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In this document, we provide a concise summary of various models that have recently been proposed for detecting
and localizing categories of objects in clutter. We also discuss related problems such as class presence detection (image
classification), and pixel/ patch/ region labeling. Wherever possible, we use graphical models, either probabilistic or
deterministic, as a representation.

Notation (for reference): upper case letters denote unknown quantities (random variables), lower case letters denote
constants. . ~ 5000 is the number of patches, d ~ 500 is the number of interest points, m ~ 5 is number of parts
per object, N is the number of objects (unknown), v is the image, v ;—1.; is a (representation of) the ¢’th image patch,
Hi—1.n € {1,...,f} isalabel for patch i, X,_, nr € {1,...,n} is the location of an object, Y i—1.m € {1,...,n}is
the location of object part i, [,_, . 7 is the location of the ¢’th interest point, a,_, 7 is the appearance of the ¢’th interest
point, C,_, 7 € {1,...,c} is the cluster label for i’th interest point.

1 Sliding window classifiers

Sliding window classifiers were first proposed by [RBK95] (if not earlier), based on feedforward neural nets. Since
then various other kinds of classifiers have been explored, such as SVMs [PP00], boosted decision stumps [VJ04],
convolutional neural nets [LHB04], etc.

Each window or patch of the image v centered at location ¢, denoted v ;, is transformed into a feature vector and
then classified into foreground object (1) or background (0), where ¢ = 1 : n, where n is the number of patches. Let
H; denote the unknown label for patch i. The classifier produces a score s; = f(v;) which can be converted into
a probability e.g., using a sigmoid transform [P1a99]: P(H ; = 1|v;) = o(ao; + b) (where parameters a and b are
estimated on a validation set to avoid overconfidence). Each patch is classified independently: see Figure 1.

Of course, the ultimate desired output is not one binary label per patch, but rather, the number and location(s) of
the objects. (We ignore scale for simplicity.) The standard approach is to threshold P(H ; = 1|v;) (or equivalently
the score ¢;), and/or to apply non maximal suppression, and then to report athe number NN and locations X ;| nr €
{1,...,n} of all the local maxima.

Note that although the patch classifier is learned, the nonmaxsup procedure is typically designed by hand (even
though it has several tunable constants). One reason for this is that the size of the output from the nonmaxsup “box”
is variable — it is not a fixed-length feature vector, making most learning methods inapplicable.

Figure 1: Patch classifier as a degenerate Bayes net. Shaded nodes are observed, unshaded are hidden. v ; is the
(feature vector for the) ¢’th image patch; H; € {0, 1} is the label for the patch. n ~ 5000 is the number of patches.



Figure 2: Sliding window classifier as a feedforward circuit. v ; is the feature vector for the ¢’th patch. s; is the score
of the classifier on this patch. n is the number of patches. NV is the estimated number of objects, and X . 5; are their
estimated locations. Typically these estimates are computed by applying nonmaximal suppression to the matrix of
scores s1.p. Double rings represent deterministic nodes. However, this is not really a Bayes net.

We can represent the whole system pictorially as in Figure 2. However, this is not a Bayes net (or any indeed, a
probabilistic model of any kind), for several (interesting) reasons:

e The size of the graph (number of X nodes) is not fixed a priori, but is a deterministic function of all the s ; nodes.
e The score nodes are deterministic functions of their input, s; = f(v;), not random variables.

e In a Bayes net, each conditional probability distribution has to be a mapping from values to distributions, not
from distributions to distributions. eg we have to write P(X |H 1.p,), not P(X|{P(H;)}).

2 Parts-based sliding window classifiers

It has recently become popular to break the problem of classifying a window as face or not (or whatever class) into
stages, where one first applies a sliding window classifier plus local maximum finder within the window for various
parts or components, such as eyes, nose, mouth; then one treats the scores and locations of these detections as a
fixed length feature vector representing the original window, and classifies that (see eg. [MPPO1]). The second layer
classifier can test for the geometrical consistency of the found part detections within the window. Since the system is
not a probabilistic model, it cannot “hallucinate” the location of missing parts, based on top down information. Also,
it requires manually labeled parts. On the other hand, it is simple and fast.

3 Random field models

Grid-structured Markov random fields (see Figure 3) have been widely used for low-level vision tasks, such as stereo,
optical flow, etc. An MRF is a generative model:

P(Hyp,vin) = [ [ P(vilHy) % 11 wis(H: H)

<ij>

where H; € {1,...,¢} is a discrete random variable representing e.g., quantized depth of the pixel. P(v;|H;) is
the probability of generating local patch v; given label H;, and v;;(H,;, H;) is a compatibility potential between
neighboring states. Note: exact inference in these models (computing P(H ;|v)) is intractable, so it is common to use
loopy belief propagation [FH04], graph cuts [BVZ01], Gibbs sampling [GG84], Swendsen Wang [BZ04], etc.



Figure 3: A small grid Markov random field (MRF). Here hidden nodes are H ; € {1,...,¢}. We have an undirected
hidden backbone; each hidden node generates its local evidence. (Hence, strictly speaking, this is a chain graph
[Bun95], since it combines directed and undirected edges.)

Since generative models make strong assumptions about the data generating mechanism, a better alternative is to
use a conditional random field (CRF),

P(Hy.plv) = ﬁH@(HHU) 1T v (i, Hjlo)

<ij>

where the notation v;;(H;, H j|v) makes explicit the fact that the potentials can depend on the entire image v [LMPO1,
KHO3]. For example, we can require that neighboring labels be similar, except when an edge is observed to fall
between them. Also ¢;(H;|v) is now an arbitrary potential, e.g., it can be the output of a discriminative classifier.
Inference in a CRF has the same complexity as in an MREF, but learning is even harder (since now the local evidence
is no longer causal).

Grid-structured MRFs/CRFs are usually used for low level vision (eg stereo or optical flow), but they have also
been used for binary pixel/patch labeling (e.g., H ; = building-like-texture or not [KHO03]), and multi-class pixel/patch
labeling [TMF04, HZCP04]. Note that the output of these systems is a fixed size set of patch labels, not a variable-sized
set of objects.

For higher level vision, it is helpful to escape the tryany of the 2D grid. One approach is to make the nodes in
the graph might be regions (superpixels) output by a segmentation algorithm, such as Ncuts, and the connections
are to nearest neighbors; the goal is to classify each region with a semantic label, such as sky, water, etc [CdFB04].
Alternatively, the nodes might be located at interest points, and the goal is to label the nodes with semantic object
parts [KHO4]. Carbonetto [CS05] combines superpixels and interest points in a CRF, trained in a semi-supervised
way. Again, however, the output of these systems is a fixed size set of patch labels, not a variable-sized set of objects.

4 Pictorial structures

A more probabilistic approach to parts-based object detection is to build an CRF over the parts [FHOS]: see Figure 4.
Here each Y; € {1,...,n} is a discrete variable representing the location of body part i. (The fact that this is a
discrete random variable is important, since it allows an easy way to handle multi-modality.) The local evidence
¢;(Y; = z) could be the outputs of a sliding window part detector, as explained above. Implicitly on each edge is a
1i;(Y; = 2,Y; = 2’) factor, which represents spatial compatibilities between the two part locations (c.f. Figure 5).

Note: here m is the number of pre-specified parts, not the number of objects: there is assumed to be exactly one
object present. If there are multiple instances of the object class, one can in principle enumerate the N -best hypotheses,
although these modes are not usually spatially distinct, but rather minor configurational differences. Hence other
techniques (such as sampling) must be employed for the multi object case.



Figure 4: A CRF for detecting the location of m body parts, Y; € {1,...,n}. The fact that the local evidence for
each node Y'; is potentially a function of the whole image is indicated by drawing an arrow from v to each Y ;.

Exact inference (using belief propagation) in this model takes O(mn 1), where w is the treewidth of the graph.
For a tree-structured model, w = 1, leading to the well-known O(mn?) complexity. Since n ~ 5000 is the number
of patches examined by the local evidence, this can be expensive. In the case that v ;; has a special kind of sparse
structure (e.g., arising from discretizing a Gaussian), “fast methods” can be used to reduce the complexity to O(mn)
[FHO5],[Nando].

5 Constellation model

A very influential model for object class detection is the constellation model [FPZ03]. This is a generative model for
interest point locations and appearances. That is, we pre-process the image with an interest point detector, that returns
a small number d (typically 500) set of image locations [ ;, called keypoints. These are often annotated with a local
scale estimate ;. One can then derive a descriptor of [;, such as a 128 dimensional SIFT vector [Low04], or one can
just take an image patch centered at ;. We will denote the appearance of local region ¢ as a; = f(v,[;,0;). Now the
image has been reduced to a labeled bag of points.

The constellation model defines

P(ayg,1,.q) =Y _ Pla, .1, glm)P(r)

where 7 is an assignment of object parts to image detections (if the part is observed); unassigned detections are
assumed to be caused by the background. Given an assignment, we can write

m
P(ayg,1,.glm) = Prg(lmys - bm,) [ [ Pratam,) T Poo(as)Pog(l))
i=1 jem

The appearance model assumes a; is a PCA reduction of the image patch v;. The spatial model, P(Y 1.1), is a full
covariance Gaussian (corresponding to a fully connected undirected graphical model: see Figure 5).

The constellation model can be represented as a Bayesian multinet [Bil0O], but this is not very intuitive: essentially
the only uncertain random variable is 7w. Conditioned on 7, the locations and apperances are determined by the data!
For example, suppose we have m = 3 parts and d = 4 interest points, and 7 assigns part 1 to observation 2, part 2
is not observed, and part 3 is assigned to observation 1 (so observations 3 and 4 are caused by the background). The
likelihood of this value of 7 can be determined by evaluating the fully observed graphical model in Figure 6(a). The
prior for 7 comes from a Poisson event model (borrowed from the radar tracking community [BSF88].

d
)

One can perform localization of a single object by evaluating all O(m ¢) assignments (values of 7) in this way.!

INote that one can use A* search instead of exhaustive enumeration, but this cannot be applied during learning, when the model parameters are
uncertain. This has motivated a sequential learning strategy [HLO4].
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Figure 5: Gaussian spatial model of face parts, from [FE73].

Figure 6: Constellation model as a chain graph in the case that there are m = 3 parts, d = 4 detections, and the
assignment is 11 = 2,m3 = (), 73 = 1. (Left): Fully connected undirected graph between the location nodes,
Y1.3. Y1 generates observation a9, Y3 generates a1, and Y5 is not detected; a3 and a4 are generated by the dummy
background node. Note that everything is observed (the locations of the parts are assigned to a subset of interest point
locations, so Y; = Ir,); the model is just used to evaluate the likelihood of this assignment. (Right): A novel latent
factor extension.

This exponential complexity has meant that the model has only been used for small numbers of parts (m ~ 5) in
relatively uncluttered images (with d ~ 20). The task has been to classify the image as to whether it contains the
object or not (at any location); the model has not been used for localization, because of it cannot easily handle clutter.

Another reason why the constellation model has to have so few parts is the full covariance Gaussian, which has
O(m?) parameters. This can be reduced to O(m) using a latent variable model (see Figure 6(right)). For example, the
latent variable X could represent the centroid of the object; this has been called a “common frame” model [MMPO04,
HLO04]. This also makes it easier to use the Hough transform (see below) for detection.

6 Bag of words

One simplification of the constellation model is to throw away the geometry (the joint distribution on P(Y 1.m)).
Another more important simplification is to throw away the combinatorial search through assignments, and treat it as
a classification problem. Specifically, the task becomes to classify every interest point into one of ¢ classes, and then
to somehow use this bag of words representation to solve the object detection task. A popular way to classify interest
points is using unsupervised vector quantization. Let C'; € {1,..., ¢} represent the cluster associated with a;. This is
computed using a nearest neighbor (hard assignment) rule.



Figure 7: Bag of keypoints as a feedforward circuit. a; is the the local descriptors at interest point i. C'; € {1,...,c}
is the cluster (codebook number) for a ;. d is the number of interest points. #k is the number of times cluster & occurs.
O € {0, 1} indicates presence or absence of the class, anywhere in the image.

Due to the influence of the constellation model, and the Caltech databases which they used for evaluation, it has
become popular to try and classify the whole image (instead of just a patch) as to whether it contains an object or not,
regardless of number or location. This is much easier than having to specify where the object is, since for presence
detection, it is sufficient to detect a small, but distinctive piece of the object (eg the wheel of a car).

A popular approach to this image classification task, borrowed from the document classification community, is to
compute the codeword counts, and then to apply a classifier (typically an SVM) to the resulting histogram [CDB *04].
This works surprisingly well.

This system can be represented as in Figure 7. Again, this is not really a Bayes net, since C'; is a deterministic
function of a; (nearest neighbor VQ rule), and the histogram is a determinsitic function of the C';’s. Put another way,
there is no back-propagation of information, as there would be in a probabilistic model.

7 Implicit shape model

An interesting extension of the bag of words model to the problem of object localization is provided by the implicit
shape model [LLS04]. Essentially this memorizes the relative location (wrt the center of the training bounding box)
of every feature which is assigned to a given cluster. Then, when the cluster is activated in a test image, it votes for all
relative locations (wrt the location where the feature fired in the test image) that are stored in this cluster. This is just
like a Hough transform, except each feature can vote for multiple locations: see Figure 8.

Note that, as described so far, this is not a model, but a procedure. However, we may reverse engineer what the
underlying model is. In a traditional constellation-type model, one learns a Gaussian star-shaped model of the relative
location of parts wrt the center (see Figure 6(right)). The appearance of each part might be a mixture of Gaussians,
with each mixture component representing a prototype, but the location is at a fixed offset from the center (modulo
some Gaussian fuzz). The ISM turns this on its head, and learns a fixed set of appearances (prototypes), each of
which is fixed (modulo some Gaussian fuzz); but the location of each prototype is modeled as a mixture of Gaussians,
with each mixture component representing an offset. These two representations are interchangeable: one can define
a part as something with a relatively fixed location, but variable appearance, or as something with a relatively fixed
appearance, but variable location. Of course, the advantage of defining parts in terms of their location, instead of their
appearance, is that one can easily add geometry (i.e., explicit pairwise constraints between parts), which is harder to
do in the ISM.

Probably the “right” way to use ISM (from a probabilistic point of view) is as a proposal distribution for importance
sampling in a generative model. This way, bottom up suggestions from different detectors can be checked to see if
they are globally consistent (eg. they must each explain different pixel data!). Leibe takes steps in this direction by
checking that the image at the locations of the Hough transform peaks indeed “look like” the object of interest. He also



Figure 8: Implicit shape model as a feedforward circuit. d is the number of interest points, [V is the estimated number
of objects, and X | their locations. l; is the location of the i’th interest point, a; its appearance, and C'; its nearest
cluster center.

uses an MDL criterion to prevent multiple explanations of overlapping pixels. This is clearly a good area for future
work.
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