
Leaning Graphical Model Structures using
L1-Regularization Paths (addendum)

Mark Schmidt and Kevin Murphy

Computer Science Dept.
University of British Columbia
{schmidtm,murphyk}@cs.ubc.ca

1 Introduction

This document contains additional information and results for the paper ’Learn-
ing Graphical Model Structure using L1-Regularization Paths’ (AAAI 2007),
that we were not able to fit into the required page limit. In particular, this
document discusses:

– The LARS-MLE algorithm, an efficient algorithm that returns the unpe-
nalized Maximum Likelihood Estimates (MLEs) for all non-zero subsets of
variables encountered along the LARS regularization path.

– The Two-Metric Projection algorithm used for L1-regularized Logistic Re-
gression.

– The L1PC algorithm, a relaxed form of the L1MB algorithm that allows
scaling to much larger graphs.

– Extensions the algorithms to interventional (experimental) data.
– Extended experimental results.

2 LARS-MLE

Using X to denote the n instance by d feature design matrix, y to denote the n
instance regression target, and θ as the regression parameters, the constrained
variant of the LASSO regression and feature selection problem is defined as
follows (Tib96):

min
θ

1
2
||Xθ − y||22 (1)

s.t.||θ||1 ≤ t

The non-negative parameter t controls the scale of the restriction on the
regression parameters. Many approaches have been proposed to solve this par-
ticular problem. However, in many scenarios we will typically want to solve the
problem for more than a single value of the parameter t. The Least Angle Re-
gression (LARS) procedure provides an efficient algorithm for computing the
optimal solution for all values of t (EJHT04). The LARS algorithm computes

2 Mark Schmidt and Kevin Murphy

all of the discontinuities along the regularization path (ie. values of t where vari-
ables become exactly 0, or move away from exactly 0), while all intermediate
values can be computed based on interpolation (since the regularization path is
linear between discontinuities). The asymptotic runtime of the LARS algorithm
is O(nd2) (for n > d), the same cost as finding the unpenalized Maximum Like-
lihood Estimate (MLE), which is itself obtained as the last discontinuity on the
regularization path.

Efficient calculation of the entire regularization is appealing when we are
interested in the restricted MLE. However, model selection criteria such as the
Bayesian Information Criteria (BIC) and Akaike Information Criteria (AIC)
require the unrestricted MLEs for the non-zero set of variables. The ‘LARS-MLE’
algorithm is a simple extension of the LARS algorithm that also returns the MLE
for each non-zero subset of variables encountered along the regularization path.

Computing the MLE for a non-zero subset of variables can be done at a cost of
O(nd2) using standard matrix factorization methods (ie. Cholesky factorization).
Thus, a naive implementation could compute the MLEs for the O(d) subsets
encountered along the regularization path at a cost of O(nd3). However, note
that the non-zero subset of variables changes by only a single variable at each
discontinuity. Thus, given the matrix factorization used for finding the previous
MLE along the regularization path, the current matrix factorization (with one
variable added or removed) can be obtained by computing the corresponding
row of XT X at a cost of O(nd) (in the case of additions), and performing a low-
rank matrix update at a cost of O(d2) (ie. using a rank-1 Cholesky factorization
update). The updated MLE values can be obtained with this updated matrix
at a cost of O(d2) by performing two triangular back-substitions. Given that
the initial matrix factorization costs O(n), the entire set of MLE values can be
computed using this updating scheme at a cost of O(nd2), which is again the
same cost as computing the MLE with all variables active (and again the MLE
is the final value found by the algorithm when n > d).

One gains further efficiency in the LARS-MLE procedure by noting that
the LARS algorithm already incorporates updating of a matrix factorization of
XT X. Thus, the only cost incurred by additionally computing all MLE values
along the regularization path is the cost of the back-substitutions. Algorithm 1
gives the LARS-MLE algorithm. It is identical to the LARS algorithm, except the
additional line that computes θMLE

i . For simplicity, we have outlined the Least
Angle Regression variant of LARS, the LASSO variant of LARS is obtained as
a simple modification that removes variables from the Active Set that change
sign (truncating γ when this happens).

3 Two-Metric Projection for L1-Regularized Logistic
Regression

Designing efficient methods to solve L1-regularization problems has been an ac-
tive area of recent research. While the LARS proved efficient enough for our pur-
poses, the choice of an efficient algorithm for L1-Regularized Logistic Regression

Leaning Graphical Model Structure (addendum) 3

Algorithm 1 LARS-MLE
θ0 = 0 {Initial Point on Regularization Path}
µ = 0 {Initial value of Xw}
A = {} {Active Variables (initially empty)}
I = {1, 2, ..., d} {Inactive Variables (initially full)}
R = [] {Initial Cholesky Factorization}
i = 1
while I 6= {} do

c = XT (y − µ) {Correlations (ie. Gradient)}
C = maxj∈I |c(j)|
j = arg maxj∈I |c(j)| {Inactive Variable with Max Correlation}
R = cholupdate(R, XA, Xj) {Add j to Cholesky of XT

AXA}
A = A

⋃
j {Add j to Active Set}

I = I\j {Remove j from Inactive Set}
s = sign(cA)
G = R B (RT B s) {Backsubstitute to compute (XT

AXA)−1s}
z = 1√

sT G

w = s • (Gz) {•: element-wise product}
u = XA(w • s) {Equiangular Vector}
a = XT u
if |A| < d then

γ = min+
j∈I{C−c(j)

z−a(j)
, C+c(j)

z+a(j)
} {Minimum over positive values}

else
γ = C/z {Stop at MLE when all variables active}

end if
θi = 0
θi(A) = θi−1(A) + γ(w • s) {Compute next discontinuity θ along path}
θMLE

i (A) = R B (RT B XT
Ay) {MLE of Active Set}

i = i + 1
end while

was less clear. We initially used the ‘IRLS-LARS’ algorithm of (LLAN06), which
was shown to be superior to several competitive alternatives. However, we found
that L1-Regularized Logistic Regression problems could be solved much more
efficiently by re-formulating the problem as a bound-constrained optimization
problem and using a ‘Two-Metric Projection’ strategy (Ber99). This algorithm
has similar convergence properties to the IRLS-LARS procedure, but has a sub-
stantially smaller iteration cost. As opposed to LARS, this algorithm only solves
the problem for a single value of the regularization parameter. However, an op-
timal solution for a ‘close’ regularization parameter can be used to ‘warm-start’
the optimization for a new paramter (this can substantially reduce the number
of iterations needed).

Algorithm 2 outlines the Projection algorithm. This algorithm splits θ into
non-negative components θ+ = max(0, θ) and θ− = −min(0, θ), such that θ =
θ+ − θ−. It also uses the ‘scaled norm’ variant of L1-regularization rather than
the ‘constrained norm’ variant. This gives a problem with twice the number of

4 Mark Schmidt and Kevin Murphy

variables, but turns the non-differentiable problem into a differentiable problem
with bound constraints on the variables:

min
θ+,θ−

L(θ+, θ−) = f(θ+ − θ−) + λ
∑

i

[θ+
i + θ−i] s.t.∀i θ+

i ≥ 0, θ−i ≥ 0

In the above, f(θ) represents the Logistic Regression negative log-likelihood
for parameters θ. Using σ = 1

1+exp(−y•Xθ) , f(θ) = −∑
log σ, ∇f(θ) = −XT (y •

(1 − σ)), and ∇2f(θ) = XT diag(σ • (1 − σ))X. In Algorithm 2, we use θ∗ to
denote the concatenation of θ+ and θ− into one vector. The derivatives of L(θ)
with respect to this change of variables are: ∇L(θ∗) = [∇L(θ);−∇L(θ] + λ, and
∇2L(θ∗) = [∇2L(θ) −∇2L(θ);−∇2L(θ) ∇2L(θ)].

Algorithm 2 L1-Regularized Logistic Regression with Two-Metric Projection
θ∗ = 0 {Initialize to 0 (or alternately to a nearby solution if available)}
while 1 do

Lold = L(θ∗)
A = {i|θ∗i ≥ ε,∇L(θ∗) < 0} {Active Set of Variables}
d = 0
dA = ∇2

AL(θ∗)−1∇AL(θ∗) {Newton direction for Active sub-matrix/vector}
t = 1
while L([θ∗ + td]+) > L(θ∗) + ct∇L(θ∗)T d do

t = {i|i ∈ (0, t)} {t selected by cubic interpolation}
end while
θ∗A = [θ∗A + td]+ {Take step, project into non-negative orthant}
if ||L(θ∗)− Lold|| < ε then

return {Terminate when insufficient progress}
end if

end while

4 L1PC

Our proposed L1MB algorithm requires O(nd2) time per node in the Gaussian
case, and O(nd3) time per node (assuming a fixed number of Newton iterations)
in the binary case. For graphs where we consider a very large number of nodes,
these runtimes make the algorithm prohibitive. However, note that for the pur-
pose of pruning a DAG-Search algorithm, we are only interested in a subset of
the node’s Markov Blanket (ie. its children and parents, but not co-parents).
This leads us to propose the more efficient ’L1-Regularized selection of Parents
and Children’ (L1PC) algorithm (by analogy with the MMPC algorithm).

Assuming that L1-Penalization is an ideal variable selector, L1MB regresses
each node on all other nodes, and subsequently returns all of the node’s parents,
children, and co-parents. If instead we regressed separately on disjoint subsets

Leaning Graphical Model Structure (addendum) 5

of the nodes, we would still select the parents and children, but we might in-
clude additional nodes (ie. ancestors who are not directly connected but are not
d-separated by the subset) or not include co-parents (ie. if the common child
is not included in the subset). For the purposes of identifying a node’s Markov
Blanket, excluding co-parents is problematic, but it is reasonable if we are only
interested in identifying direct links. The L1PC algorithm is a modification of
the L1MB algorithm that builds the set of potential edges incrementally. Rather
than regressing on all other nodes, it first regresses on several disjoint subsets
of nodes (where the subset sizes are chosen small enough to be computationally
efficient). Subsequently, in L1PC the inactive variables from these small selection
problems are discarded and the active variables are used to form the subsets in
next iteration. The number of iterations used will be dependent on the num-
ber of nodes. For our experiments, we used initial subsets of size 10 (allowing
very efficient estimation of L1-penalized Linear/Logistic Regression regulariza-
tion paths), and in the second iteration we regressed on the remaining active
variables. This strategy allowed the approach to be applied efficiently to graphs
with hundreds of nodes (assuming sparsity), since (in the discrete case) it re-
places the d3 term with d

10103 in the first iteration, and a3 to estimate the final
edge set (where a is the number of variables selected from the first step, typically
much smaller than d if the graph is sparse).

The L1PC strategy does not produce the same set of edges as the L1MB
algorithm, and is not a Markov Blanket estimation procedure (although both
will return the parents and children). In the extreme case where the first iteration
uses subsets of size 1, the incremental L1PC algorithm will (assuming perfect
variable selection) select all nodes that are ancestors, descendants, and nodes
that share a common ancestor with the node of interest. As opposed to the L1PC
algorithm, the incremental L1PC algorithm can hence remove coparents that do
not share a common ancestor. Although undesirable in the undirected case, this
leads to a reduction of the search space in the directed case. Unfortunately,
this reduction needs to be balanced against the increased number of edges that
may be found by not conditioning on a pruned co-parent (ie. through explaining
away). In our experiments, we found that L1MB and L1PC achieved a similar
level of pruning, while L1PC was substantially faster for graphs with hundreds
of nodes.

5 Inverventional Data

Using only observational data, it is not possible to distinguish between Markov
Equivalent graphs, and hence it may not possible to determine edge direction-
ality. However, we can determine directionality with interventional data. A per-
fect intervention is a scenario where a node’s value is clamped to a specific value
(Pearl00). Since parents should not be affected by interventions on their children,
this causes an asymmetry that allows the identification of the causal direction-
ality, thus allowing us to distinguish between Markov Equivalent graphs. The
methods presented here are easily extended to allow interventional data as fol-

6 Mark Schmidt and Kevin Murphy

lows: (i) when performing an L1-penalized regression (or computing an MLE)
with target node i, do not include cases where i was set by intervention, and (ii)
ignore the contribution to the BIC score of nodes that were set by intervention.

6 Extended Results

In this section, we give extended experimental results, where we vary several
parameters. This section contains the following results:

– Results with different data set sizes.
– Results with different random network parameters.
– Results when using interventional Data.
– Results with the L1PC algorithm

0 0.1 0.2 0.3 0.4
0

5

10

15

20

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

18

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

18

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

Fig. 1. False negatives plotted against the ratio of edges removed by different pruning
strategies for different data set sizes. Top left: 1000 samples. Top right: 5000 samples.
Bottom left: 10000 samples. Bottom right: 15000 samples.

Leaning Graphical Model Structure (addendum) 7

2 2.5 3 3.5 4
0

5

10

15

20

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

5

10

15

20

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

5

10

15

20

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

Fig. 2. Number of Structural Errors after Variable Selection plotted against the Num-
ber of Familty Fits required under a topological ordering for different data sets sizes.
Top left: 1000 samples. Top right: 5000 samples. Bottom left: 10000 samples. Bottom
right: 15000 samples.

6.1 Different Data Set Sizes

We first examine the effect of changing the data set size on the results of variable
selection. Using the same parameters as the AAAI paper, we repeated the ’Edge
Pruning’ and ’Parent Selection given an ordering’ experiments with data set
sizes of 1000, 5000, 10000, and 15000 data samples (Figures 1 and 2).

From these results, we see that pruning based on pairwise statistics (SC) pro-
duces poor results, irrespective of the data set. In contrast, MMPC and L1MB
are more effective as the data set size increases. For edge pruning, L1MB er-
roneously removes 1 edge from 4 of the data sets when only 1000 samples are
used, but does not erroneously remove any edges for the larger sample sizes.
In contrast, MMPC still erroneously removes several edges even in the largest
sample size. Under a topological ordering, L1 variable selection recovers the true
structure on 0 data sets for 1000 samples, 2 data sets for 5000 samples (insurance
and mildew), 3 data sets for 10000 samples (insurance, water, and mildew), and

8 Mark Schmidt and Kevin Murphy

4 data sets for 15000 samples (insurance, water, barley, and carpo). In contrast,
MMPC recovers the true structure in 1 data set for 15000 samples (alarm), and
does not recover the true structure in any other data sets or for any smaller
sample sizes (while SC(10) recovers the true structure in the mildew data set for
each of the 5000 sample and 10000 sample experiments, but at a substantially
higher cost).

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4
0

5

10

15

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

Fig. 3. False negatives plotted against the ratio of edges removed by different pruning
strategies for different parameterizations.

6.2 Different Parameterizations

To test the robustness of our results, we re-ran all experiments using 4 additional
different random parameterizations of the graphs (for the 3 real data sets, we
used different random samples for the training data). The pruning and results
under a correct ordering are plotted in Figures 3 and 4.

The edge pruning results show that the L1MB consistently prunes large areas
of the search space without introducing false negatives. However, under different

Leaning Graphical Model Structure (addendum) 9

2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

5

10

15

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

Fig. 4. Number of Structural Errors after Variable Selection plotted against the Num-
ber of Familty Fits required under a topological ordering for different parameteriza-
tions.

parameterizations false negatives were introduced for 2 of the data sets (among
a possible 35, when including those in the main paper). In contrast, the other
strategies included at least 1 false negative on most data sets. Regarding ac-
curacy under a correct ordering, L1 variable selection is the method that most
often recovers the true structure, but in some cases has up to 5 structural er-
rors. However, note that in the MMPC method, we prespecified that subsets
larger than 5 would not be examined, while the L1MB method made no such
assumption.

Figure 5 plots the search results under the 4 samplings. These show similar
trends across the experiments. DAG+L1MB is consistently among the best for
the synthetic data sets, while the OrderL1 often produced better results on the
real data sets (8-10). DAG+MMPC tends to have among the lowest structural
errors (even though BIC and test set likelihood are lower).

10 Mark Schmidt and Kevin Murphy

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

Fig. 5. Structure Search Results under different parameterizations and random sam-
plings of the data.

6.3 Interventional Data

We modified our experimental set-up, such that for each sampled data instance,
one of the nodes was set by a perfect intervention. We then re-ran the experi-
ments, taking these interventions into account. The experimental set-up for these
experiments was otherwise identical, except that we do not include results on
the MMPC algorithm, since it does not support interventions in its current form.
These results are shown for different parameterizations in Figure 6. In these ex-
periments, the DAG+L1MB algorithm dominated, achieving close to the lowest
score across all data sets and experiments in terms of MDL, test set negative log-
likelihood, and structural errors. Note that for these experiments, we measured

Leaning Graphical Model Structure (addendum) 11

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
DAG+SC(5)
DAG+L1MB
OrderEnum+SC(5)
OrderL1

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
DAG+SC(5)
DAG+L1MB
OrderEnum+SC(5)
OrderL1

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
DAG+SC(5)
DAG+L1MB
OrderEnum+SC(5)
OrderL1

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
DAG+SC(5)
DAG+L1MB
OrderEnum+SC(5)
OrderL1

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

Fig. 6. Structure Search Results under different parameterizations and random sam-
plings of the data, where 1 node in each sample was set by intervention.

the structural error in terms of hamming distance from the true DAG rather in
terms of DPAG errors (the true DAG should be identifiable with experimental
data).

6.4 L1 Parents and Children (L1PC)

Finally, we repeated the pruning experiment with the L1PC algorithm. This is
plotted in Figure . From this Figure, we see that L1PC achieves a similar level
of pruning and accuracy as L1MB, while the L1PC algorithm is much faster.

12 Mark Schmidt and Kevin Murphy

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB
L1PC

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB
L1PC

0 0.1 0.2 0.3 0.4
0

5

10

15

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB
L1PC

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

fraction of search space remainingnu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB
L1PC

Fig. 7. False negatives plotted against the ratio of edges removed by different pruning
strategies for different parameterizations.

