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ABSTRACT
Recognizing objects in images is an active area of research
in computer vision. In the last two decades, there has been
much progress and there are already object recognition sys-
tems operating in commercial products. However, most of
the algorithms for detecting objects perform an exhaustive
search across all locations and scales in the image comparing
local image regions with an object model. That approach
ignores the semantic structure of scenes and tries to solve
the recognition problem by brute force. In the real world,
objects tend to co-vary with other objects, providing a rich
collection of contextual associations. These contextual asso-
ciations can be used to reduce the search space by looking
only in places in which the object is expected to be; this also
increases performance, by rejecting patterns that look like
the target but appear in unlikely places.

Most modeling attempts so far have defined the context
of an object in terms of other previously recognized objects.
The drawback of this approach is that inferring the context
becomes as difficult as detecting each object. An alternative
view of context relies on using the entire scene information
holistically. This approach is algorithmically attractive since
it dispenses with the need for a prior step of individual object
recognition. In this paper we use a probabilistic framework
for encoding the relationships between context and object
properties and we show how an integrated system provides
improved performance. We view this as a significant step
towards general purpose machine vision systems.

1. INTRODUCTION
Visual object detection, such as finding cars and people

in images, is an important but challenging task. It is impor-
tant because of its inherent scientific interest (understanding
how to make machines see may shed light on biological vi-
sion), and because it is useful for many applications, such as
content-based image retrieval, robotics, etc. It is challeng-
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ing because the appearance of objects can vary a lot from
instance to instance, and from image to image, due to fac-
tors such as variation in pose, lighting, style, articulation,
occlusion, low quality imaging, etc.

Over the last two decades, much progress has been made
in visual object detection using machine learning techniques.
Most of these approaches rely on using supervised learning
to train a classifier to distinguish between instances of the
object class and the background. The trained classifier is
then applied to thousands of small overlapping patches or
windows of each test image, and the locations of the high-
confidence detections are returned. The features computed
inside each patch are usually the outputs of standard image
processing operations, such as a histogram of responses to
Gabor filters at different scales and orientations. The clas-
sifiers themselves are standard supervised learning models
such as SVMs, neural networks or boosted decision stumps
[20].

This “sliding window classifer” technique has been quite
successful in certain domains such as detecting cars, pedes-
trians and faces. Indeed most contemporary digital cameras
emply such a technique to detect faces, which they use to
set the auto-focus. Also, some cars now come equipped with
pedestrian detection systems based on similar principles.

One major problem with the standard approach is that
even a relatively low false-positive rate per class can be un-
acceptable when there are many classes or categories. For
example, if each detector generates about 1 false alarm every
10 images, and there are 1000 classes, we will have 100 false
alarms per image. An additional problem is that running
every detector on every image can be slow. These are both
fundamental obstacles to building a general purpose vision
system.

One reason for the relatively high false alarm rate of stan-
dard approaches is that most object detection systems are
“myopic”, in the sense that they only look at local features of
the image. One possible remedy is to leverage global features
of the image, and to use these to compute the “prior” proba-
bility that each object category is present, and if so, its likely
location and scale. Previous work (e.g., [17]) has shown that
simple global image features, known as the “gist” of the im-
age, are sufficient to provide robust predictions about the
presence and location of different object categories. Such
features are fast to compute, and provide information that
is useful for many classes and locations simultaneously.

In this paper, which is an extension of our previous work
[17, 9, 8], we present a simple approach for combining stan-



Figure 1: In presence of image degradation (e.g.
blur), object recognition is strongly influenced by
contextual information. The visual system makes
assumptions regarding object identities based on its
size and location in the scene. In these images, the
same black blob can be interpreted as a plate, bot-
tle, cell phone, car, pedestrian or shoe, depending
on the context. (Each circled blob has identical pix-
els, but in some cases has been rotated.)

dard sliding-window object detection systems, which use
local, “bottom up” image features, with systems that pre-
dict the presence and location of object categories based on
global, or “top-down”, image features. These global features
serve to define the context in which the object detection is
happening. The importance of context is illustrated in Fig-
ure 1, which shows that the same black “blob”, when placed
in different surroundings, can be interpreted as a plate or
bottle on the table, a cell phone, a pedestrian or car, or
even a shoe. Another example is shown in Figure 2: it is
easy to infer that there is very probably a computer monitor
behind the blacked out region of the image.

We are not the first to point out the importance of context
in computer vision. For example, Strat and Fischler empha-
sized its importance in their 1991 paper [16]. However, there
are two key differences between our approach and previous
work. First, in early work, such as [16], the systems consist
of hand-engineered if-then rules, whereas more recent sys-
tems rely on statistical models that are fit to data. Second,
most other approaches define the context in terms of other
objects [6, 14, 18, 13]; but this introduces a chicken-and-
egg problem: to detect an object of type 1 you first have to
detect an object of type 2. By contrast, we propose a hierar-
chical approach, in which we define the context in terms of
an overall scene category. This can be reliably inferred using
global images features. Conditioned on the scene category,
we assume that objects are independent. While not strictly
true, this results in a simple yet effective approach, as we
will show below.

In the following sections, we describe the different com-

?

Figure 2: What is hidden behind the mask? In this
example, context is so strong that one can reliably
infer that the hidden object is a computer monitor.

ponents of our model. We will start by showing how we
can represent contextual information without using objects
as an intermediate representation. Then we will show how
that representation can be integrated with an object detec-
tor.

2. GLOBAL IMAGE FEATURES: THE GIST
OF AN IMAGE

In the same way that an object can be recognized with-
out decomposing it into a set of nameable parts (e.g., the
most successful face detectors do not try to detect the eyes
and mouth first, instead they search for less semantically
meaningful features), scenes can also be recognized without
necessarily decomposing them into objects. The advantage
of this is that it provides an additional source of informa-
tion that can be used to provide contextual information for
object recognition. As suggested in [10, 11] it is possible to
build a global representation of the scene that bypasses ob-
ject identities, in which the scene is represented as a single
entity. Recent work in computer vision has highlighted the
importance of global scene representations for scene recogni-
tion [11, 1, 7] and as a source of contextual information [17,
9, 3]. These representations are based on computing statis-
tics of low level features (similar to representations available
in early visual areas such as oriented edges, vector quantized
image patches, etc.) over fixed image regions. One example
of a global image representation is the gist descriptor [11].
The gist descriptor is a vector of features g, where each in-
dividual feature gk is computed as:

gk =
X

x,y

wk(x, y) × |I(x, y) ⊗ hk(x, y)|2 (1)

where ⊗ denotes image convolution and × is a pixel-wise
multiplication. I(x, y) is the luminance channel of the input
image, hk(x, y) is a filter from a bank of multiscale oriented
Gabor filters (6 orientations and 4 scales), and wk(x, y) is



Figure 3: This figure illustrates the information en-
coded by the gist features for three different images.
See text for details.

a spatial window that will compute the average output en-
ergy of each filter at different image locations. The windows
wk(x, y) divide the image in a grid of 4× 4 non-overlapping
windows. This results in a descriptor with a dimensionality
of 4 × 4 × 6 × 4 = 384.

Figure 3 illustrates the amount of information preserved
by the gist descriptor. The middle column shows the average
of the output magnitude of the multiscale-oriented filters on
a polar plot (note that the orientation of each plot is or-
thogonal to the direction of the edges in the image). The
average response of each filter is computed locally by split-
ting the image into 4 × 4 windows. Each different scale is
color coded (red for high spatial frequencies, and blue for the
low spatial frequencies), and the intensity is proportional to
the energy for each filter output. In order to illustrate the
amount of information preserved by this representation, the
right column of figure 3 shows noise images that are coerced
to have the same gist features as the target image, using the
texture synthesis method of [2]. As shown in figure 3, the
gist descriptor provides a coarse description of the textures
present in the image and their spatial organization. The gist
descriptor preserves relevant information needed for catego-
rizing scenes into categories (e.g., classifying an image as
being a beach scene, a street or a living-room). As reported
in [12], when trying to discriminate across 15 different scene
categories, the gist descriptor classifies correctly 75 % of the
images. Recognizing the scene depicted by a picture is an
important task on its own, but in addition it can be used
to provide strong contextual priors as we will discuss in the
next section.

3. JOINT SCENE CLASSIFICATION AND
OBJECT DETECTION

In this section, we describe our approach in more detail.
In Section 3.1, we briefly describe the standard approach to
object detection and localization using local features. In Sec-
tions 3.3 and 3.2 we describe how to use global features for
object localization and detection respectively. In Section 3.4
we discuss how to integrate these local and global features.
A comparison of the performance of local and global features
is deferred until Section 4.

3.1 Object presence detection and localization
using local features

In our previous paper [9], we considered detecting four
different types or classes of objects: cars, people, keyboards
and screens (computer monitors). In this paper, we will
mostly focus on cars, for brevity. We use a subset of the
LabelMe dataset [11, 15] for training and testing (details
are in Section 4).

There are two tasks that we want to address: object pres-
ence detection (where the goal is to predict if the object
is present or absent in the image, i.e., to answer the ques-
tion: is there any car in this image?) and object localization
(where the goal is to precisely locate all the instances of an
object class within each image). Solving the object presence
detection task can be done even if the object localization is
not accurate.

We can formalize the object presence detection and local-
ization problem as follows. Let P t = 1 if one or more objects
of type t are present anywhere in the image, and P t = 0 oth-
erwise. The goal of object presence detection is to estimate
the probability p(P t = 1|I), where I is the image. Later we
will generalize this slightly by trying to estimate the num-
ber of instances of the object class that might be present,
p(N t|I), where N t ∈ {0, 1, 2, 3 − 5, 5 − 10, > 10}. We call
this object counting.

The goal of object localization is to specify the location
and size of each of the object instances. More precisely, let
Ot

i be a binary random variable representing whether image
patch i contains an object of type t or not, for i ∈ {1, . . . , N},
where N ∼ 1000 is the number of image patches. (The size
and shape of the image patches varies according to the object
type; for side views of cars, we use patches of size 30 × 80;
to handle cars of different sizes, we apply the technique to
multiple versions of the image at different scales.) One way
to perform localization is to compute the log-likelihood ratio

ct
i = log p(f t

i |O
t
i = 1)/p(f t

i |O
t
i = 0), (2)

for each i and t, and then to return all the locations where
this log likelihood ratio is above some threshold. Here f t

i

is a set of local features extracted from image I at patch i
for class t. The details of the features and classifier that we
used can be found in [19].

For simplicity, in this paper we select the D most confident
detections (after performing local non-maximum suppres-
sion); let their locations be denoted by ℓt

i, for i ∈ {1, . . . , D}.
Figure 6(a) gives an illustration of the output of our system
on a typical image. For the results in this paper, we set
D = 10 so that no correct detections are discarded and still
small enough to be efficient. In the figure we show the top
D = 4 detections to avoid clutter. The locations of each de-
tection ℓt

i are indicated by the position and scale of the box,
and their confidences ct

i are indicated by the thickness of the
border. In Figure 6(b-top), we see that although the system
has detected the car, it has also detected 3 false positives.
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Figure 4: Predicting the presence/absence of cars in images and their locations using gist. The outputs shown
here do not incorporate any information coming from a car detector and are only based on context. Note
that in the dataset used to fit the distributions of object counts for each scene category, it is more common
to find cars in street scenes (with many cars circulating and parked) than in highway scenes, where there are
many shots of empty roads. Hence the histogram for highway shows p(Ncar = 0) = 0.6.

This is fairly typical of this kind of approach. Below we will
see how to eliminate many of these false positives by using
global context.

3.2 Object presence detection using global im-
age features

To determine if an object class is present in an image given
the gist, we could directly learn a binary classifier of the form
p(P t = 1|g). Similarly, to predict the number of objects,
we could learn an ordinal regression function of the form
p(N t|g). Instead, we choose a two-step approach in which
we first estimate the category or type of scene, p(S = s|g),
and then use this to predict the number of objects present,
p(N t|S = s). This approach has the benefit of having an
explicit representation of the scene category (e.g., a street, a
highway, a forest) which is also an important desired output
of an integrated model.

We can classify the scene using a simple Parzen-window
based density estimator

p(S = s|g) ∝ p(g|S = s) =
1

J

J
X

j=1

N (g|µj , σ
2

j I),

where J is the number of mixture components for each class
conditional density. Some examples of scene classification
are shown in Figure 4. As shown in [12], this technique clas-
sifies 75% of the images correctly across 15 different scene
categories. Other classifiers give similar performance.

Once we have estimated the scene category, we can predict
the number of objects that are present using

p(N t = n|g) =
X

s

p(N t = n|S = s)p(S = s|g) (3)

where p(N t = n|S = s) is estimated by simple counting.

3.3 Object localization using global image fea-
tures

The gist captures the overall spatial layout of the image,
and hence can be used to predict the expected vertical lo-
cation of each object class before running any detectors; we
call this location priming. However, the gist is not useful
for predicting the horizontal locations of objects, which are
usually not very constrained by the overall structure of the
scene (except possibly by the horizontal location of other
objects, a possibility we ignore in this paper).

We can use any non-linear regression function to learn the
mapping from gist to expected vertical location. We used
a mixture of experts model [4], which is a simple weighted
average of locally linear regression models. More precisely,
we define

p(Y t|g) =
K

X

k=1

wk(g)N (Y t|βT
k g, σ2

k)

where Y t is the vertical location of class t, K is the number
of experts or mixture components, N represents a Gaus-
sian or normal distribution, βk are the regression weights
for mixture component k, σ2

k is the residual variance, and
wk(g) is the weight or “responsibility” of expert k, given by
the softmax or multinomial logistic function:

wk(g) =
exp(vT

k g)
PK

k′=1
exp(vT

k′g)

We illustrate the predictions made by this model in Fig-
ure 6(b), where we scale the intensity of each image pixel by
the probability density function p(Y t|g). We see that the ef-
fect is to “mask out” regions of the image which are unlikely
to contain the object of interest. Some more examples can
be seen in Figure 4.

3.4 Integrated model
We now discuss how to combine the various pieces de-

scribed above. The basic idea is to use the global features



c t
1

Ot
D Nt

S

gOt
1

c t
D

t
1

t
D

Σ

Y
t

Nt’

Σ

Y
t’

ct’
1

Ot’
DOt’

1

ct’
D

t’
1

t’
D

t’t

g Gist descriptor

Nt Number of instances of object class t

Ot
i Indicator of presence of object class t in box i 

S Scene category

Y t Vertical location of object class t

t
i Location of box i for object class t

ct
i Score of box i for object class t

D Number of high confidence detections

Figure 5: Integrated system represented as a directed graphical model. We show two object types, t and t′,
for simplicity. The observed variables are shaded circles, the unknown variables are clear circles. Variables
are defined in the text. The Σt node is a dummy node used to enforce the constraint between the N t nodes
and the Ot

i nodes.

to make “top-down” predictions about how many object in-
stances should be present, and where, and then to use the
local patch classifiers to provide “bottom-up” signals.

The key issue is how to combine these two information
sources. The approach we take is as follows (this differs
slightly from the method originally described in [9]). Let
us initially ignore location information. We treat the confi-
dence score of the detector (ct

i, defined in Equation 2) as a
local likelihood term, and fit a model of the form p(ct

i|O
t
i =

o) = N (ct
i|µ

t
o, σt

o) for o ∈ {0, 1}. We can learn the parame-
ters of this Gaussian by computing the empirical mean and
variance of the scores when the detector is applied to a set
of patches which do contain the object (so o = 1) and which
do not contain the object (so o = 0). If we have a uniform
prior over whether each detection is a true or false positive,
p(Ot

i = 1) = 0.5, we can compute the posterior using Bayes
rule as follows:

p(Ot
i = 1|ct

i) =
p(ct

i|O
t
i = 1)

p(ct
i|O

t
i = 1) + p(ct

i|O
t
i = 0)

However, the detections are not all independent, since we
have the constraint that N t =

PD

i=1
I(Ot

i = 1), where N t is
the number of objects of type t. If we have top-down infor-
mation about N t from the gist, based on Equation 3, then
we can compute the posterior distribution over detections in
O(2D) time, given the gist, as follows:

p(Ot
1:D|g) ∝

D
X

n=0

p(Ot
1:D|n)p(N t = n|g)

Here the term p(Ot
1:D|n) is 1 only if the bit vector Ot

1:D of
length D has precisely n elements turned on. For compact-
ness, we use the notation 1 : D to denote the indices 1, ..., D.
We can combine this with the local detectors as follows:

p(Ot
1:D|ct

1:D, g) ∝ p(Ot
1:D|g)

D
Y

i=1

p(ct
i|O

t
i)

If the gist strongly suggests that the object class is absent,
then p(N t = 0|g) ≈ 1, so we turn all the object bits off
in the posterior regardless of the detector scores, p(Ot

1:D =
0|ct

1:D, g) ≈ 1. If the gist strongly indicates that one object
is present, then p(N t = 1|g) ≈ 1, and only one Ot

i bit will

be turned on in the posterior; this will be the one with the
highest detector score. And so on.

Now we discuss how to integrate location information. Let
ℓt
i be the location of the i’th detection for class t. Since

Y t represents the expected location of an object of class t,
we define another local likelihood term p(ℓt

i|O
t
i = 1, Y t) =

N (ℓt
i|Y

t, τ t), where τ t is the variance around the predicted
location. If the object is absent, we use a uniform distri-
bution p(ℓt

i|O
t
i = 0, Y t) ∝ 1. Of course, Y t is not observed

directly, but we can predict it based on the gist; this yields

p(ℓt
i|O

t
i , g) =

Z

p(ℓt
i|O

t
i , Yt)p(Yt|g)dYt

which can be solved in closed form, since it is the convolution
of two Gaussians. We can now combine expected location
and detections as follows:

p(Ot
1:D|ct

1:D, ℓt
1:D, g) ∝ p(Ot

1:D|g)

D
Y

i=1

p(ct
i|O

t
i)p(ℓt

i|O
t
i , g)

To see the effect of this, suppose that the gist strongly sug-
gests that only one object of type t is present, p(N t = 1|g) ≈
1; in this case, the object bit which is turned on will be the
one that has the highest score and which is in the most likely
location. Thus confident detections in improbable locations
are suppressed; similarly, unconfident detections in likely lo-
cations are boosted.

Finally, we discuss how to combine multiple types of ob-
jects. Intuitively, the presence of a car makes the presence
of a pedestrian more likely, but the presence of a computer
monitor less likely. However, it is impractical to encode a
joint distribution of the form p(P 1, . . . , P T ) directly, since
this would require O(2T ) parameters. (Encoding p(N1, . . . , NT )
directly would be even worse.) Instead, we introduce the
scene category latent variable S, and assume that the pres-
ence (and number) of object types is conditionally indepen-
dent given the scene category:

p(N1, . . . , NT ) =
X

s

p(S = s)
T

Y

t=1

p(N t|S = s)

Given this assumption, we can perform inference for multiple
object types in parallel as follows: for each possible scene



category, compute the posterior p(Ot
1:D|ct

1:D, ℓt
1:D, g, S = s)

as described above, and then combine them using a weighted
average with p(S = s|g) as the weights.

In summary, our whole model is the following joint prob-
ability distribution:

p(O1:T
1:D, N1:T , Y 1:T , S|c1:T

1:D , ℓ1:T1:D, g) ∝ p(S|g)×
T

Y

t=1

p(Y t|g)p(N t|S)p(Ot
1:D|Nt)

D
Y

i=1

p(ℓt
i|Oi, Y

t)p(ct
i|Oi)

This is illustrated as a probabilistic graphical model (see
e.g., [5]) in Figure 5. There is one node for each random
variable: the shaded nodes are observed (these are deter-
ministic functions of the image), and the unshaded nodes
are hidden or unknown, and need to be inferred. There is
a directed edge into each node from all the variables it di-
rectly depends on. For example, the g → S arc reflects the
scene classifier; the g → Y t arc reflects the location prim-
ing based on the gist; the S → N t arc reflects the object
counts given the scene category; the Ot

i → ct
i arc reflects the

fact that the presence or absence of an object of type t in
patch i affects the the detector score or confidence ct

i; the
Ot

i → ℓt
i arc is a deterministic link encoding of the location

of patch i; the Y t → ℓt
i arc reflects the p(ℓt

i|Y
t, Ot

i) term;
finally, there are the Ot

i → Σt and N t → Σt arcs, which is
simply a trick for enforcing the N t =

PD

i=1
I(Ot

i = 1) con-
straint. The Σt node is a dummy node used to enforce the
constraint between the N t nodes and the Ot

i nodes. Specif-
ically, it is “clamped” to a fixed state, and we then define
p(Σt|Ot

1:D, N t = n) = I(
P

i
Ot

i = n) (conditional on the
observed child Σt, all the parent nodes, N t and Ot

i , become
correlated due to the “explaining away” phenomenon [5]).

From Figure 5, it is clear that by conditioning on S, we
can perform inference on each type of object independently
in parallel. The time complexity for exact inference in this
model is O(ST2D), ignoring the cost of running the detec-
tors. (Techniques for quickly evaluating detectors on large
images, using cascades of features, are discussed in [20].) We
can speed up inference in several ways. For example, we can
prune out improbable object categories (and not run their
detectors) if p(N t > 0|g) is too low, which is very effective
since g is fast to compute. Of the categories that survive,
we can just run their detectors in the primed region, near
E(Y t|g). This will reduce the number of detections D per
category. Finally, if necessary, we can use Monte Carlo in-
ference (such as Gibbs sampling) in the resulting pruned
graphical model to reduce time complexity.

4. RESULTS
Example of the integrated system in action are shown in

Figure 6(c): We see that location priming, based on the gist,
has down-weighted the scores of the detections in improba-
ble locations, thus eliminating false positives. In the second
row, the local detector is able to produce a confident detec-
tion, but the second car produces a low confidence detection.
As the low confident detection falls inside the predicted re-
gion, the confidence of the detection increases. Note that
in this example there are two false alarms that happens to
also fall within the prediction region. In this case, the over-
all system will increase the magnitude of the error. If the
detector produces errors that are contextually correct, the
integrated model will not be able to discard those. The
third row shows a different example of failure of the inte-

grated model. In this case, the structure of the scene makes
the system think that this is a street scene, and then mixes
the boats with cars. Despite these sources of errors, the per-
formances of the integrated system are substantially better
than the performances of the car detectors in isolation.

For a more quantative study of the performance of our
method, we used the scenes dataset from [11] consisting
of 2688 images covering 8 scene categories (streets, build-
ing facades, skyscrapers, highways, mountainous landscapes,
coast, beach and fields). We use half of the dataset to train
the models and the other half for testing.

Figure 7 shows performances at two tasks: object local-
ization and object presence detection. The plots correspond
to precision-recall plots: the horizontal axis denotes the per-
centage of cars in the database that have been detected for
a particular detection threshold and the vertical axis is the
percentage of correct detections for the same threshold. Dif-
ferent points in the graph are achieved by varying the de-
cision threshold. For both tasks, the plot shows the per-
formances using an object detector alone, the performances
of the integrated model, and the performance of an inte-
grated model with an oracle that tells for each image the
true context. The performance of the integrated model has
to be within the performance of the detector alone and the
context oracle.

Figure 7(right) shows a precision-recall curve which quan-
tifies the performance of 3 different systems for detecting ob-
ject presence. The worst one is based on an object detector
using local features alone, the middle one is our integrated
system which uses local and global features, and the best
one is an oracle system based on using the true scene cat-
egory label. We see that our integrated model does much
better than just using a detector, but it is clear that better
scene classification would improve the results further. It is
important to note that detecting if an object is present in an
image can be done with good accuracy even without object
localization. The knowledge of the scene depicted by the im-
age can be enough. For instance, in a picture of a street it is
quite certain that a car will appear in the picture, while it is
unlikely that a car will appear on a beach scene. Therefore,
the relation between the scene category and the object can
provide a lot of information even when the detector fails to
locate the object in the image.

Figure 7(left) shows a precision-recall curve which quan-
tifies the performance of 3 different systems for localizing
objects. Again the worst one is based on an object detector
using local features alone, the middle one is our integrated
system which uses local and global features, and the best one
is a oracle system based on using the true scene category la-
bel. In this case, knowing the true scene category does not
help as much: it can eliminate false positives such as cars
in indoor scenes, but it cannot eliminate false positives such
as cars detected in a street scene but up in the sky. (Of
course, the gist-based location priming system tries to elim-
inate such spatial outliers, but knowing the scene category
label does not help with localization.)

Object localization is a much harder task than merely
detecting the presence of an object. This is evident from
the horizontal scale in Figure 7(left): the recall never goes
beyond about 30%, meaning that about 70% of cars are
missed by the detector, mostly due to occlusion. Even if
context can be used to narrow down the search space and
to remove false alarms that occur outside the relevant image



 

a) input image b) car detector output c) location priming c) integrated model output

Figure 6: a) Three input images b) Top 4 detections from an object detector based on local features. The
thickness of the boxes is related to the confidence of the detection. c) Predicted location of the car based on
global features. d) Combining local and global features.
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Figure 7: Performance on car localization (left) and
car presence detection (right).

region, still, if the detector is not able to localize the object,
context information will not be able to precisely localize the
object. The use of global context (even with the oracle)
does not increase the recall (as this requires the detector to
work), however context is able to increase the precision as
it is able to remove false alarms in scenes in which cars are
not expected. It is possible that a finer grained notion of
context, perhaps based on other objects, could help in such
cases. Note, however, that for image retrieval applications
(e.g., on the web), object presence detection is sufficient.
For speed reasons, we could adopt the following two stage
approach: first select images that are predicted to contain
the object based on the gist alone, since this is much faster
than applying a sliding window classifier; then apply the
integrated model to further reduce false positives.

5. CONCLUSIONS
We have discussed one approach for combining local and

global features in visual object detection and localization.
Of course, the system is not perfect. For example, some-
times objects appear out of context and may be accidently
eliminated if the local evidence is ambiguous (see Figure 8).
The only way to prevent this is if the local detector gives a
sufficiently strong bottom-up signal. Conversely, if the de-
tector makes a false positive error in a contextually plausible
location, it will not be ruled out by our system. But even
people can also suffer from such “hallucinations”.

In more general terms, we see our system as a good exam-
ple of probabilistic information fusion, an approach which is
widely used in other areas such as speech recognition, which
combines local acoustic models which longer-range language
models. Since computer vision is inherently a difficult in-
verse problem, we believe it will be necessary to combine as
many sources of evidence as possible when trying to infer
the true underlying scene structure.
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