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Abstract

While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the
scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify
familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street)
and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present
a low-dimensional global image representation that provides relevant information for place recognition and categorization,
and how such contextual information introduces strong priors that simplify object recognition. We have trained the system
to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different
object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user. 1

1This work was sponsored by the Air Force under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations
are those of the author and are not necessarily endorsed by the U.S. Government.
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(a) Isolated object (b) Object in context (c) Low-res Object

Figure 1: (a) A close-up of an object; (b) An object in context;
(c) A low-res object out of context. Observers in our lab, addicts
to coffee, have difficulties in recognizing the coffee machine in
figure (c), however, they recognize it in figures (a) and (b).

1. Introduction

We want to build a vision system that can tell where it is
and what it is looking at as it moves through the world.
This problem is very difficult and is largely unsolved. Our
approach is to exploit visual context, by which we mean
a low-dimensional representation of the whole image (the
“gist” of the scene) [4]. Such a representation can be easily
computed without having to identify specific regions or ob-
jects. Having identified the overall type of scene, one can
then proceed to identify specific objects within the scene.

The power of, and need for, context is illustrated in Fig-
ure 1. In Figure 1(a), we see a close-up view of an object;
this is the kind of image commonly studied in the object
recognition community. The recognition of the object as
a coffee machine relies on knowing detailed local proper-
ties (its typical shape, the materials it is made of, etc.). In
Figure 1(b), we see a more generic view, where the object
occupies a small portion of the image. The recognition now
relies on contextual information, such as the fact that we are
in a kitchen. Contextual information helps to disambiguate
the identity of the object despite the poverty of the local
stimulus (Figure 1(c)).

Object recognition in context is based on our knowledge
of scenes and how objects are organized. The recognition
of the scene as a kitchen reduces the number of objects that
need to be considered, which allows us to use simple fea-
tures for recognition. Furthermore, the recognition of this
scene as a particular kitchen (here, the kitchen of our lab)
further increases the confidence about the identity of the ob-
ject.

While there has been much previous work on object
recognition in natural environments, such work has focused
on specific kinds of objects, such as faces, pedestrians and
cars [14, 3, 5]; these approaches have not generalized to
the recognition of many different object categories. Also,
advances in multi-view, multi-object recognition have typ-
ically been restricted to recognizing isolated objects (e.g.,
[7]). By contrast, we consider the task of recognizing 24
different types of objects in a natural, unconstrained setting.

2. Global and local image features
The regularities of real world scenes suggest that we can de-
fine features correlated with scene properties without hav-
ing to specifying individual objects within a scene, just as
we can build face templates without needing to specify fa-
cial features. Some scene features, like collections of views
[2, 15] or color histograms [9], perform well for recogniz-
ing specific places, but they are less able to generalize to
new places (we show some evidence for this claim in Sec-
tion 3.5). We would like to use features that are related to
functional constraints, as opposed to accidental (and there-
fore highly variable) properties of the environment. This
suggests examining the textural properties of the image and
their spatial layout.

To compute texture features, we use a wavelet image de-
composition. Each image location is represented by the
output of filters tuned to different orientations and scales.
We use a steerable pyramid [8] with 6 orientations and 4
scales applied to the intensity (monochrome) image. The
local representation of an image at an instant � is then given
by the jet ��� ��� � �������������� , where � � �� is the
number of subbands.

We would like to capture global image properties, while
keeping some spatial information. Therefore, we take the
mean value of the magnitude of the local features averaged
over large spatial regions:

����� �
�
��

���� ��
������� � ��

where ���� is the averaging window. The resulting rep-
resentation is downsampled to have a spatial resolution of
� � � pixels (here we use � � �). Thus, �� has
size � �� � � � ���. We further reduce the dimen-
sionality by projecting �� onto the first � principal com-
ponents (PCs) computed using a database of thousands of
images collected with our wearable system. The resulting
�-dimensional feature vector will be denoted by ��� . This
representation proves to be rich enough to describe impor-
tant scene context, yet is of low enough dimensionality to
allow for tractable learning and inference.

Figure 2 illustrates the information that is retained using
this representation with � � �� PCs. Each example shows
one image and an equivalent textured image that shares the
same 80 global features. The textured images are generated
by coercing noise to have the same features as the original
image, while matching the statistics of natural images [6].

3. Place recognition
In this section we describe the context-based place recog-
nition system. We start by describing the set-up used to
capture the image sequences used in this paper. Then we
study the problem of recognition of familiar places. Finally
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Figure 2: Two images from our data set, and noise patterns which
have the same global features. This shows that the features pick up
on coarse-grained texture, dominant orientations and spatial orga-
nization.

we discuss how to do scene categorization when the system
is navigating in a new environment.

3.1 Wearable test bed

As a test-bed for the approach proposed here, we use a
helmet-mounted mobile system. The system is composed
of a web-cam that is set to capture 4 images/second at a res-
olution of 120x160 pixels (color). The web-cam is mounted
on a helmet in order to follow the head movements while the
user explores their environment. The user receives feedback
about system performance through a head-mounted display.

This system allows us to acquire images under realistic
conditions while the user navigates the environment. The
resulting sequences contain many low quality images, due
to motion blur, saturation or low-contrast (when lighting
conditions suddenly change), non-informative views (e.g.,
a close-up view of a door or wall), unusual camera angles,
etc. However, our results show that our system is reason-
ably robust to all of these difficulties.

Two different users captured the images used for the ex-
periments described in the paper while visiting 63 different
locations at different times of day. The locations were vis-
ited in a fairly random order.

3.2 Model for place recognition

The goal of the place recognition system is to compute a
probability distribution over the possible places given all the
(global) features up to time �. Let the place be denoted by
�� � ��	 
 
 
 	 ���, where �� � 	� is the number of places,
and let the global features up to time � be denoted by �����.
We can use a hidden Markov model (HMM) to recursively
compute � �����

�
���� as follows:

� ��� � �������� � ���� ��� � ��� ��� � ����������

� ���� ��� � ��
�
��

����	 ��� ����� � �����������

where ����	 �� � � ��� � ������ � ��� is the transition
matrix and ���� ���� is the observation likelihood, which
we model by a mixture of � spherical Gaussians:

���� ��� � �� �
	�
���

� ��� � ���� � ������ ��� � �	 �� � ��

�
�
�

� ��	 �� 
��

�
��

���
�

����� � ����� ��
�

�

where �� is the latent indicator variable, specifying which
mixture component to use, and � ��	 �� is the weight of
mixture component � given �� � �.

Note that this use of HMMs is different from previous
approaches in wearable computing such as [9]. In our sys-
tem, states represent 63 different locations, whereas Starner
et al. used a collection of separate left-to-right HMMs to
classify approach sequences to one of 14 rooms. In fact, the
model we propose for place recognition is more similar to
a topological map of the kind used in the mobile robotics
community (e.g., [13, 15]). A topological map can be used
to specify one’s location at a coarse level, as opposed to a
metric map, which is often used to localize a robot to an
accuracy of centimeters.

3.3 Training for place recognition

For training, we hand-labeled a set of 17 sequences 1 with
their corresponding place names. (Each sequence only vis-
ited a subset of the 63 places.) We counted the number of
times we transitioned from place � to place �, ���	 ��; the
maximum likelihood estimate of transition matrix � was
obtained by simply normalizing each row of the count ma-
trix, �. The resulting structure of � reflects the topology
of the environment. However, to prevent us from asserting
that a transition is impossible just because it was not present
in the (small) training set, we use a uniform Dirichlet prior
with equivalent sample size � � �
	�. (This can be im-
plemented by adding a matrix of pseudo counts with values
���� to the actual counts.) The prior causes the resulting
transition matrix to be fully connected, although many tran-
sitions have very low probability.

For the observation model, we estimated �� and the
number of mixture components, �, using cross-validation;
we found �� � �
� and � � ��� to be the best. Maximum

1The training data consisted of 5 sequences from outside the MIT AI
lab, 3 from floor 6 of building 400, 4 from floor 9 of building 400, and 5
from floor 7 of building 200. The data was collected using the wearable
system described in Section 3.1, over the course of several days during
different lighting conditions.
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likelihood estimates of the mixing matrix, � ��	 ��, and the
means, ����� , can be computed using EM. However, in this
paper, we adopt the simpler strategy of picking a set of����
prototypes as the centers, ����� , and using uniform weights
(� ��	 �� � �

	��� ); the result is essentially a sparse Parzen
window density estimator. Currently the prototypes are cho-
sen uniformly from amongst all views associated with each
location. We obtain similar results (but with fewer proto-
types) using �-means clustering.

3.4 Performance of place recognition

0 500 1000 1500 2000 2500 3000

elevator 400/1
elevator 400/1
office 400/610
office 400/611
office 400/625
office 400/627
office 400/628

corridor 6a
corridor 6b
corridor 6c

elevator 200/6
kitchen floor 6
Vision Area 1
Vision Area 2
office 200/936
elevator 200/7
Jason corridor

400 Back street
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200 out street
Draper street

200 side street
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Figure 3: Performance of place recognition for a sequence that
starts indoors and then (at frame � � ����) goes outdoors.
Top. The solid line represents the true location, and the dots
represent the posterior probability associated with each location,
� �����

�
����, where shading intensity is proportional to probability.

There are 63 possible locations, but we only show those with non-
negligible probability mass. Middle. Estimated category of each
location, � �����

�
����. Bottom. Estimated probability of being in-

doors or outdoors.

In this section, we discuss the performance of the place
recognition system when tested on a sequence that starts in-
doors (in building 400) and then (at frame � � ���) moves
outdoors. The test sequence was captured in the same way
as the training sequences, namely by walking around the
environment, in no particular order, but with an attempt to
capture a variety of views and objects in each place. A qual-
itative impression of performance can be seen by looking
at Figure 3 (top). This plots the belief state, � �����

�
����,

over time. We see that the system believes the right thing
nearly all of the time. Some of the errors are due the inher-

ent ambiguity of discretizing space into regions. For exam-
ple, during the interval � � ���� � ����, the system is not
sure whether to classify the location as “Draper street” or
“Draper plaza”. Other errors are due to poorly estimating
the transition matrix. For example, just before � � ���,
there is a transition from “elevator 200/6” to the “floor 1 el-
evator lobby”, which never occurred in the training set. The
Dirichlet prior prevents us from ruling out this possibility,
but it is considered unlikely.

In general, the observation likelihood terms, � ���� �
���� ��� � ��, often dominate the effects of the transition
prior. This is a well-known problem with HMMs when us-
ing mixtures of high-dimensional Gaussians (see e.g., [1,
p142]). We adopt the standard solution of rescaling the like-
lihood terms; i.e., we use

������ �
���� ��� � ��
��
�� ���� ��� � ���
�

where the exponent �� is set by cross-validation. The net
effect is to “balance” the transition prior with the observa-
tion likelihoods. (It is possible that a similar effect could be
achieved using a density more appropriate to images, such
as a mixture of Laplace distributions.)

A more quantitative assessment of performance can be
obtained by computing precision-recall curves. The recall
rate is the fraction of frames which the system is required to
label (with the most likely location); this can be varied by
adjusting a threshold, �, and only labeling frames for which
���� � ��� � �������� � �. The precision is the fraction of
frames that are labeled correctly.

The precision-recall framework can be used to assess
performance of a variety of parameters. In Figure 4(a) we
compare the performance of three different features, com-
puted by subsampling and then extracting the first 80 prin-
cipal components from (1) the intensity image, (2) the color
image, and (3) the output of the filter bank. We see that
the filter bank works the best, then color and finally PCA
applied to the raw intensity image.

In Figure 4(b), we show the effect of “turning the HMM
off”, by using a uniform transition matrix (i.e., setting
���	 �� � �

��

). It is clear that the HMM provides a signif-
icant increase in performance (at negligible computational
cost), because it performs temporal integration. We also
compared to a simpler approach of averaging ���� ����
over a temporal window of size � before thresholding
as was done in [11]. We found (by cross validation) that
� � �� works best, and this is what is shown in Fig-
ure 4(b); results for � � � (i.e., without any temporal
averaging) are significantly worse (not shown).
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Figure 4: Precision-recall curves for different features for place
recognition. The solid lines represent median performance com-
puted using leave-one-out cross-validation on all 17 sequences.
The error bars represent the 80% probability region around the
median. The curves represent different features. From top to bot-
tom: filter bank, color, monochrome (see text for details). (a) With
HMM (�� � ���, � � �, � = learned). (b) Without HMM
(�� � �, � � ��, � = uniform).

V
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t+1
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t+1

G
t+1t
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Figure 5: A graphical model for performing simultaneous place
recognition and categorization. �� (specific place) and �� (cat-
egory of place) form part of a taxonomic hierarchy; the in-
doors/outdoors category level (not shown) could be added on top.
The dotted arc from �� to �� is not implemented in this paper.

3.5 Scene categorization

In addition to recognizing known places, we would like the
system to be able to categorize novel places into various
high-level classes such as office, corridor, street, etc. There
are several ways to do this. The simplest is to use the HMM
described above, and then to sum up the probability mass
assigned to all places which belong to the same category.
An alternative is to train an HMM on category labels in-
stead of location labels. Finally, we can combine both ap-
proaches, as shown in Figure 5. Here �� � ��	 
 
 
 	 ���
as before, and �� � ��	 
 
 
 	 ���, where �� � �� is the
number of categories.

If we assume there is no dependence of locations � � on
categories ��, and that the likelihood factorizes as

���� ���	 ��� � ���� ������
�
� ����

then the result is equivalent to running two independent
HMMs in parallel, which is the approach we adopt in this
paper. We should be able to get better performance if we al-
low the place, ��, to depend on the category ��. Note that

400 Back street

inside elevator 200

conference 200/941

street
plaza
lobby
office

corridor
open space
in elevator

misc
conference room

kitchen

0 500 1000 1500

indoor
outdoor

400 plaza
Draper plaza

400 Short street
200 out street
Draper street

200 side street
Theresa office

Jason corridor
Kevin corridor
Magic corridor

elevator 200/9
elevator 200/7

Admin corridor

office 200/936
office 200/777

elevator 200/1

elevator 400/1

New environment
Familiar

environment

Figure 6: Place categorization when navigating in a new environ-
ment not included in the training set (frames 1 to 1500). During
the novel sequence, the place recognition system has low confi-
dence everywhere, but the place categorization system is still able
to classify offices, corridors and conference rooms. After return-
ing to a known environment (after � � ����), performance returns
to the levels shown in Figure 3.

���� ���� and ���� ���� may have different forms; hence
the system can, in principle, learn to use different parts of
the ��� feature vector for categorization and recognition, a
topic we discuss further below.

The model in Figure 5 allows us to estimate the category,
� �����

�
����, even if we are uncertain about ��. We could

imagine adding an “unknown place” state to the state-space
of ��, and automatically learning about new locations. We
leave this to future work.

In this paper, we test categorization performance by
training a separate HMM on the category labels. We train it
on outdoor sequences and indoor sequences from building
200, and then test it on a sequence which starts in build-
ing 400 (which it has never seen), and then, at � � ���,
moves outside (which it has seen). The results are shown in
Figure 6. Before the transition, the place recognition sys-
tem has a uniform belief state, representing complete un-
certainty, but the categorization system performs well. As
soon as we move to familiar territory, the place recognition
system becomes confident again.

We also computed precision recall curves to assess the
performance of different features at the categorization task.
The results are shown in Figure 7. Categorization perfor-
mance is worse than recognition performance, despite the
fact that there are fewer states (17 instead of 63). There
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Figure 7: Precision-recall curves for categorization of non-
familiar indoor environments. The curves represent different fea-
tures sets. From top to bottom: filter bank, monochrome and color.
Note that now color performs worse than monochrome, the oppo-
site to Figure 4.

are several reasons for this. First, the variability of a class
is much larger than the variability of a place, so the prob-
lem is intrinsically harder. Second, some categories (such
as “open space” and “office”) are visually very similar, and
tend to get confused, even by people. Third, we have a
smaller training set for estimating � ���������, since we
observe fewer transitions between categories than between
instances.

Interestingly, we see that color performs very poorly at
the categorization task. This is due to the fact that the color
of many categories of places (such as offices, kitchens, etc.)
may change dramatically (see Figure 8) from one environ-
ment to the next. The structural composition of the scene,
on the other hand, is more invariant. Hence, although color
is a good cue for recognition, it is not so good for cate-
gorization (with the exception of certain natural “objects”,
such as sky, sun, trees, etc.).

Building 200

Average office Average corridor

Building 400

Average office Average corridor

Figure 8: Average of color (top) and texture (bottom) signatures
of offices and corridors for two different buildings. This shows that
the overall color of offices/corridors varies significantly between
the two buildings, whereas the texture features are more stable.

4. From scenes to objects
Most approaches to object detection and recognition involve
examining the local visual features at a variety of positions
and scales, and comparing the result with the set of all
known object types. However, the context can provide a
strong prior for which objects are likely to appear, as well
as their expected size and position within the image, thus
reducing the need for brute force search [12, 10]. In addi-
tion, the context can help disambiguate cases where local
features are insufficient. In this paper, the context consists
of both the global scene representation, ��� , and the current
location, ��. We show how we can use the context to pre-
dict properties of objects without even looking at the local
visual evidence.

Let ���� represent the attributes of all objects of type �
in image ��; these could include the number of such ob-
jects (zero or more), their size, shape, appearance, etc. Let
��� � �����	 
 
 
 	 �����

�, where � � �� is the num-
ber of object types considered here (bicycles, cars, peo-
ple, buildings, chairs, computers, etc.). We can compute
� � ������	 ��� as follows:

� � ��������� �
�
�

� � ������ � �	 ���� ��� � �������

The second term is the output of the HMM, as discussed
in Section 3. The first term can be computed using Bayes’
rule:

� � ������	 ��� � ���� ���	 ���� � �������

�
�
�

��������	 ���
�
�

� ���������

where we have assumed that the likelihood of an image fac-
torizes into a product of terms and that objects are a priori
conditionally independent (see Figure 9). This allows us to
focus on one object (type) at a time.

In order to compute �������� �  	���, we have to make
some approximations. A common approximation is to as-
sume that the object’s properties (presence, location, size,
appearance, etc.) only influence a set of local features, � �
(a subset of ��). Thus

�������� �  	�� � �� � ��� � 	 ��

However, the global context is a very powerful cue that we
want to exploit. Hence we include some global scene fea-
tures, ��� (a deterministic function of ��):

���� 	 �� � ���	 �
�
� � 	 ��

� �����
�
�  	 ����

�
� � 	 ��

� ��� � 	 �	 �
�
� ���

�
� � 	 ��

The first term, ��� � 	 �	 �
�
� �, can be approximated by

��� � 	 �� assuming that the object attributes  specify the
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Figure 9: A graphical model illustrating the relationship be-
tween the place recognition system (which estimates ��), and
the object recognition system (which estimates 	���). a. The
box (“plate”) around the 	��� node represents 
� condition-
ally independent copies of this variable. b. The model for
a single time slice. This shows that the prior is factored,
� � �	����� �

�
�
� �	�������, and that the likelihood is factored,

����� � �	� ��� �
�

�
����� �	��� ���, which we have indicated

graphically by replicating the fixed ��
� node.

object appearance (although this ignores the effect of some
global scene factors, such as lighting). For this paper, we
ignore the first term (i.e., ��� � 	 �	 �

�
� �), and focus on the

second term, ���� � 	 ��, which is related to the global con-
text.

Putting it all together, we see that we can compute the
marginal posterior probability of each object type as fol-
lows:

� �������
�
���� �

�
�

� �������
�
� 	 �� � ��� ��� � ��������

where � �����
�
���� is the output of the HMM and

� �������
�
� 	 ��� � ���� �����	 ���� ���������

is the output of the object systems to be discussed below.

4.1 Contextual priming for object detection

In this section, we assume ���� is just a binary random vari-
able, representing whether any object of type � is present in
the image or not. � ����� � �������� can be used to do ob-
ject priming. We can compute the conditional posterior as
follows:

� ����� � ����� 	 �� � �� �

���� ����� � �	 ��!����

���� ����� � �	 ��!���� � ���� ����� � �	 ����� !�����

where !���� � � ����� � ���� � �� is the probability of
finding object � in place � (and hence ��! ���� � � ����� �
���� � ��).

We labeled a set of about 1000 images to specify whether
or not each type of object was present. ¿From this data set,
we estimated !� for each object type � using a method that
is analogous to that used for estimating the HMM transition
matrix (see Section 3.3).

We model the conditional likelihood using another mix-
ture of spherical Gaussians:

���� ����� � �	 �� � �� �

	������
���

�

���	 ��

��

�
��

���


����� � ������ ��
�

�

This can be estimated from labeled data in the same way
as ���� ���� was estimated in Section 3.3. We estimate
���� ����� � �	 �� � �� similarly, using as prototypes im-
ages from location � in which object � was absent.

Figure 10 shows the results of applying this procedure to
the same test sequence as used in Section 3.4. The system is
able to correctly predict the presence of 24 different kinds
of objects quite accurately, without even looking at the local
image features. Many of the errors are “inherited” from
the place recognition system. For example, just before � �
���, the system believes it is in corridor 6a, and predicts
objects such as desks and printers (which are visible in 6a);
however, the system is actually in the floor 1 elevator lobby,
where the only identifiable object is a red couch.

A more quantitative assessment of performance is pro-
vided in Figure 11, where we plot ROC (receiver operat-
ing characteristic) curves for 20 of the most frequent object
classes. (This can be computed by varying a threshold � and
declaring an object to be present if � ����� � �������� � �;
we then count compare the number of estimated positive
frames with the true number. We did this for the same
indoor-outdoor sequence as used in Figures 3 and 6.) The
easiest objects to detect are things like buildings, which are
almost always present in every outdoor scene (in this data
set at least). The hardest objects are moving ones such as
people and cars, since they are only present in a given con-
text for a small fraction of the time.

4.2 Contextual priors for object localization

In this section, we try to predict the location of an object.
We represent the location using an ���� bit mask: ������ �
� iff any object of type � overlaps image region ", where
" � ��	 
 
 
 	 ���. This provides a crude way of representing
size/shape, as well as a way of representing multiple objects
and multi-modal distributions.

Let ���� be the whole image mask (an 80-dimensional
bit vector). Since � ������� � �� � #��������, we can sum-
marize the distribution in terms of its marginals using the
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Figure 10: Contextual priors for object detection. We have
trained the system to predict the presence of 24 objects. Top. The
predicted place, � �����

�
���� (the same as Figure 3). Middle. The

probability of each object being present, � �	��� � ��������. Bot-
tom. Ground truth: a black dot means the object was present in
the image. We only show results for the frames that have ground
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Figure 11: ROC curves for the prediction of object presence in
the image. We plot hit rate vs false alarm rate as we vary the
threshold on � �	��� � ��������.

expected mask. This can be computed as follows:

#�������
�
���� �

�
������

�
�

� ����� �  	�� � ��������

�#�������
�
� 	 �� � �	 ���� �  �

where � �����	 ����
�
���� was computed by the object priming

system discussed in Section 4.1. When the object is absent
(���� � �), we have #�������

�
� 	 ��	 ���� � �� � ��. If the

object is present (���� � �), the expected mask is given by

#����� � ������ 	 ��	 ���� � �� �

�
��

��
���	 ��� ���	 ���� � ��

���� ���	 ���� � ��

We again adopt a kernel density estimator to model the joint
on $ �

� and ����:

���	 ��� ��� � �	 ���� � �� ��
�

�

���	 ��
����� ������������� � �������

where 2 ����� �������� � Æ���	 �������� and ����� � �������
is the same Gaussian kernel as used in the object priming
system. Since the mask kernel is a delta function:

�
��

�� ���	 ��� ��� � �	 ���� � �� �

�
�

�

���	 ��
������������ � �������

Putting it all together, we get the intuitive result that the
expected mask is a set of weighted prototypes, ��

����� ,

#�������
�
� 	 �� � �	 ���� � �� �

�
�

������ � �������

#�������
�
� � �

�
�

�
�

������ � �������

where the weights are given by how similar the image is to
previous ones associated with this place and object combi-
nation:

������ �
�����

�
� � �������� � ��� � �	 ���� � ���������

�� �����
�
� � ��������

where �� is the bandwidth (variance) of the Gaussian
kernel on views.

2We can use kernels with better generalization properties than a delta
function. This can be done, for instance, by using other representations
for �� instead of a bit mask. We can model the distribution of masks as
����� � �������� where � is a one-to-one mapping. For instance, � can
be the function that converts a binary number to an integer. Then, we can
use a gaussian kernel ������� � ����

�����
��.
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Figure 12: Some results of object localization. The gray-level images represent the probability of the objects being present at that
location; the black-and-white images represent the ground truth segmentation (gray indicates absent object). Images are ordered according
to � �	�����

�
����.

We trained this model as follows. We manually created a
set of about 1000 image masks by drawing polygons around
the objects in each image. (The images were selected from
the same training set as used in the previous sections.) We
then randomly picked up to 20 prototypes ��

����� for each
location � and object �. A small testing set was created in
the same way.

Some preliminary results are shown in Figure 12. The
figure shows the probability of each object type appearing in
each grid cell (the expected mask #�������

�
����), along with

the ground truth segmentation. In some cases, the corre-
sponding ground truth image is blank (gray), indicating that
this object does not appear, even though the system predicts
that it might appear. Such false positives could be easily
eliminated by checking the local features at that position.
Overall, we find the results encouraging, despite the small
nature of the training set.

Figure 13 shows a summary of the system.

5. Summary and Conclusions

We have shown how to exploit visual context to perform
robust place recognition, categorization of novel places, and
object priming. Contextual information provides a shortcut
for object detection by cutting down the number of possible
objects to be considered. In the future, we plan to combine
our prior with simple local features, to develop a complete
mobile object recognition system.
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