typically rely heavily on each person having a unique
color and/or shape. As far as we know, the problem of
player tracking and identification in broadcast sports videos
has yet to be solved. Our system is the first to do so.

The key idea of this paper is that we can propagate
easy-to-classify images of a player to other images of the
same player by using a conditional random field (CRF) [17]
whose structure is created based on the output of a track-
ing system. The contributions of this paper is three-fold.
First, we develop a tracking system that reliably tracks mul-
tiple players, even under severe occlusions. Second, we
introduce a player appearance model that uses SIFT inter-
est points [20], MSER regions [21] and color histograms.
Third, we show how to perform joint classification of all
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(a) Detection (b) Team classification (c) Tracking

Figure 2: (a) Automatic player detection generated by the DPM detector [9]. (b) Automatic team classification. Celtics are
in green, and Lakers are in yellow. (c) Automatic tracking by associating detections into tracklets. Numbers represent the
track ID not player identities.

player images by using a CRF. The structure of the CRF is
built on top of the output of a tracking system, which links
together images of the same player. In addition, we add mu-
tual exclusion edges between all player images in a frame,
which enforces the fact that a player can only appear once
per frame. The CRF allows us to achieve player identifica-
tion accuracies up to 85% in unlabeled test videos.

2. Related work
Reviewing all relevant tracking papers is beyond the

scope of this paper, and we discuss only some of the most
closely related work. [29] is a general survey of tracking
systems. One key trend is the use of discriminative object
detectors to help the generative tracking model. For exam-
ple, Okuma et al. [24] used a Boosted Particle Filter (BPF)
for tracking hockey players. Cai et al. [5] improved BPF by
using bi-partite matching to associate detections with tar-
gets. Some systems first detect players and then associate
detections with tracklets. For instance, Liu et al. [19] used
data-driven MCMC (DD-MCMC) to create tracklets from
detections and applied this technique to track soccer play-
ers. Ge et al. [11] not only used DD-MCMC to create longer
tracks from shorter tracklets, but also learned parameters of
the tracking system in an unsupervised manner.

Previous player identification systems in the sports do-
main have focused on videos taken from a close-up camera,
and they rely on recognizing frontal faces, or numbers on
the jersey. For instance, Bertini et al. [2, 3] trained face and
number recognition systems using hand-labeled images and
used the learned models to identify players on test videos.
The system developed by Ballan et al. [1] used face match-
ing. In order to improve matching accuracy under transfor-
mations, they extracted SIFT features [20] and performed
a robust matching between faces. Ye et al. [28] relied on
jersey number recognition, introducing an effective way to
locate and segment the number region. Similarly, Saric et
al. [25] performed jersey number recognition, but exploited
color-based segmentation to extract the number region. Re-
cently, Jie et al. [14] developed a player recognition system

that relies on face and upper body pose. Our system is sig-
nificantly different from past work because we address the
problem of player identification from videos where facial
features are blurred and jersey numbers are rarely seen.

There is a related problem in surveillance called pedes-
trian re-identification, where the goal is to find a pedestrian
of some appearance over a network of cameras (e.g., [8, 12,
13]). Most of these systems rely on color, shape or texture
and cannot be directly applied to sport videos due to the
uniformity of jersey colors in a team. Some systems even
use geometric configuration of cameras to help re-identify
pedestrians (e.g., [13]), which is also not applicable in our
case because we only have a single moving camera.

3. Automatic player tracking

In order to identify players, we have to first locate
and track players over time, i.e., do multi-target tracking.
This paper takes a tracking-by-detection approach, similar
to [5, 11, 19, 24]. Specifically, we first run an object detec-
tor to locate players in every frame of a sports video, then
we associate detections over frames with tracklets (a track-
let is a sequence of bounding boxes containing the same
player over a period of time).

3.1. Player detection

We use the Deformable Part Model (DPM) detector de-
veloped by Felzenszwalb et al. [9] to automatically locate
sport players. To train the DPM detector for basketball
players, we first prepared 5000 positive patches of basket-
ball players and 300 negative images containing no players.
Then, we trained a DPM detector that consists of six parts
and has two different aspect ratios for bounding boxes.

The DPM detector has a 69% precision and 73% recall.
Figure 2(a) shows some DPM detection results in a sample
basketball video. We observe that most false positives are
generated from the spectators and referees, who have simi-
lar shapes to basketball players. Moreover, since the DPM
detector applies non-maximum suppression after detection,
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it may fail to detect players when they are partially occluded
by other players.

3.2. Team classification

After player detection, we perform team classification to
divide detected bounding boxes into three groups: Team A,
Team B, and others. We do this for two reasons: (1) We
want to ignore bounding boxes that correspond to specta-
tors and referees since this is not the focus of the system. (2)
Separating players into different teams simplifies the track-
ing and player identification problem because the number
of targets is reduced by half.

Since players of a team wear uniforms of the same color,
we use RGB color histograms as features to classify de-
tected bounding boxes into one of three groups. Specifi-
cally, we first collect 1000 patches of Team A, Team B, and
others (which include spectators, referees, and false posi-
tives). For every bounding box, we compute a 10-bin color
histogram for each of the three RGB channels (resulting in
a 30-bin color histogram). Since patches may contain back-
ground, we put a Gaussian weighting function centered in
the patch to emphasize the central region. We then train a
Logistic Regression classifier [4] with a L1 regularizer [23]
for team classification. Figure 2(b) shows some team clas-
sification results in a basketball video.

3.3. Player tracking

Once detected players have been separated into teams,
the next step is to associate detected bounding boxes over
time with tracklets. Here, we take a tracking-by-detection
approach, where the inputs are detections and outputs are
tracklets of players.

We take a one-pass approach for tracking, similar to [5].
At any frame, we first associate detections with existing
tracklets. To ensure a one-to-one matching between detec-
tions and tracklets, we perform bi-partite matching as in [5].
The matching scores are Euclidean distances between cen-
ters of bounding boxes and the predicted locations of play-
ers. We intentionally do not use colors in the matching score
since players of a team wear the same uniform.

After assigning detections to existing tracklets, the next
step is to update the state estimate of players. The state
vector we want to track at time t is a 4-dimensional vec-
tor xt = [x, y, w, h]T , where (x, y) represents the center of
the bounding box, and (w, h) are its width and height, re-
spectively. Let zt = [x, y, w, h]T be the detected bounding
box at time t. We assume the following linear-Gaussian ob-
servation model: p(zt|xt) = N (zt|xt,Σz), where Σz is a
diagonal matrix set by hand.

Most tracking systems assume a first-order or second-
order auto-regressive model for dynamics (e.g., [5, 24]).
That is, they assume that p(xt|xt−1) = N (xt|Axt−1,Σx).
More sophisticated models use Gaussian process regres-

Figure 3: The x-y-t graph of tracking results, where (x, y)
is the center of a bounding box, and t is the time. Every
dot in the graph represents a detected bounding box, where
different colors represent different tracklets.

sion to model the dynamics [27]. We got much better re-
sults by using a simpler model of the form p(xt|xt−1, t) =
N (xt|tat + bt,Σx), where t is the current frame, at is
a regression weight vector, and bt is a regression offset
term. The regression parameters (at,bt) are learned on-
line based on a sliding window of data of the form (ti, x̂ti),
for ti = t − F, . . . , t − 1, where x̂ti is the posterior mean
state estimate at time ti.

Note that our motion model is independent of the previ-
ous state. However, it depends on the current time index.
The reason it works well is that there is a local linear re-
lationship between time t and the current state xt, as illus-
trated in Figure 3. Given our linear-Gaussian observation
and motion models, we then update the current state using
a Kalman Filter (KF) [16].

We create a new tracklet for detections that are not as-
sociated with any existing tracklets. This new tracklet will
be first marked as unreliable until it has a certain number
of detections associated with it. Otherwise, the new tracklet
will be automatically dropped.

For tracklets that are not associated with any detection,
the system will update the state using the prediction. How-
ever, if the tracklet does not have a detection over some time
period (currently, 1 sec in experiments), it will be removed
from the pool. The system will also terminate a tracklet
when its bounding box moves out of the image border.

3.4. Results

To evaluate the quality of our tracker, we used Game 1
of the 2010 NBA Finals (Los Angeles Lakers vs. Boston
Celtics) for testing. The video consists of different kinds
of shots: close-up shots, medium-distance shots, and com-
mercials. In this paper, we extracted 21 video clips from
medium-distance shots, where the average length of video
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(a) Raw image (b) MSER visual words (c) SIFT visual words

Figure 4: (a) Raw image patches extracted from the tracking system. (b) Green ellipses represent detected MSER regions [21].
(c) Red circles represent detected SIFT interest points [20].

clips is 796 frames, or 24.1 seconds.
Compared with ground-truth bounding boxes, the DPM

detector has a a 69% precision and 73% recall. The team
classifier then preserves those bounding boxes generated
from players of both teams, while dropping those corre-
sponding to spectators, referees and false positives. After
team classification, we significantly increase the precision
to 96% while sacrificing recall (which drops to 61%).

The tracking system comes in to create tracklets from
detections. Since our tracking system predicts the player’s
location even when there is no associated detection, it is
able to bridge the gap between temporally sparse detections.
In this way, the tracking system retains a precision of 98%,
while improving the recall to 81%, compared with ground-
truth bounding boxes.

Figure 3 shows results of tracking basketball players in a
test clip (see the online supplementary material for videos).
Every dot in the graph represents the center of a detected
bounding box, where different colors represent different
tracklets. We can see that the proposed system is able to
track multiple targets over long time intervals, even when
players cross over each other. The motion model is able to
predict a player’s location even where there is no detection,
e.g., tracklet #2 in Figure 2(c).

4. Learning player identities
Given the tracklets, our next step is to automatically

identify the player each tracklet represents. Approaches re-
lying on facial recognition are infeasible in our domain due
to the far-field nature of most shots. For example, the av-
erage size of a player’s head is about 15 × 15 pixels, and
facial features are usually blurry due to a fast camera/player
motion. It is very challenging even for human to identify
players only from faces.

Recognizing numbers is possible, but still difficult. The
numbers on the back of the jersey are 18×18, and numbers
on the front of the jersey are even smaller at 10× 10 pixels.
We could train a number detector to locate candidate num-
ber regions before using an optical character recognition
(OCR) module or even deep generative architectures like
the convolutional neural net [18] to recognize jersey num-

bers. Disadvantages of the number recognition approach
are: i) automatic number detection is hard in videos consist-
ing of far-field shots; ii) gathering representative examples
for training is labor-intensive because images of numbers
are infrequent. We tried an off-the-shelf OCR system. How-
ever, it performed poorly on this data (results not shown) be-
cause of distorted numbers, shirt deformations, non-frontal
viewpoints, etc.

We adopt a different approach, ignoring number recog-
nition and focusing on identification of players as entities.
Its main advantage is that we only need to label tracklets
with their player class labels, which is easier than segment-
ing out number regions and labeling each digit. Below, we
describe the features and classifier used and report results.

4.1. Features

We used a combination of three different features to
generate visual words: maximally stable extremal regions
(MSER) [10], SIFT visual words [20], and RGB color his-
tograms. Visual words have been previously applied to ob-
ject categorization (e.g., [26]).

• MSER regions [21] are stable segments whose col-
ors are either darker or lighter than their surroundings.
They are useful for detecting text in natural scenes be-
cause text has often uniform color and high contrast.
In order to use MSER for player identification, we
first detected MSER regions [21], as shown in Fig-
ure 4(b), and then normalized them [10]. For every
MSER region, a 128-dimensional SIFT descriptor was
computed and quantized into one of 300 visual words
using a learned codebook (the codebook is learned us-
ing k-means clustering). The MSER representation of
the image is a 300-dimensional bag-of-words bit vec-
tor, where a value of 1 indicates presence of the corre-
sponding visual word in the image and 0 otherwise.

• SIFT interest points [20] are stable local patches that
are invariant to scale and affine transformation. We
first detected SIFT interest points, shown in Figure
4(c), and then extracted SIFT descriptors. The SIFT
descriptors were quantized into 500 visual words (we
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used more visual words for SIFT because there were
more SIFT interest points than MSER regions).

• Although colors are weaker features (players of the
same team wear the same uniform), skin color may
provide some information for player identification. To
account for colors of limbs, hair, etc., we also extracted
RGB color histograms from the image. For the RGB
color histogram, we used 10 bins for each of the R,
G and B channels. We treat the three colors indepen-
dently, so the full histogram has 30 bins/dimensions.

Figure 4 shows an example of MSER regions and SIFT
interest points. We see that faces are always blurred, while
numbers can only be seen clearly in the last frame. Since
we do not segment the player from the background, some
MSER regions and SIFT points are generated from the
background, making player identification more challenging.
The final feature vector for each image consists of 830 di-
mensions, where the first 800 dimensions are binary and the
last 30 dimensions are positive values. Next, we discuss the
effect of feature choice on player identification.

4.2. Classifiers

Using a combination of MSER + SIFT + color features,
we train a classifier that maps image feature vectors to
player class labels. We tried a mixture of classifier experts
model [15], where each expert is an L1-regularized logistic
regression [23]. We used a mixture of experts model be-
cause we hypothesized that each mixture component could
learn a different view of the player (frontal, profile, etc.).
However, using a single mixture component (i.e., a vanilla
L1-regularized logistic regression model) worked just as
well as using a mixture of 2 or 3 mixture components (re-
sults not shown). Since the vanilla model is faster to train
(EM [7] is not necessary), we decided to use it for all sub-
sequent experiments.

4.3. Results

To understand the effect of features on player identifica-
tion, we trained a L1-regularized logistic regression model
using various combinations of feature types. We used 12
video clips for training (a total of 9800 frames) and tested
on 9 video clips1. Our evaluated dataset contained more
than 15000 frames, which is similar in scale to benchmark
datasets for moving cameras with annotated tracklets (e.g.,
ETHZ pedestrian dataset). Since tracklets are already clas-
sified into teams (done in automatic player tracking), we re-
port classification accuracies on a per team basis. Although
each team has 12 players (NBA rules), not all get to play.

1The shortest test clip was around 300 frames while the longest test clip
had 1300 frames.

Lakers Celtics
I.I.D. GM I.I.D. GM

MSER 33.67% 64.89% 36.04% 66.18%
SIFT 40.71% 67.56% 48.03% 73.89%
RGB 57.45% 69.70% 43.02% 48.02%
MSER + RGB 59.42% 75.10% 53.03% 70.60%
SIFT + RGB 58.52% 81.29% 57.05% 74.53%
MSER + SIFT 45.64% 77.18% 52.04% 78.58%
All 3 61.86% 84.89% 60.85% 81.77%

Table 1: Player classification accuracies as a function of
features used, averaged over all test clips. I.I.D. represents
classification done on a frame-per-frame basis (i.e., ignor-
ing temporal coherence between detections). GM repre-
sents the graphical model in Figure 5 (see Section 5).

We exploit this fact to reduce the state space toC = 9 player
classes per team2.

Table 1 shows the classification accuracies, averaged
over all test clips, where classification was done on I.I.D.
detections (i.e., temporal coherence between detections in a
tracklet were ignored). The results for I.I.D. classification
shows that best results are obtained using all three types of
features (MSER, SIFT and color) together. This conclusion
still holds when using a CRF, as we discuss next.

5. The full system

No matter how good our features are, most detections
are fundamentally ambiguous in their class label. We now
describe our CRF model for performing joint classification,
which allows us to borrow statistical strength from the reli-
able classifications to help ambiguous classifications.

5.1. The conditional random field

Once an appearance model is learned over player classes,
we use it to infer player identities on unlabeled test videos.
For each test video, we perform automatic player tracking
(described in Section 3) to get tracklets. Let us assume that
there are T frames in the test clip andDt detections in frame
t. We then construct a CRF [17], as Figure 5 shows. xtd

represents the feature vector for the observed detection d in
frame t. ytd represents the unknown identity for detection d
in frame t (with C possible values).

Detections that belong to the same tracklet are connected
with temporal edges with the following potential:

ψtime(ytj , yt+1,k) =

{
1− ε if ytj = yt+1,k

ε otherwise (1)

2The Celtics had 10 active players in the videos considered, but one
player plays for less than a minute so we removed him from consideration.
The Lakers had 12 players reduced to 9 for the same reason.
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where ε is a fixed parameter reflecting the amount of linking
errors in the tracker. Setting ε = 0 forces the identity of all
linked detections to be identical.

Since all detections in a frame must be uniquely iden-
tified (no player can exist twice), we also introduce edges
between the ytd nodes in each frame to enforce mutual ex-
clusion in identities, using the following potential:

ψmutex(ytj , ytk) =

{
1 if ytj 6= ytk
0 otherwise (2)

The overall model then takes the following form:

log p(y|x,θ) ∝
T∑

t=1

Dt∑
d=1

log p(ytd|xtd,θ)

+

T∑
t=1

Dt∑
d=1

Dt∑
j=1,j 6=d

logψmutex(ytd,ytj)

+

T∑
t=1

Dt∑
d=1

∑
j:succ(d,t)=j

logψtime(ytd,yt+1,j)

(3)

where succ(d, t) is the next node (if it exists) connected to
ytd in the tracklet. Local evidence terms p(ytd|xtd,θ) are
computed by the logistic regression classifier.

5.2. Inference

For C = 9 and Dt = 5 detections, exact inference in the
CRF in Figure 5 is intractable for long videos. We could
perform exact inference in the model by merging all the
nodes in each time slice and then treating the model as a
form of a HMM. The state space of the collapsed model
will be large, but exact inference is tractable3. However,
exact inference in the HMM will not scale to other sports
with larger teams (e.g., C = 22 for NHL hockey), and an
approximate inference will be needed. For this reason, we
focus on the CRF instead of the HMM variant.

We perform player identification separately for each
team. We explored the following three variations on the full
graphical model: i) an I.I.D. model (no edges between the y
nodes, equivalent to treating each detection independently);
ii) a graphical model with only mutex edges (edges between
y nodes in a frame); iii) a graphical model with only tem-
poral edges (edges between y nodes across frames).

For each of these 3 variants of Figure 5, we used exact
inference, specifically the junction tree algorithm [4]. In the
case of the model with only temporal edges, this is equiv-
alent to running the forwards-backwards algorithm on each
chain separately. In the case of the model with only mutex

3More precisely, the number of legal state configurations at frame t is
Kt =

∑Dt
d=0 C!/(C − d)!. For C = 12 active players per team, and

Dt = 5 detections per team per frame, we have Kt = 108, 385.

Figure 5: Graphical model of a test video: x are observed
detections and y are unknown identities of detections. Mu-
tex edges exist between y nodes within a frame. Temporal
edges exist between y nodes across frames. Pairwise edges
between y and x nodes exist in each frame.

edges, exact inference is equivalent to exhaustive enumera-
tion over all CDt configurations because all nodes are fully
connected to each other.

For the full graphical model with mutex and temporal
edges, junction tree is intractable due to large clique size.
Instead, we used loopy belief propagation (BP) [22] to ap-
proximate inference, sacrificing accuracy for tractability. To
give an idea of the speed, running loopy BP on the full
graphical model for a video clip with 1090 frames and 4109
detections took 896 sec (Matlab code).

5.3. Results

Table 2 shows the player classification accuracies for
both teams, averaged over all test clips for the the 4 graph-
ical model variations. Results are for ε = 0.001; results do
not change for values of 0 < ε ≤ 0.01 (equivalent to 1%
error in tracking). Results for ε = 0 are even worse for the
full graphical model since automatically generated tracklets
in the test videos have a small amount of tracking error.

We can draw two main conclusions from Table 2. First,
adding temporal edges helps reduce the error the most.
Adding mutex edges to a model with temporal edges also
helps, despite the need to use approximate inference. The
full CRF leads to a significant performance boost of up
to 85% accuracy (from 62% accuracy in I.I.D. classifica-
tion). Second, a sparse linear classifier performs very well,
suggesting that the use of all three feature types (MSER,
SIFT and RGB) is already quite discriminative (the “GM”
columns of Table 1 confirm this as well).

Interestingly, test accuracies for the Celtics are slightly
lower than that for the Lakers (82 vs. 85%). This can be
explained by looking at the roster of active players. Of the
9 players on the Lakers, 3 are Caucasian: use of color as a
feature allows for better discrimination of these 3 players.
The Celtics, however, do not have this advantage, making
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Lakers Celtics
I.I.D. model (no edges) 61.86± 2.64% 60.85± 8.16%
Graphical model with mutex edges only 65.23± 3.59% 63.86± 8.83%
Graphical model with temporal edges only 78.25± 6.95% 78.92± 7.73%
Full graphical model (loopy BP) 84.89 ±6.06% 81.77 ±8.07%

Table 2: Average player classification accuracies using L1-regularized logistic regression, with standard deviations shown.
Results are averaged over all test video clips and reported for various configurations of the graphical model in Figure 5.

the identification problem harder.
Figure 6 shows qualitative tracking and identification

results of the full system (videos are available online).
Team classification results are shown with players from the
Celtics in green bounding boxes and players from the Lak-
ers in yellow boxes. Text within a bounding box indicates
the player name predicted by the system. Bounding boxes
in red represent misclassifications. We see that the system is
able automatically track and identify players with relatively
high accuracy.

We made several discoveries in the process of develop-
ing the system. For example, we found that jersey number
recognition alone (with a number detector and OCR mod-
ule) gave poor results. This is due to the fact that jersey
numbers are infrequent and, when visible, are often de-
formed due to player movements. A second observation
was that discriminative player models were more effective
at weighting distinguishing features than generative ones,
which can be attributed to the common feature points shared
across players. We were also surprised to find that mu-
tex constraints were not as effective as temporal constraints,
which can be explained by frequent player occlusions. Our
work sheds insights on how to solve the multi-player track-
ing and identification problem. It is important to note that
even though identification relies on good tracking results,
tracking errors and identity switches in tracklets would still
be present due to frequent occlusions and failed detections.
Identification, there, remains challenging.

6. Conclusions and future work
We address the challenging problem of automatic track-

ing and identification of players from broadcast sports
videos shot from a medium-distance. We have shown how
to develop a system that can achieve up to 85% accuracy in
player identification in challenging basketball videos. Our
current system relies on manually labeled data for training
the classifier. We are currently working on including weak
labels such as play-by-play text during training (e.g., simi-
lar to [6]). Future work will include making the model more
robust to tracking errors and using semi-supervised learning
to reduce the number of labels needed for training. With
these improvements, we hope to be able to apply the sys-
tem on a wide variety of sports videos, such as ice hockey,

soccer, etc, with minimal human effort.

Acknowledgment
This work has been supported by grants from the Natu-

ral Sciences and Engineering Research Council of Canada,
the Canadian Institute for Advanced Research, and the
GEOIDE Network of Centres of Excellence. We thank
Kenji Okuma, David Lowe, and Nando de Freitas for help-
ful comments and suggestions.

References
[1] L. Ballan, M. Bertini, A. D. Bimbo, and W. Nunziati. Soc-

cer Players Identification based on Visual Local Features. In
CIVR, 2007.

[2] M. Bertini, A. D. Bimbo, and W. Nunziati. Player Identifica-
tion in Soccer Videos. In MIR, 2005.

[3] M. Bertini, A. D. Bimbo, and W. Nunziati. Automatic De-
tection of Player’s Identity in Soccer Videos using Faces and
Text Cues. In ACM Multimedia, 2006.

[4] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[5] Y. Cai, N. de Freitas, and J. J. Little. Robust Visual Tracking
for Multiple Targets. In ECCV, 2006.

[6] T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from
Ambiguously Labeled Images. In CVPR, 2009.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[8] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and
M. Cristani. Person Re-identification by Symmetry-Driven
Accumulation of Local Features. In CVPR, 2010.

[9] P. Felzenszwalb, D. McAllester, and D. Ramanan. A Dis-
criminatively Trained, Multiscale, Deformable Part Model.
In CVPR, 2008.

[10] P.-E. Forssen and D. G. Lowe. Shape Descriptors for Maxi-
mally Stable Extremal Regions. In ICCV, 2007.

[11] W. Ge and R. T. Collins. Multi-target Data Association
by Tracklets with Unsupervised Parameter Estimation. In
BMVC, 2008.

[12] D. Gray and H. Tao. Viewpoint Invariant Pedestrian Recog-
nition with an Ensemble of Localized Features. In ECCV,
2008.

[13] O. Javed, K. Shafique, Z. Rasheed, and M. Shah. Modeling
Inter-camera Space-time and Appearance Relationships for

3255



Figure 6: Automatic tracking and identification results in a broadcast basketball video. Green boxes represent Celtics players,
and yellow boxes represent Lakers players. Text in boxes are automatic identification results (player’s name), while red boxes
highlight misclassifications. Frame numbers are on the bottom left corner.

Tracking across Non-overlapping Views. Computer Vision
and Image Understanding, 109:146–162, 2008.

[14] L. Jie, B. Caputo, and V. Ferrari. Who’s Doing What: Joint
Modeling of Names and Verbs for Simultaneous Face and
Pose Annotation. In NIPS, 2009.

[15] M. I. Jordan and R. A. Jacobs. Hierarchical Mixtures of Ex-
perts and the EM algorithm. Neural Computation, 6:181–
213, 1994.

[16] R. E. Kalman. A New Approach to Linear Filtering and Pre-
diction Problems. Transactions of the ASME–Journal of Ba-
sic Engineering, 82(Series D):35–45, 1960.

[17] J. Lafferty, A. McCallum, and F. Pereira. Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Label-
ing Sequence Data. In ICML, 2001.

[18] Y. LeCun, L. Bouttou, Y. Bengio, and P. Haffner. Gradient-
based Learning Applied to Document Recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[19] J. Liu, X. Tong, W. Li, T. Wang, Y. Zhang, and H. Wang. Au-
tomatic Player Detection, Labeling and Tracking in Broad-
cast Soccer Video. Pattern Recognition Letters, 30:103–113,
2009.

[20] D. G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, 2004.

[21] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions.
In BMVC, 2002.

[22] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy Belief Prop-
agation for Approximate Inference: An Empirical Study. In
UAI, 1999.

[23] A. Ng. Feature Selection, L1 vs. L2 Regularization, and Ro-
tational Invariance. In ICML, 2004.

[24] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G.
Lowe. A Boosted Particle Filter: Multitarget Detection and
Tracking. In ECCV, 2004.

[25] M. Saric, H. Dujmic, V. Papic, and N. Rozic. Player Number
Localization and Recognition in Soccer Video using HSV
Color Space and Internal Contours. In ICSIP, 2008.

[26] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Free-
man. Discovering Objects and Their Locations in Images. In
ICCV, volume 1, pages 370–377, 2005.

[27] R. Urtasun, D. Fleet, and P. Fua. 3D People Tracking with
Gaussian Process Dynamical Models. In CVPR, 2006.

[28] Q. Ye, Q. Huang, S. Jiang, Y. Liu, and W. Gao. Jersey Num-
ber Detection in Sports Video for Athlete Identification. In
SPIE, 2005.

[29] A. Yilmaz and O. Javed. Object Tracking: A Survey. ACM
Computing Surveys, 38(4):No. 13, 2006.

3256


