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Abstract

Recent work has shown that one can learn
the structure of Gaussian Graphical Models
by imposing an L1 penalty on the precision
matrix, and then using efficient convex opti-
mization methods to find the penalized max-
imum likelihood estimate. This is similar to
performing MAP estimation with a prior that
prefers sparse graphs. In this paper, we use
the stochastic block model as a prior. This
prefer graphs that are blockwise sparse, but
unlike previous work, it does not require that
the blocks or groups be specified a priori. The
resulting problem is no longer convex, but
we devise an efficient variational Bayes algo-
rithm to solve it. We show that our method
has better test set likelihood on two differ-
ent datasets (motion capture and gene ex-
pression) compared to independent L1, and
can match the performance of group L1 us-
ing manually created groups.

1. Introduction

Estimating a covariance matrix Σ from high dimen-
sional data using a small number of samples is known
to be statistically challenging, and yet it is a problem
that arises frequently in practice. In the case where
the number of samples N is less than the number of
dimensions D, the sample covariance matrix S, which
is equal to the MLE, is not positive definite. But even
when N > D, the eigenstructure of the MLE tends to
be distorted unless D/N is very small (see e.g., (Demp-
ster, 1972)).

There have been many different attempts to devise
regularized estimates of Σ. A very simple approach,
which we shall call Tikhonov regularization, is to use
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Σ̂ = S+νI, where ν ≥ 0 can be chosen by cross valida-
tion or the Ledoit-Wolf formula (Ledoit & Wolf, 2004).
An alternative is to form a regularized estimate of the
precision matrix, Ω = Σ−1 (also called the concentra-
tion matrix). A particularly useful approach is based
on penalizing the L1 norm of the elements of Ω, to en-
courage sparsity in the precision matrix; the resulting
objective function is convex and can be optimized by
a variety of methods (Banerjee et al., 2006; Banerjee
et al., 2008; Friedman et al., 2007; Yuan & Lin, 2007;
Duchi et al., 2008; Schmidt et al., 2009). Zeros in the
precision matrix correspond to absent edges in the cor-
responding Gaussian graphical model (GGM), so this
penalty can be interpreted as preferring graphs that
are sparse, that is, which have few edges. However,
this approach is different from standard model selec-
tion methods for GGMs, such as (Drton & Perlman,
2004), which estimate the graph structure but not the
parameters.

For some kinds of data, it is reasonable to assume
that the variables can be clustered or grouped into
types, which share similar connectivity or correlation
patterns. For example, genes can be grouped into
pathways, and connections within a pathway might
be more likely than connections between pathways.
If the group structure is known, one can extend the
above L1 penalized likelihood framework in a straight-
forward way, by penalizing the infinity norm (Duchi
et al., 2008) or the two-norm (Schmidt et al., 2009)
of each block separately; the resulting objective func-
tion is still convex, and encourages blockwise sparse
graphs.

In this paper, we present a method that estimates
sparse block-structured precision matrices, when the
block structure is unknown. We first describe related
work in Section 2, and then describe our method in
Section 3. In Section 4, we apply our method to two
different datasets: the gene expression data used in
(Duchi et al., 2008), and a motion capture dataset.
Our method outperforms Tikhonov regularization and
independent L1 regularization. More interestingly, it
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can achieve performance that approaches that of the
known grouping in both data sets.

2. Related work

One approach to learning sparse GGMs it to form
a modified Cholesky decomposition of the precision
matrix, Σ−1 = BT DB, where B = I − W , W is a
lower triangular matrix of regression weights, xj =
µj +

∑

i<j wij(xi − µi), and D is a diagonal ma-
trix of variances, and then to impose an L1 penalty
(Huang et al., 2006), or a spike-and-slab prior (Smith
& Kohn, 2002), on the elements of W . Note that this
is equivalent to learning a sparse directed acyclic graph
(Shachter & Kenley, 1989), and requires knowing a to-
tal ordering of the nodes. This limits the usefulness of
the technique for unordered, or cross-sectional, data.

A natural generalization of the sparse DAG approach

is to regress each node on all the others, xj = w
(0)
j +

∑

i6=j wijxi, and then to impose an L1 prior on each
row of W and optimize the penalized pseudolikelihood,
given by

N
∏

n=1

p(xnj |xn,−j , wj , σ
2
j ) + λ

D
∑

j=1

||wj,:||1

where ||wj,:||1 =
∑

i∈{1,...,d}\{j} |wji| is the one-norm
of the weight vector into node j. One can then infer the
undirected graph structure from the non-zero elements
of W . This technique is a consistent estimator of the
graph topology under certain conditions, analogous to
those that ensure lasso is model selection consistent for
variable selection (Meinshausen & Buhlmann, 2006).
We shall refer to this as the “MB” technique. The
MB technique is very similar to the dependency net
approach proposed in (Heckerman et al., 2000), ex-
cept we use L1 penalized linear regression rather than
decision trees to infer the graph. Given the graph, re-
gression weights can be estimated for each node and
assembled into a precision-like matrix. However, this
matrix is not necessarily positive definite for small
sample sizes, and thus not necessarily a valid preci-
sion matrix Ω. One way around this is to compute an
MLE of Ω subject to the estimated set of structural ze-
ros using the IPF algorithm (Speed & Kiiveri, 1986) or
other convex optimization methods (Dahl et al., 2008).

A technique that can estimate Ω and achieve spar-
sity at the same time was independently proposed by
(Yuan & Lin, 2007) and (Banerjee et al., 2006). In this
approach, we impose an L1 penalty on the elements of
the precision matrix, and maximize the penalized log
likelihood, subject to the constraint that Σ be positive

definite. The objective function is given by

1

2
log det(Ω) −

1

2N

N
∑

n=1

xT
nΩxn − 1

2

D
∑

i=1

D
∑

j=1

λij |Ωij |

∝ log det(Ω) − tr(SΩ) −
D

∑

i=1

D
∑

j=1

λij |Ωij | (1)

where S = 1
N

∑N
n=1 xnxT

n is the empirical covariance
matrix, assuming the data has been mean-centered for
notational simplicity. This is a convex objective func-
tion, and various efficient algorithms (typically O(D3)
time complexity) have been proposed to solve it (Fried-
man et al., 2007; Rothman et al., 2008; Duchi et al.,
2008; Schmidt et al., 2009). Typically we use a dif-
ferent penalization strength for the diagonal and off-
diagonal terms:

log det(Ω) − tr(SΩ) − λ

D
∑

i=1

D
∑

j 6=i

|Ωij | − ν

D
∑

i=1

|Ωii| (2)

Note that setting λ = 0 is equivalent to Tikhonov reg-
ularization, since Ωii > 0 implies

tr((S + νI)Ω) = tr(SΩ) + ν

D
∑

i=1

|Ωii|

In the case that we have known groups, denoted by
Sg, we can extend this objective as follows:

log det(Ω) − tr(SΩ) −
∑

g

λg||{Ωij : (i, j) ∈ Sg}||p (3)

where p specifies which norm to apply to the elements
in each group. Note that this objective is still con-
vex. If we use p = ∞, as in (Duchi et al., 2008),
the penalty has the form maxi,j∈Sg

|Ωij |. If we use
p = 2, as in (Schmidt et al., 2009), the penalty has the

form
√

∑

i,j∈Sg
Ω2

ij . This tends to work better, since it

forces a block to be sparse when all the elements within
“want” to be small, rather than having the behavior
of the group be dominated by the largest element. In
the limit where each edge is its own group, the group
L1 objective reduces to the original L1 objective.

Learning sparse GGMs with unknown block structure
is much harder, for reasons we explain in Section 3,
and we are not aware of any prior work on this prob-
lem. However, there has been work on learning sparse
DAG models with unknown block structure. Specifi-
cally, (Mansinghka et al., 2006) showed how one can
use the stochastic blocks model (Nowicki & Snijders,
2001) as a prior over graphs, combined with a uni-
form prior over node orderings, to learn block struc-
tured DAGs from discrete data. Our work is related to
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(Mansinghka et al., 2006), but has the following key
differences: we learn undirected graphs rather than
DAGs, we learn Gaussian models rather than multi-
nomial models, we use a finite mixture model rather
than an infinite one, we use a pseudo likelihood rather
than a likelihood when inferring the clustering (but
not when estimating Σ), we use variational Bayes in-
stead of MCMC, and we apply our method to real data
rather than synthetic data.

3. Method

3.1. Overview

We propose a two stage method for learning sparse
GGMs with unknown blocks. In the first stage, we
optimize a pseudolikelihood criterion, as in the MB
method, combined with a sparsity promoting prior on
the weights. The sparsity level of each edge weight,
Wij , is controlled by the clusters to which nodes i and
j belong, as well as the probability of an edge between
these cluster types. Having identified the clusters, we
then estimate Σ using the block L1 method.

We give the details of our method below, but first we
motivate why we adopted this two stage approach. It
is well known that Lasso (L1 regularized linear regres-
sion) is equivalent to MAP estimation with a Laplace
prior. By analogy, we can see that L1 penalization
of each element of the precision matrix corresponds
to an independent Laplace prior on each element of
Ω, normalized over the space of positive definite ma-
trices P in D dimensions. More precisely, optimizing
Equation 1 is equivalent to MAP estimation with the
following prior, where the indicator function I[Ω ∈ P]
ensures that the prior is zero for precision matrices
that are not positive definite.

p(Ω|λ) =

I[Ω ∈ P]

D
∏

d=1

D
∏

d′≥d

λdd′ exp(−λdd′ |Ωdd′ |)

∫

P

D
∏

d=1

D
∏

d′≥d

λdd′ exp(−λdd′ |Ωdd′ |)dΩ

If the prior parameters λdd′ are fixed, the normaliza-
tion term is constant with respect to the precision ma-
trix and can be ignored, leading to an efficiently solv-
able convex optimization problem. If the prior param-
eters λdd′ are themselves endowed with a structured
hierarchical prior, and we wish to adapt these param-
eters at the same time as we fit the covariance ma-
trix Σ, the normalization term in the Equation above
varies and is intractable to compute exactly, unless we
restrict attention to the class of decomposable graphi-
cal models (see e.g., (Rajarratnam et al., 2008)). One

could use a Monte Carlo estimate, as in (Lenkoski &
Dobra, 2008), but this would be very expensive, since
it would have to be recomputed every time λ changes.

By working with the pseudolikelihood, we can solve
a series of related sparse regression problems without
worrying about the positive definite constraint. Once
we have identified suitable clusters in the data, we then
optimize Equation 3. In the following sections, we
describe our method in more detail.

3.2. Model

We define our model by explaining the generative
process in a top-down fashion. Steps 1-4 define the
stochastic block model on undirected graphs (Nowicki
& Snijders, 2001). We assume the number of groups
K is fixed, and discuss how to estimate this below.
The remaining steps explain how we use the graph as
a prior for the weights, which are then used to gener-
ate the data. The overall model is illustrated in Fig-
ure 1(left).

1. We sample the fraction of nodes in each group
from a symmetric Dirichlet distribution, θ ∼
Dir( α

K
).

2. For each variable d, we sample a group mem-
bership using a multinomial distribution, zd ∼
Multi(θ, 1), i.e., p(zd = k|θ) = θk.

3. For each pair of groups k, k′, we sample the
probability of an edge between them, πk,k′ ∼
Beta(ak,k′ , bk,k′).

4. For each pair of distinct variables d, d′, we sample
an edge between them according to a Bernoulli,
Gd,d′ ∼ Ber(πzd,zd′

). This results in a symmetric
undirected graph.

5. We sample σ2
0 from a Gamma prior, σ2

0 ∼ Ga(ǫ, δ)
and set σ2

1 = ρσ2
0 as described below.

6. For each pair of nodes 1 ≤ d ≤ D, d′ 6= d, we
sample an edge weight according to

wd,d′ ∼ N (0, σ2
0)Gd,d′N (0, σ2

1)1−Gd,d′

This is similar to the standard “spike and slab”
prior used in the Bayesian variable selection liter-
ature (George & McCulloch, 1997).

7. Finally we generate the data via a series of inde-
pendent linear regressions:

xd,n ∼ N (wT
d x−d,n, σ2)

where x−d,n is the n’th training vector with the
d’th component removed and σ2 is the overall
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Figure 1. Summary of the model (left) and the variational updates (right). On the left, small square nodes are fixed
hyperparameters. The double-ringed σ1 node is a deterministic function of σ0 and ρ. Only the X matrix is observed, all
other quantities are inferred.

noise level. (Note that this is just an interpreta-
tion of the pseudolikelihood, rather than a proper
generative mechanism for the data.)

3.3. Hyperparameters

The model has several hyperparameters which we now
discuss. The key hyperparameters that we have iden-
tified are the number of clusters K, the weight vari-
ance scale parameter δ, and the data noise variance
σ2. The number of clusters K is determined in the
learning algorithm using the model free energy and
explicit cluster splitting steps as described in Section
3.5. Preliminary cross validation experiments showed
that setting δ = 0.01 and σ2 = 0.1 led to good perfor-
mance in terms of the final precision matrix estimate
on both of the data sets we consider, and these settings
are used throughout the experiments.

We set the Beta hyperparameters on π to ak,k′ = 2,
bk,k′ = 1 if k′ 6= k, and ak,k′ = 1, bk,k′ = 2 if k = k′.
This encodes a weak prior favoring a graph structure
with more edges between nodes in the same cluster
than between nodes in different clusters. We set the
weight variance shape parameter to ǫ = 1 and note
that it is overwhelmed in the posterior update by the
D(D − 1)/2 factor as described in Section 3.5. We set
the Dirichlet parameter α = 1/K.

The σ2
1 parameter is defined to be a constant multiple

ρ of σ0. This construction for σ2
0 and σ2

1 is important
since its value (in conjunction with σ2) determines the

sparsity of the inferred graph. Intuitively, we deter-
mine if an edge Gd,d′ is present or absent by classify-
ing its corresponding weight wd,d′ under the two Gaus-
sian distributions N (0, σ2

0) and N (0, σ2
1). We want to

choose the variances so that this decision boundary oc-
curs at some “reasonable” distance from the origin to
avoid turning on edges if their weights are too small.
We choose ρ such that the two pdfs, N (0, σ2

0) and
N (0, σ2

1), intersect at cσ0, i.e., we solve the following
for ρ

N (cσ0|0, σ2
0) = N (cσ0|0, ρσ2

0)

which yields

ρ = exp

(

LW

[

−
c2

exp(c2)

]

+ c2

)

where LW is the Lambert W function (the inverse of
f(x) = xex). We require c > 1, otherwise the broad
N (0, σ2

1) pdf will not dominate N (0, σ2
0) in the tails.

We chose c = 2, which results in a fairly sharp decision
boundary, and hence a low entropy posterior on G.
(Other approaches for setting σ2

0 and σ2
1 are discussed

in (George & McCulloch, 1997).)

3.4. Variational Bayes Approximation

The full posterior is proportional to

p(Z, θ, π,G,W, σ0,X|K,σ2, α, ǫ, δ, ρ, a, b)

We use variational Bayes (Ghahramani & Beal, 2000)
to approximate the posterior. In particular, we use the
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following fully factorized approximation:

Q(Z, θ, π,G,W, σ0) = Q(Z)Q(θ)Q(π)Q(G)Q(W )Q(σ0)

The individual variational distributions and corre-
sponding variational parameters are as follows:

Q(Zd) = Multi(φd, 1)

Q(θ) = Dir(α∗)

Q(πk,k′) = Beta(a∗k,k′ , b
∗
k,k′)

Q(Gd,d′) = Ber(γd,d′)

Q(1/σ2
0) = Ga(ǫ∗, δ∗)

Q(W ) = δ(W − ŵ)

It is important that the quantities that change dimen-
sionality with the number of clusters, namely θ and π,
have non-degenerate distributions, otherwise we can-
not use the free energy for model selection (see Sec-
tion 3.5). In particular, if we perform MAP estima-
tion of θ, there is nothing in the model to encourage
a small number of clusters, but by putting a distri-
bution on θ, we get an automatic form of complexity
control (see e.g. (Bishop, 2006, p480) for discussion).
Finally, note that we choose to use point estimation
for W since representing the uncertainty in W using a
full covariance Gaussian would be intractable (requir-
ing O(D4) space), and using a diagonal approximation
would not provide much benefit over just using a point
estimate.

3.5. Learning

We learn the model parameters by optimizing the free
energy. The inner loop of the learning algorithm con-
sists of updating the variational parameters of each Q
distribution (and several auxiliary parameters) in turn
until the free energy converges. The required parame-
ter updates are given in Figure 1(right) and are derived
following the usual freeform optimization method (see
e.g. (Bishop, 2006, p466)).

The strategy we use to select the number of clusters
K consists of starting with all nodes in a single cluster
(K = 1) and running the variational updates until the
free energy converges to within a specified tolerance
(1e − 6). Each time the variational updates converge
for a given value of K we consider splitting each of the
current clusters. We accept the first split that results
in an increase in the variational free energy using a 20
iteration look-ahead. We then continue iterating the
variational updates with K + 1 clusters. We termi-
nate the algorithm if no split is found that increases
the free energy, or the learning algorithm exceeds 1000
iterations of the variational updates.

The split proposal mechanism is an important compo-
nent of the learning method. We propose a split for
a given cluster k by deriving a similarity matrix H
from the current estimate of the regression weights ŵ
and applying spectral clustering to H to partition it
into two clusters. More precisely, if S = {i : zi = k}
is the set of nodes belonging to cluster k, and S are
the other nodes, we compute the similarity matrix
H = |ŵ(S, S)| + 0.5|ŵ(S, S)||ŵ(S, S)T |. Intuitively,
two data dimensions d and d′ are similar under this
measure if they are useful for predicting each other
(the first term), and there is significant overlap in the
subsets of dimensions outside of cluster k that are use-
ful for predicting both d and d′ (the second term).

3.6. Estimating the precision matrix

Once our main learning algorithm has run to comple-
tion, we compute the marginal MAP assignment of
nodes to groups, and then use this known grouping
structure as input to the group L1 method to infer
the precision matrix. Specifically, we optimize Equa-
tion 3 (using the algorithm and code of (Schmidt et al.,
2009)), where we use the groups Sk,k′ = {i, j : zi =
k, zj = k′}. Following (Duchi et al., 2008), we set
the penalty parameter for each group to λg = λ|Sg|,
where λ is an overall scale parameter. This ensures
that all the blocks have a comparable level of sparsity,
regardless of their size.

3.7. Complexity and Fast Update Schedule

The computational bottleneck in our method is solv-
ing the D independent ridge regression problems re-
quired to update the weight matrix ŵ, each at a cost
of O((D − 1)3). This takes O(D4) time per iteration
of the inner loop of the learning algorithm. However,
by using intelligent scheduling of the updates, one can
reduce this cost substantially. In particular, we only
perform a full update of the ŵ matrix every 10 itera-
tions. On the remaining iterations we sort the nodes
by the L1 norm of the change in Λd and only update
the top 10% of nodes. The intuition is that since the
only quantity that is changing in the variational up-
date for ŵd is Λd, we don’t need to update nodes if
the change in Λd is small relative to the last time the
node was updated. This fast update schedule gives
roughly a 10-fold speed improvement, without signifi-
cantly affecting the quality of the estimates (see Fig-
ure 2(a-d)). The fast update schedule leads to a total
training time (including precision matrix estimation)
of approximately 5 hours on current single CPU hard-
ware for the genes data discussed in Section 4.2 where
D = 667.
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Figure 2. Results on CMU mocap data (D = 60). Figures 2(a) to 2(d) show the test set loglikelihood (relative to Tikhonov)
vs λ of Tikhonov (T), Independent L1 (IL1), Known Group L1 (KGL1), Unknown Group L1 (UGL1) and its fast version
(UGL1F) for training set sizes N = 25, 50, 75, 100. Figures 2(e) to 2(h) show the known block structure, the inferred
block structure, the stochastic block model parameters, and the pairwise interaction probabilities for the first fold of the
CMU data set with 50 training cases. The color axis in all four figures is scaled from zero (black) to one (white).

4. Experimental results

In this section, we apply our method to two differ-
ent datasets, and compare its performance with three
other methods: Tikhonov regularization, independent
L1 regularization, and group L1 regularization with
known groups. Since the datasets are small, we use
5-fold cross validation (CV), and compute the mean
and standard error of the unpenalized log likelihood
on each test fold. We also consider varying the size
of the training set. All the data is preprocessed by
standardizing it.

To select the strength of the Tikhonov regularizer ν,
we use 5-fold CV within each training fold. We use the
same value of ν for all the methods, and report perfor-
mance relative to the Tikhonov baseline. Rather than
picking λ for the L1 methods, we plot performance vs
λ, as in (Duchi et al., 2008), to better illustrate the
differences between the methods.

4.1. Motion capture data

The data set used in this section is based on the
“Dance” data set in the CMU motion capture library
(available at http://mocap.cs.cmu.edu/). This is

more expressive than simple walking sequences. The
joint angles for all sequences were extracted from the
raw motion capture files. The root position and ori-
entation were kept fixed and combined with the re-
maining joint angles to obtain skeleton positions using
the Matlab Motion Capture Toolbox. There are a to-
tal of 93 variables defined by the skeleton consisting
of 31 markers (x, y, z) triples, however not all markers
vary when the root node is fixed, and some, like thumb
and front foot markers, are overly correlated with their
parent parts in the skeleton. We use a subset of the
markers including two markers for the head and neck,
and four markers for the trunk, each arm, and each
leg. This gives a total of 20 markers and 60 variables.

Skeleton positions within the same motion capture se-
quence were selected by considering a threshold of 0.1
on the average distance between the current skeleton
position and the previously selected skeleton position.
This processing was performed to eliminate portions
in the sequence where the motion capture subject is
not moving.

To enhance the block structure in the data set, the
skeleton was manually partitioned into five parts: head
and neck, left arm, right arm, left leg, and right leg. A
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Figure 3. Log likelihood vs λ results on Gene data (N =
174, D = 667).

new data set was constructed where each data case is
created by sampling parts independently from the em-
pirical distribution over positions for that part. This is
roughly equivalent to recording someone as they move
their arms and legs independently.

Figure 2 shows the results on this dataset. In the top
row, we plot average test set log likelihood vs λ for
the different methods, for training set sizes of N ∈
{25, 50, 75, 100}. (Recall that D = 60.) We draw the
following conclusions from these graphs: all the L1
methods are better than Tikhonov for a reasonably
broad range of λ; the known groups method is the
best; and our method for handling unknown groups
achieves performance that is almost as good as known
groups, especially for larger sample sizes. (Regular
L1 penalized GGMs without grouping was previously
applied to mocap data in (Gu et al., 2007), but no
quantitative performance measures were given.)

In the bottom row, we examine the model which was
learned when N = 50. (Results are for one particular
test fold; results are similar for the other folds.) In
Figure 2(a), we plot the “true” clustering, correspond-
ing to the 5 body parts. In Figure 2(b), we show the
estimated clustering. We see that the method chose
the correct number of clusters, and assigned most of
the nodes to the correct groups, except for a few am-
biguous points. (Note that due to label switching, Fig-
ure 2(b) need not look identical to Figure 2(a) even if
the assignment is perfect.) In Figure 2(c) we plot the
π matrix; we see that each cluster is fairly densely
connected within itself, but there are essentially no
connections between clusters. This is due to the way
that the data was created. Finally, in Figure 2(d) we
plot the weight matrix W . We see that there are some
non-zero off-diagonal elements, even though the prior
says that this is unlikely to occur.

4.2. Gene expression data

In this section, we apply our method to the gene ex-
pression dataset used in (Duchi et al., 2008), which
consists of 174 samples of 667 genes. In (Duchi et al.,
2008), the GGM was estimated using a known group-
ing, where the genes were partitioned into 86 different
groups based on prior biological knowledge. In Fig-
ure 3, we see that our method results in similar predic-
tive performance to the method which uses the known
grouping; and both grouping methods do better than
independent L1 on average. However, we note that the
latent structure inferred by our method (not shown)
contains approximately 30 groups with no obvious re-
lationship to the known structure based on 86 groups.
Nevertheless, both groupings improve the regularized
estimate of Ω.

5. Conclusions

We have shown how to learn sparse GGMs where the
sparsity pattern has a block structure, which we esti-
mate simultaneously with the graph itself. There are
several possibilities for future work. One is to try to
eliminate the two-step process, by replacing the depe-
dendency network with a Cholesky decomposition of
Σ, which is always positive definite, perhaps combined
with a search over node orderings, as in (Dobra et al.,
2004). Another possibility is to consider discrete data.
This introduces the usual computational difficulty of
evaluating the likelihood and its gradient, but stan-
dard approximations exist for this task (Wainwright
et al., 2007; Lee et al., 2006).
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